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Abstract

The Superconductor-Insulator Transition (SIT) is one of the most fundamental quan-

tum phase transitions. It refers to the quantum phase transition of the ground state of

electrons from a quantum phase coherent state to a quantum phase incoherent state

at absolute zero temperature. Anisotropy is a phenomena observed in many natural

materials. It refers to the property of a physical property having a different value

when measured in different directions. The SIT has been studied in many isotropic

2D structures but systematic studies involving anisotropic materials have yet to be

done. Here, we are studying Superconductor-Insulator transitions in 2D anisotropic

materials using quantum Monte Carlo simulations. We find that anisotropy affects

the superfluid density and the critical coupling constant Kc for the SIT. Further stud-

ies will involve more Monte Carlo steps and a more comprehensive adjustment of the

formalism.
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Chapter 1

Introduction

1.1 Motivation

The Superconductor-Insulator Transition (SIT) is one of the most fundamental quan-

tum phase transitions. The SIT in 2D thin films has been studied extensively both

theoretically and experimentally [1][2][3][4][5][6]. The present work is motivated pri-

marily by previous studies where SIT is observed in a 2D material as a function of dis-

order, induced an applied magnetic field or random chemical potentials [7]. Most pre-

vious research focused on 2D isotropic materials and changed the amount of disorder

as a parameter. Very little work has been done to study the SIT in 2D anisotropic ma-

terials. This paper intends to provide more insights into the superconductor-insulator

transitions in 2D anisotropic materials. The paper will first lay out the physics behind

the SIT in 2D anisotropic systems, introduce the formalism, expand on the quantum

Monte Carlo simulations method, propose two hypotheses, and present the simulation

results.
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1.2 Superconductor-Insulator Transition

1.2.1 Electronic Properties

The electronic properties refer to a set of parameters and representations that fully

describe the state and behavior of electrons in the material. It is a very rich field

with a long history of development. For example, the electronic band structure is an

electronic property and describes the state of the electrons in terms of the energy E

and momentum k [8][9].

In solid state physics, a periodic arrangement of atoms is called a lattice [8].

Electrons in a lattice are then categorized by their movements. According to the band

theory, mobile electrons, or conduction electrons, can move freely between atoms and

therefore form a conductor. Immobile electrons, or valence electrons, are bound with

the atoms and therefore form an insulator.

Under certain conditions, electrons can change their ground state from one ar-

rangement to another, a process called a phase transition. Landau came up with

a theory that describes phase transitions and suggested that the free energy of any

system should be analytic and obey the symmetry of the Hamiltonian. Given these

two conditions, the Landau free energy can be written as a Taylor expansion in the

order parameter [8].

F = α(T )ψ2 + β(T )ψ4 +Hψ, (1.1)

where α = α0(T − Tc) and Tc is the transition temperature. To minimize the free

energy with respect to the order parameter requires

∂F

∂ψ
= 2α(T )ψ + 2β(T )ψ3 −H = 0. (1.2)

The solution of the order parameter is either ψ = 0 or
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ψ2 = −α
β

(T − Tc), (1.3)

where the nontrivial solution only exists when T < Tc. ψ approaches zero as T

approaches Tc from below and such a behaviour is typical for a second order phase

transition [10].

Landau theory then inspired the Ginzburg-Landau theory of superconductivity.

1.2.2 Superconductivity

Superconductivity is a phenomenon discovered more than one hundred years ago. It

refers to the phenomenon that when temperature drops below a transition tempera-

ture, the material enters a phase that has zero electrical resistance and zero internal

magnetic field.

It is a quantum phase with long quantum phase coherence. Phase coherence refers

to the phenomenon where two wave sources have identical frequencies and wave forms

and their phase difference is constant [11][12]. In quantum mechanics, all objects

have wave-like properties. Quantum phenomena are prevalent at the atomic scale

but research has shown that quantum phenomena can be observed on a macroscopic

scale too. Superconductivity is a prominent quantum effect at the macroscopic scale

[13].

Inspired by the Landau theory of phase transitions, Ginzburg and Landau came up

with the theory that describes superconductivity using a macroscopic order parameter

ψ [10]. They argued that the free energy of a superconductor near the superconducting

transition can be expressed in terms this order parameter

F = Fn + α|ψ|2 +
β

2
|ψ|4 +

1

2m
|(−i~∇− 2eA)ψ|2 +

|B|2

2µ0

. (1.4)

Here Fn is the free energy in the normal phase, α and β are the phenomenological
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parameters, m is an effective mass, e is the charge of an electron, A is the magnetic

vector potential, and B = ∇×A is the magnetic field [10].

Minimizing the free energy with respect to the variations of the order parameter

and the vector potential, the Ginzburg-Landau equations can be written as

αψ + β|ψ|2ψ +
1

2m
(−i~∇− 2eA)2ψ = 0, (1.5)

∇×B = µ0j, (1.6)

j =
2e

m
Re{ψ∗(−i~∇− 2eA)ψ}, (1.7)

j is the supercurrent, e and m are the electric charge and mass of the carriers.

The equations introduce two new characteristic lengths of a superconductor. The

first is the coherence length, ξ:

ξ =

√
~2

2m|α|
, (T > Tc), (1.8)

ξ =

√
~2

4m|α|
, (T < Tc). (1.9)

The second is penetration depth λ.

λ =

√
m

4µ0e2ψ2
0

=

√
mβ

4µ0e2|α|
, (1.10)

where ψ0 is the equilibrium value of the order parameter with no electromagnetic field

present.

The coherence length dictates the exponential spatial decay of the small pertur-

bations of the density of superconducting electrons from their equilibrium value. The
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penetration depth dictates the exponential law of an external magnetic field decaying

with distances inside the superconductor [8].

The ratio between the two lengths κ = λ
ξ

is known as the Ginzburg-Landau

parameter [10]. Superconductors that have 0 < κ < 1√
2

are Type I superconductors

and those have κ > 1√
2

are Type II superconductors [10].

1.2.3 Localization

When disorder is introduced to a lattice system, it can lead to quantum interference of

wave functions at low temperatures or low dimensions. When the amount of disorder

is significant, electrons will scatter off of the impurities in the materials and follow a

more complex path than a straight path. Electrons can travel in a closed loop in two

directions. If the phase shift of the electron wave function of the closed loop path is

coherent, the probability of finding an electron at its initial location is higher. This

phenomenon is known as weak localization [8][14].

If the wave functions interfere constructively, the probability of finding the electron

at its initial location is

|A1 + A2|2 = |A1|2 + |A2|2 + 2|A1A2| = 4A2, (1.11)

where A1 and A2 are the amplitudes of the two loops. The probability is higher

in this quantum case compared to the classical case where the probability is |A1|2 +

|A2|2 = 2A2.

In the strong disorder limit, even wave diffusion will be absent, a phenomenon

called strong localization or Anderson localization. In low dimensional systems (d =

1, 2), even tiny disorder can lead to localization. In 3D systems, localization only

occurs with large disorder. By tuning the amount of disorder, the ground state of

electrons can change from a localized state to an extended state, a phenomenon known
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as the Metal-Insulator Transition [15].

When strong localization is applied to a superconductor, it will go through a

superconductor-insulator quantum phase transition. It is a quantum phase transition

of the ground state of electrons from a quantum phase coherent state to a quantum

phase incoherent state. The superconductor-insulator transition has been observed

and measured experimentally [4][5][6].

1.2.4 Josephson Junction Array

The SIT model can be described using Josephson Junction Arrays. A Josephson

junction is a structure formed by two superconductors linked by a non-conducting

material.

Figure 1.1: Josephson Junction

The current through a Josephson Junction is written as

J = Jc sin(φ1 − φ2), (1.12)

where the Jc is the critical current of the Josephson junction and it depends on

the properties of the superconductors. φ1 and φ2 refer to the phases of the two

superconducting islands.

Josephson junctions can be capacitively coupled into 2D arrays as shown in Figure

1.2, where each cross represents a junction and the square represents an island with

a charging energy Ec, where Ec = e2

2C
and C is the junction capacitance [16][17].
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Figure 1.2: Josephson Junction Array

The superconducting island has a charging energy EC and the two islands have

the Josephson coupling energy EJ . Josephson Junctions only allow current to pass

through when EJ > EC . Therefore, EJ > EC can be used to describe the delocalized

state and EJ < EC can be used to describe the localized state.

Josephson Junction Arrays can model granular thin films well. Superconductivity

in granular thin films is defined within each grain island and transport is allowed by

tunneling between the islands. Ec and Ej could be tuned by changing the thickness of

the film. Experimentally SIT has been observed in In, Ga, Pb, Al films [18] and has

been realized using Josephon Junction Arrays [19]. These models all showed direct

superconductor-insulator transitions but did not agree on an universal value [19].

1.3 2D Anisotropy

Anisotropy refers to the property of a material that allows it to have different prop-

erties along different directions, as opposed to isotropy [20]. Anisotropy is observed

in many natural materials [21]. Josephson Junction Arrays can be used to model

anisotropic thin films. The Josephson coupling energy J will be different along X

and Y directions in the anisotropic case. The amount of anisotropy a material has is

defined as the ratio between the two Josephson energies

7



ε =
Jy
Jx
. (1.13)

Figure 1.3 and 1.4 illustrate the isotropic and anisotropic structures formed in

Josephson Junction Arrays. Each cross represents a junction and each square repre-

sents an island.

Figure 1.3: 2D isotropic structure, ε = 1

Figure 1.4: 2D anisotropic structure, ε 6= 1

1.4 Formalism

1.4.1 Model Hamiltonian

The Hamiltonian of SIT in 2D anisotropic materials can be written as

8



H = U
∑
j

n2
j −

∑
<ij>

Jijcos(θi − θj), (1.14)

where U is the charging energy of an island which is identical for all islands, nj is

the operator of the number of Cooper pairs on island j, Jij is the Josephson coupling

energy between island i and j, < i, j > identifies summation over the nearest neighbor

i and j, θi and θj are the phases of the two islands [7].

From the Hamiltonian (Eq.1.14), SIT can be thought of a competition between

the charging energy U and the coupling energy J . When the ratio between the two

energies is tuned to a certain, the system will undergo the superconductor-insulator

transition. The ratio at which the system go through the phase transition is the

critical ratio and the theory implies that there exists an universal value for the critical

resistance [22]. θj is canonically conjugate to nj so the Bose-Hubbard model can be

expressed in the quantum rotor model form [2].

When the phase θj is well defined, we have

nj =
1

i

∂

∂θj
. (1.15)

Using the Josephson relation

Vj =
~
2e
θ̇j

2
, (1.16)

ECj =
1

2
CV 2

j =
C~2

2(2e)2
θ̇j

2
=

~2

4U
θ̇j

2
. (1.17)

The Hamiltonian can be rewritten as

H ′ =
~

4U

∑
j

θ̇j
2 −

∑
<ij>

Jij cos(θi − θj). (1.18)
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Even though the model is artificial, it resembles a real, physically achievable sys-

tem. Specifically, the model resembles a 2D Josephson junction array on a square

lattice in a uniform magnetic field [7].

1.4.2 Path Integral Formalism

With the Hamiltonian, the action can be obtained in the form of a standard path

integral over imaginary time as follows:

S

~
=

1

~

∫
Ldτ, (1.19)

where L is the Lagrangian written as

L =
~

4U

∑
j

(
∂θj
∂τ

)2

−
∑
<ij>

Jij cos[θi(τ)− θj(τ)]. (1.20)

The partition function is given by a path integral of e−S/~ over all possible paths

described by the variables θi(τ) in imaginary time τ [kim], integrated from τ = 0 to

τ = β~ where β = 1
kBT

[7] [8].

1.4.3 Coupling Constant K

The coupling constant can be viewed as the ratio between the charging energy U and

the Josephson coupling energy J . Since SIT is essentially driven by the competition

between U and J , the coupling constant K =
√

J
2U

could be used and tuned as a

parameter dictating SIT [7][22].

Since the model is quantum in nature but has to be simulated on a classical

machine, the imaginary time τ is thus treated as a third dimension. The path integral

can be viewed as the partition function of an anisotropic classical XY model in three

dimensions. In this case, the anisotropy refers to the coupling constants K and Kτ

in the xy plane and the τ direction are different [7].
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To map the third dimension, we can use the expansion of cos ∆θ to second order

in the small quantity of ∆θ,

(
∂θi
∂τ

)2

∼
(

∆θi
∆τ

)2

∼ 2− 2 cos ∆θi
(∆τ)2

, (1.21)

where ∆τ is the width of the imaginary time slice, ∆θi = θi(τ + ∆τ)− θi(τ).

Then the action can be rewritten as

S

~
= −Kτ

∑
cos[θi(τ)− θi(τ + ∆τ)]−

∑
ij

Kij cos[θi(τ)− θj(τ)]. (1.22)

The values of the coupling constants K and Kτ can be obtained assuming that

the time integral is broken into M slices, each of width β~
M

. The coupling constant in

the x direction is

Kx =
βJx
M

, (1.23)

and that of the y direction is

Ky =
βJy
M

. (1.24)

The coupling constant in the τ direction is then

Kτ =
~

4U

1

~
(∆τ)

2

(∆τ)2
=

1

2U

~
∆τ

=
M

2βU
. (1.25)

With Ki and Kτ , the partition function is obtained from the anisotropic 3D XY

classical Hamiltonian with coupling constants K and Kτ [7][23]. Therefore, the equi-

librium quantities can be obtained by averaging over all configurations using Monte

Carlo techniques.
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1.4.4 Helicity Modulus

With the time-slice formulation of the partition function, we can use Monte Carlo

techniques to evaluate various properties.

For a classicalXY system in d dimensions, the helicity modulus tensor is a measure

of phase stiffness [24]. Phase stiffness can be seen as a measure of the response of a

system in an ordered phase to a slow in-plane phase twist of the order parameter [7].

It is a measure of the superconductivity of the system. It is a d× d matrix defined as

the second derivative of the free energy with respect to an infinitesimal phase twist

as follows:

γαβ =
1

N

∂2F

∂A′α∂A
′
β

, (1.26)

where N is the number of sites in the system.

For the diagonal elements, the derivative takes the following explicit form:

γαα =
1

N

〈∑
<ij>

Jij cos(θi − θj)(êij · êα)2

〉

− 1

N

〈[∑
<ij>

Jij sin(θi − θj)(êij · êα)

]2〉

+
1

N

〈∑
<ij>

Jij sin(θi − θj)(êij · êα)

〉2

,

(1.27)

where the triangular brackets denote an average in the canonical ensemble, êij is

a unit vector from the ith to the jth site, and êα is a unit vector in the α direction.

When applied to a time-slice representation of the quantum mechanical Hamilto-

nian, the coupling constants Jij will be different in the xy plane and in the τ direction:
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γxx =
1

NxNy

〈
1

M

∑
<ij>||x̂

Jij||x̂ cos(θi − θj)

〉

− 1

NxNykBT

〈
1

M

 ∑
<ij>||x̂

Jij||x̂ sin(θi − θj)

2〉

+
1

NxNykBT

〈
1

M

∑
<ij>||x̂

Jij||x̂ sin(θi − θj)

〉2

,

(1.28)

where NxNy represent the total number of sites. The sums run over all bonds in the

x̂ direction and there are NxNyM bonds. The expression is similar for γyy.

To incorporate the coupling constant K, we can multiply Equation 1.25 by β
M

:

βγxx
M

=
1

NxNyM

〈 ∑
<ij>||x̂

Kij||x̂ cos(θi − θj)

〉

− 1

NxNyM

〈 ∑
<ij>||x̂

Kij||x̂ sin(θi − θj)

2〉

+
1

NxNyM

〈 ∑
<ij>||x̂

Kij||x̂ sin(θi − θj)

〉2

,

(1.29)

where K = βJ
M

and Kτ = M
2βU

. We can choose M so that K = Kτ in the limit

β � 1, which is equivalent to

β

M
=

1√
2JU

. (1.30)
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γxx√
2JxU

=
1

NxNyM

〈 ∑
<ij>||x̂

Kx cos(θi − θj)

〉

− 1

NxNyM

〈 ∑
<ij>||x̂

Kx sin(θi − θj)

2〉

+
1

NxNyM

〈 ∑
<ij>||x̂

Kx sin(θi − θj)

〉2

,

(1.31)

γyy√
2JyU

=
1

NxNyM

〈 ∑
<ij>||ŷ

Ky cos(θi − θj)

〉

− 1

NxNyM

〈 ∑
<ij>||ŷ

Ky sin(θi − θj)

2〉

+
1

NxNyM

〈 ∑
<ij>||ŷ

Ky sin(θi − θj)

〉2

,

(1.32)

1.4.5 Superfluid Density

A similar measure of the superconductivity is called superfluid density ρs[25]. We can

calculate the quantity ρ(0) from the helicity modulus and the coupling constant [7]:

ρ(0) = Kγ ≡ K(γxx + γyy)

2
. (1.33)

Since we are dealing with a 2D anisotropic model, γxx 6= γyy, so ρ(0) is given by
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ρ(0) =
JxKx

NxNyM

〈 ∑
<ij>||x̂

cos(θi − θj)

〉
+

JyKy

NxNyM

〈 ∑
<ij>||ŷ

cos(θi − θj)

〉

− JxK
2
x

NxNyM

〈 ∑
<ij>||x̂

sin(θi − θj)

2〉
−

JyK
2
y

NxNyM

〈 ∑
<ij>||ŷ

sin(θi − θj)

2〉

+
JxK

2
x

NxNyM

〈 ∑
<ij>||x̂

sin(θi − θj)

〉2

+
JyK

2
y

NxNyM

〈 ∑
<ij>||ŷ

sin(θi − θj)

〉2

.

(1.34)

Introducing the parameter for anisotropy ε = Jy
Jx

to the equation, the superfluid

density can be written as

ρ(0) =
JxKx

NxNyM

〈 ∑
<ij>||x̂

cos(θi − θj)

〉
+
εJx
√
εKx

NxNyM

〈 ∑
<ij>||ŷ

cos(θi − θj)

〉

− JxK
2
x

NxNyM

〈 ∑
<ij>||x̂

sin(θi − θj)

2〉
− εJxεK

2
x

NxNyM

〈 ∑
<ij>||ŷ

sin(θi − θj)

2〉

+
JxK

2
x

NxNyM

〈 ∑
<ij>||x̂

sin(θi − θj)

〉2

+
εJxεK

2
x

NxNyM

〈 ∑
<ij>||ŷ

sin(θi − θj)

〉2

,

(1.35)

1.4.6 Finite-size Scaling

If the phase transition is continuous as a function of some parameter, such as the

coupling constant K, the critical behavior near the transition can be analyzed through

a finite-size scaling analysis. The basic finite-size scaling hypothesis is that, given the

correlation length ξ, the size of the system only appears in the ratio of N/ξ and the

corresponding ratio in the time direction is Nτ/ξτ [2].

The quantity we are interested in, helicity modulus at zero frequency γ(0), can be
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written as

γ(0) =
1

Ld+z−2
γ̃

(
Lτ
Lz

)
, (1.36)

where d is the spatial dimensionality, z is the dynamic exponent, γ̃ is a scaling

function, v is the critical exponent of the correlation length ξ, δ = K−Kc
Kc

and Kc is

the critical value of the coupling constant, Lτ is the thickness in the imaginary time

direction [7].

For the 2D model, d = 2 and let γ̃(L1/vδ, Lτ/L
z) = (Lz/Lτ )G̃(L1/vδ, Lτ/L

z), the

scaling relation is then

Lτγ(0) = G̃

(
L1/vδ,

Lτ
Lz

)
. (1.37)

The simulation has a total of Nx×Ny ×M sites, the scaling relation can then be

written as

KMγ(0) = G̃

(
N1/v
x δ,

M

N z
x

)
. (1.38)

Therefore, Kc can be found by plotting KMγ(0) as a function of δ for different

lattice sizes as long as the M = cN z
x is satisfied. The point where all the lines cross,

which correspond to δ = 0, is the critical point. We used z = 1, which is known to

be correct when there is no magnetic field in the system. The scaling function is thus

KMγ(0) = G̃(M1/vδ, 1). (1.39)
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Chapter 2

Method

2.1 Quantum Monte Carlo Simulation

2.1.1 Metropolis Algorithm

To evaluate the superfluid density as a function of the coupling constant K, we can

use quantum Monte Carlo techniques. In this case, we use the Metropolis algorithm

with periodic boundary conditions satisfied both in the spatial directions and the

imaginary time direction [7][26].

In most applications, we want to estimate the mean of some function f because

the quantity gives us a first-principles estimate of certain physical quantities. In the

2D anisotropic model, the mean is taken over all configurations

F =
1

Z(T )

∑
x

f(x)exp(−E(x)/kBT ). (2.1)

The weights come from the expression of the configuration’s energy. A natural

approach would be to select some configurations from the distribution but it is chal-

lenging to determine what samples to choose. Nick Metropolis and others came up

with the observation that if we only change one site, it is easy to evaluate the change
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in energy ∆E because only a few terms change [26]. The transition probability pξ,σ

is such that for each configuration σ,

µ(σ) =
∑
ξ

µ(ξ)pξ,σ. (2.2)

The sum includes all configurations ξ that differ from σ by one site, and

pξ,σ =
µ(σ)

µ(ξ)
= exp(−∆E(σ)/kBT ). (2.3)

This transition probability indicates that if the change of one site lowers the

energy, we should proceed, otherwise, we proceed with a probability p and reject the

change with the probability p− 1.

In order to choose the site to flip, we can use a probability distribution

cv(σ) =
min(1, exp(∆E(σ)/kBT ))

n
, (2.4)

where n is the number of sites and this too follows the Metropolis rejection algorithm.

2.1.2 Procedure

The quantum Monte Carlo calculation with Metropolis algorithm is carried out in

Python [27]. The overall procedure is as follows [8]:

1. Choose a specific lattice size, n = 6, 8, 10.

2. Generate a random initial configuration for the lattice. The phase θi of each

site is randomly chosen from [1, 360].

3. Checks for periodic boundary conditions, θ1 = θn+1.

4. Randomly pick a site i and consider whether to change the phase θi to an

arbitrary integer value in [1, 360].

5. Compute the energy change δS associated with the change. Since the new
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energy only differs from the old energy at the chosen site i, δS can be calculated as

δS =−Kτ cos[θnewi (τ)− θnewi (τ + ∆τ)]−K cos[θnewi (τ)− θnewj (τ)]

+Kτ cos[θoldi (τ)− θoldi (τ + ∆τ)] +K cos[θoldi (τ)− θoldj (τ)].

(2.5)

6. Calculate the transition probability p associated with the energy change

p = e
−δS
kBT (2.6)

7. Randomly choose a number Z between [0, 1]

8. If Z < p, change the phase on site i, reject the change otherwise.

9. Calculate γi associated with the new configuration.

2.1.3 Python Implementation

For 2D isotropic materials with no disorder in a uniform magnetic field, the theoretical

critical coupling constant Kc is calculated to be around 0.452 using both analytical

and numerical approaches. Therefore, we used K ranging from 0.42 - 0.46, with 0.01

as the step size.

Nx = Ny = m takes values of 6, 8, and 10. To stabilize the initial configuration,

we used N = 40000 × Nx × Ny ×M Monte Carlo steps. Once the configuration is

stabilized, we used N1 = 50000×Nx×Ny×m steps to calculate the helicity modulus

of the configuration.

The nearest neighbor function takes in the lattice size Nx and Ny and generates

the initial random configuration.

The sample generation function takes in a randomly generated site indices

idi, idj and generate a new phase θi for the chosen site.

The deltaH function takes in the old phase and the new phase of chosen site and

calculate the energy change associated with the change.
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The HelicityModulus function takes in the old configuration and calculates its

helicity modulus.

The newGamma function takes in the new configuration and calculates its he-

licity modulus.

The configuration function acts as the main function that takes in the lattice

size, K, and the anisotropy ε. The pseudocode for the algorithm is shown below:

Result: Helicity modulus of the configuration
θj = nearest neighbor(lattice size) ;
idi, idj = random indices of site i;
newTheta, idi, idj = sample generator(idi, idj);
for each step in N1 steps do

energy change of a flip = deltaH();
prob = random number;
if f the transition probability ¿ prob then

set the configuration to the new configuration;
end
generate a new configuration;

end
old helicity modulus = HelicityModulux();
for each step in N steps do

energy change = deltaH();
prob = random number;
if f transition probability ¿ prob then

new helicity modulus = newGamma();
gx += new helicity modulus;
sets the configuration to the new configuration;

end
generates new samples;

end
calculates the helicity modulus for the ;

Algorithm 1: Metropolis Algorithm

The complete Python implementation can be found in Appendix A.
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2.2 Google Cloud Platform

Since the Monte Carlo simulation involves as many as 50 million steps of calculations,

to speed up the process, we can use a Virtual Machine instance from the Compute

Engines on Google Cloud Platform. With the VM instance, it takes around 8 hours

to finish the calculations for lattice size n = 10.

Figure 2.1: Virtual Machine Instance Setup
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Chapter 3

Results

3.1 Baseline Model

Before introducing anisotropy to the model, the 2D isotropic model was tested to

ensure the baseline model is working. We calculated Kc for the square lattice case

with no magnetic field involved. Based on the finite-size scaling method, we plotted

the superfluid density, γ ×K ×M as a function of K.

Figure 3.1: Baseline Model for 2D Isotropic Lattice

The three lines correspond to three different lattice sizes and the lines cross at the
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critical coupling constant Kc ≈ 0.448 ± 0.001. The figure agrees with the baseline

model done by Nguyen. The similar crossing point indicates the baseline model

without anisotropy is correct.

Figure 3.2: Baseline Model for 2D Isotropic Lattice, Hung Q. Nguyen

3.2 Anisotropic Model

We then introduced anisotropy to the model. The measure of anisotropy is defined in

Eq.1.13 as the ratio between two Josephson coupling energies. We used ε = Jy
Jx

with

values 0.5, 0.6, 0.7, 0.8, 0.9, 1, which represented rectangular lattice all the way to

isotropic square lattice. We then plotted the γ ×K ×M as a function of Kx.

As seen in Figures 3.3-3.7, the crossing point and the superfluid density at the

critical point change as the amount of anisotropy changes. To quantitatively view the
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Figure 3.3: Superfluid density as a function of Kx, ε = 0.9

Figure 3.4: Superfluid density as a function of Kx, ε = 0.8
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Figure 3.5: Superfluid density as a function of Kx, ε = 0.7

Figure 3.6: Superfluid density as a function of Kx, ε = 0.6
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Figure 3.7: Superfluid density as a function of Kx, ε = 0.5

relationships, we plotted the superfluid density at the critical points as a function of

ε, shown in Figure 3.8, and the critical coupling constant Kc as a function of ε, shown

in Figure 3.9.

Figure 3.8: Superfluid density as a function of anisotropy ε
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Figure 3.9: Critical coupling constant Kc as a function of anisotropy ε

3.3 Discussion

Previous research using the quantum U(1) rotor approach to study 2D anisotropic op-

tical lattice suggests that the Kc ∝ J
U

increases as the amount of anisotropy increases

[28]. Similarly, we predicted that the critical coupling constant would increase as the

amount of anisotropy increases. We also predicted that as we increase the amount of

anisotropy, the phase stiffness or helicity modulus would decrease since the interaction

along one direction overpowers that of the other direction.

Our results suggest that anisotropy does affect the superfluid density and the

critical coupling constant. Figure 3.8 also suggests the superfluid density decreases

as we introduce more anisotropy. However, for the critical coupling constant, our

result indicates the opposite of the hypothesis, such that as the critical coupling

constant decreases as the amount of anisotropy increases.

There are multiple explanations for the discrepancy. First, Monte Carlo simula-

tions will be more precise and close to the true distribution with more steps. The

amount of Monte Carlo step significantly affects the precision and the accuracy of

our model. When using only 4000 × Nx × Ny × M steps, we did observe a simi-

lar crossing behavior but the crossing point was around Kc ≈ 0.440, which differed

27



from the true model. Due to the computational time and power limits, we used

40000 × Nx × Ny ×M steps, which gave us relatively stable results but could still

lead to imprecision. Therefore, if we perform more Monte Carlo steps, the crossing

points may shift and we will obtain more precise results. Second, when introducing

anisotropy to the model, we adjusted the Josephson energy and the coupling con-

stant K along x and y directions. However, more parameters may be affected by the

anisotropy and some forms of normalization should be involved to reflect the new

property. Lastly, we made our predictions from the intuition that the phase stiffness

is lowered when two directions have different coupling energies. If we take the model

to be the accurate model, it suggests that new physics intuition is needed to explain

the results.
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Chapter 4

Conclusion

In this study, we investigated the Superconductor-Insulator Transition (SIT) in 2D

anisotropic materials using quantum Monte Carlo simulation. SIT is a quantum phase

transition that is driven by the competition between the Josephson coupling energy

and the charging energy of each island. In 2D isotropic materials with no magnetic

field, SIT happens at a universal critical coupling constant Kc = 0.4538, which is

confirmed through both analytical and numerical calculations. When anisotropy is

introduced to the 2D structure, we predicted that the helicity modulus would de-

crease as anisotropy increases and the critical coupling constant would increase as

the anisotropy increases.

Through quantum Monte Carlo simulation using the Metropolis algorithm, we

were able to simulate both the isotropic and anisotropic systems numerically. Using

finite-size scaling, we were able to find the critical coupling constant at which point

the superfluid density lines of different lattice sizes cross. We found that the superfluid

density did decrease as anisotropy increases but the critical coupling constant also

decreased as more anisotropy was introduced.

Both hypotheses were driven by the same intuition and mechanism, which is that it

is easier to twist the phase of each site along one direction when the coupling energies
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are different along different directions and thus it requires more Josephson coupling

energy along one direction for the system to enter the superconducting phase. The

discrepancy in our results suggest that future revision is required.

Future investigation should revisit the formalism of the helicity modulus and the

superfluid density derivations and check if more parameters should be revised to

incorporate anisotropy. Once the formalism is confirmed, subsequent studies can use

more Monte Carlo steps to generate a more stablized configuration and calculate a

more precise superfluid density value. That being said, one should always consider the

trade-off between computational time and model accuracy. If further investigation

indicates similar trends as the current results, it means we should introduce new

insights to the physical system and the quantum phase transition.
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Appendix A

Python Implementation

1 import numpy as np

2 from random import *

3 from scipy import *

4 import time

5 from matplotlib import pyplot as plt

6 N_x = 10

7 N_y = N_x

8 m = N_x

9 N = 50000 * N_x **3

10 N_1 = 40000 * N_x **3

11 epsilon = 0.6

12 K = np.arange (0.4, 0.5, 0.01)

13 Aij = 0

14 theta_j = np.zeros((N_x * N_y , 4))

15 cos_list = []

16 sin_list = []

17 for i in range (360):

18 cos_list.append(np.cos(2 * np.pi * i/360))

19 sin_list.append(np.sin(2 * np.pi * i/360))

20

21 """
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22 returns the theta_j matrix

23 """

24 def nearest_neighbor(N_x , N_y):

25 temp = np.zeros((N_x * N_y , 4))

26 for i in range(N_x * N_y):

27 ii = np.mod(i, N_x) + 1

28 ij = np.ceil((i + 1) / N_y)

29 temp[i][0] = int((ij - 1) * N_y + np.mod(ii , N_x))

30 temp[i][1] = int(np.mod(ij , N_y) * N_y + ii) - 1

31 temp[i][2] = int((ij - 1) * N_y + np.mod(ii + N_x - 2, N_x))

32 temp[i][3] = int((np.mod(ij + N_y - 2, N_y)) * N_y + ii) - 1

33 theta_j = temp

34 return theta_j

Listing A.1: Initial Configuration Generation

1 """

2 returns new theta

3 """

4 def sample_generator(idi , idj , oldTheta , N_x , N_y , m):

5 newTheta = np.copy(oldTheta)

6 #get the new i, j for the next flip site

7 idj_r = np.random.random ()

8 index = np.round(idj_r * (N_x * N_y * m - 1) + 1)

9 idi = int(np.mod(index - 1, N_x * N_y))

10 idj = int(( index - idi) / (N_x * N_y))

11 rr = np.random.rand()

12 newTheta[idi][idj] = np.round(rr * 359) + 1

13 return newTheta , idi , idj

Listing A.2: New Sample Generator

1 """

2 return delta H

3 """
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4 def deltaH(newTheta , oldTheta , idi , idj , N_x , N_y , m, cos_list ,

theta_j , A_ij):

5 iOd = np.zeros (4)

6 iNd = np.zeros (4)

7 if (idj == m - 1):

8 idj2 = 0

9 idj1 = idj - 1

10 elif (idj == 0):

11 idj1 = m - 1

12 idj2 = idj + 1

13 else:

14 idj1 = idj - 1

15 idj2 = idj + 1

16 id1 = int(np.mod(oldTheta[idi][idj1] - oldTheta[idi][idj], 360))

17 id2 = int(np.mod(oldTheta[idi][idj] - oldTheta[idi][idj2], 360))

18 id3 = int(np.mod(newTheta[idi][idj1] - newTheta[idi][idj], 360))

19 id4 = int(np.mod(newTheta[idi][idj] - newTheta[idi][idj2], 360))

20 for ii in range (4):

21 iOd[ii] = np.mod(oldTheta[idi][idj] - oldTheta[int(theta_j[

idi][ii])][idj] - A_ij , 360)

22 iNd[ii] = np.mod(newTheta[idi][idj] - newTheta[int(theta_j[

idi][ii])][idj] - A_ij , 360)

23 DH = cos_list[id1] + cos_list[id2] - cos_list[id3] - cos_list[

id4] + \

24 cos_list[int(iOd [0])]+ cos_list[int(iOd [1]) ]+\

25 cos_list[int(iOd [2])]+ cos_list[int(iOd [3])] - \

26 cos_list[int(iNd [0])]-cos_list[int(iNd [1])]- \

27 cos_list[int(iNd [2])]-cos_list[int(iNd [3])]

28 return -DH

Listing A.3: Energy Change Associated with the Flip

1 """

2 return helicity modulus as an array
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3 """

4 def HelicityModulux(oldTheta ,nx ,ny ,m,cosx ,sinx ,theta_j ,Aij):

5 x1 = 0

6 x2 = 0

7 x3 = 0

8 x4 = 0

9 gx = np.zeros (6)

10 for i in range(m):

11 for j in range(N_x * N_y):

12 i1 = np.mod(int(oldTheta[j][i]) - int(oldTheta[int(

theta_j[j][0])][i]) - A_ij , 360)

13 i2 = np.mod(int(oldTheta[j][i]) - int(oldTheta[int(

theta_j[j][1])][i]) - A_ij , 360)

14 x1 += cos_list[i1]

15 x2 += cos_list[i2]

16 x3 += sin_list[i1]

17 x4 += sin_list[i2]

18 gx[0] = x1

19 gx[1] = x2

20 gx[2] = x3**2

21 gx[3] = x4**2

22 gx[4] = x3

23 gx[5] = x4

24 return gx

Listing A.4: Helicity Modulus Calculation for the Old Configuration

1 def newGamma(oldG , oldTheta , newTheta , idi , idj , N_x , N_y , m,

cos_list , sin_list , theta_j , A_ij):

2 newG = np.zeros (6)

3 iO1 = np.mod(int(oldTheta[idi][idj]) - int(oldTheta[int(theta_j[

idi ][0])][idj]) - A_ij , 360)

4 iO2 = np.mod(int(oldTheta[idi][idj]) - int(oldTheta[int(theta_j[

idi ][1])][idj]) - A_ij , 360)
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5 iO3 = np.mod(int(oldTheta[int(theta_j[idi ][2])][idj]) - int(

oldTheta[idi][idj]) - A_ij , 360)

6 iO4 = np.mod(int(oldTheta[int(theta_j[idi ][3])][idj]) - int(

oldTheta[idi][idj]) - A_ij , 360)

7

8 iN1 = np.mod(int(newTheta[idi][idj]) - int(newTheta[int(theta_j[

idi ][0])][idj]) - A_ij , 360)

9 iN2 = np.mod(int(newTheta[idi][idj]) - int(newTheta[int(theta_j[

idi ][1])][idj]) - A_ij , 360)

10 iN3 = np.mod(int(newTheta[int(theta_j[idi ][2])][idj]) - int(

newTheta[idi][idj]) - A_ij , 360)

11 iN4 = np.mod(int(newTheta[int(theta_j[idi ][3])][idj]) - int(

newTheta[idi][idj]) - A_ij , 360)

12

13 newG [0] = oldG [0] - cos_list[iO1] - cos_list[iO3] + cos_list[iN1

] + cos_list[iN3]

14 newG [1] = oldG [1] - cos_list[iO2] - cos_list[iO4] + cos_list[iN2

] + cos_list[iN4]

15 newG [4] = oldG [4] - sin_list[iO1] - sin_list[iO3] + sin_list[iN1

] + sin_list[iN3]

16 newG [5] = oldG [5] - sin_list[iO2] - sin_list[iO4] + sin_list[iN2

] + sin_list[iN4]

17 newG [2] = newG [4]**2

18 newG [3] = newG [5]**2

19 return newG

Listing A.5: Helicity Modulus Calculation for the New Configuration

1 """

2 Metropolis algorithm

3 1. find a random theta_i

4 2. flip the theta_i to a new value [1, 360] degrees from a

probability density function

5 3. the new probability dTheta_i is dTheta_i x probability density

35



matrix

6 4. accept the flip with probability min (1, transition prob)

7 5. if accepted , then theta -> theta_new , otherwise theta is

unflipped

8 """

9 def configuration(epsilon , coeff , N_x , N_y , m, N, N_1 , A_ij):

10 theta_j = nearest_neighbor(N_x , N_y)

11 idj_r = np.random.random ()

12 index = np.round(idj_r * (N_x * N_y * m - 1) + 1)

13 idi = int(np.mod(index - 1, N_x * N_y))

14 idj = int(( index - idi) / (N_x * N_y)) #6 out of bound so

deleted +1

15 g = np.zeros (6)

16 r = np.random.rand(N_x * N_y , m)

17 oldTheta = np.round(r * 359) + 1

18 newTheta , idi , idj = sample_generator(idi , idj , oldTheta , N_x ,

N_y , m)

19 start_config = time.time()

20 for i in range (N_1):

21 DH = deltaH(newTheta , oldTheta , idi , idj , N_x , N_y , m,

cos_list , theta_j , A_ij)

22 prob = np.random.random ()

23 if (np.exp(coeff * DH) >= prob):

24 oldTheta = newTheta

25 newTheta , idi , idj = sample_generator(idi , idj , oldTheta ,

N_x , N_y , m)

26 # Stabilization step 1-5

27 end_config = time.time()

28 print("Config Done", end_config - start_config)

29 oldG = HelicityModulux(oldTheta , N_x , N_y , m, cos_list , sin_list

, theta_j , A_ij)

30 start_gamma = time.time()

36



31 count = N

32 g = np.zeros (6)

33 # calculate gamma

34 gx = np.copy(oldG)

35 counter = 0

36 while count >= 1:

37 DH = deltaH(newTheta , oldTheta , idi , idj , N_x , N_y , m,

cos_list , theta_j , A_ij)

38 prob = np.random.random ()

39 if (np.exp(coeff * DH) >= prob):

40 newG = newGamma(oldG , oldTheta , newTheta , idi , idj , N_x ,

N_y , m, cos_list , sin_list , theta_j , A_ij)

41 gx += newG

42 oldTheta = newTheta

43 oldG = newG

44 count -= 1

45 counter += 1

46 newTheta , idi , idj = sample_generator(idi , idj , oldTheta ,

N_x , N_y , m)

47 end_gamma = time.time()

48 print("QMC done", end_gamma - start_gamma)

49 g[0] = gx[0] / N

50 g[1] = gx[1] / N

51 g[2] = gx[2] / N

52 g[3] = gx[3] / N

53 g[4] = (gx[4] / N)**2

54 g[5] = (gx[5] / N)**2

55 gamma = (1 + epsilon **2) * coeff / (2 * N_x * N_y * m) * (g[0] +

g[1]) \

56 - ((1 + epsilon **3) * coeff **2) /(2* N_x*N_y*m)*(g[2]+g[3]) \

57 + ((1 + epsilon **3) * coeff **2) /(2* N_x*N_y*m)*(g[4]+g

[5])
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58 return gamma , gx

Listing A.6: Main Function

1 def plot(epsilon , N_x , N_y , m, N, N_1 , A_ij):

2 gamma_list = []

3 for i in K:

4 gamma , gx = configuration(epsilon , i, N_x , N_y , m, N, N_1 ,

A_ij)

5 print(gamma * i * m)

6 gamma_list.append(gamma * i * m)

7 return gamma_list

Listing A.7: Saves the Data
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