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Abstract

We introduce the 2dLW model, which successfully captures kinetic fragility as the liquid is

supercooled. The supercooled liquid suffers a glass transition around 0.30 < Tg∗ < 0.35,

after which the fragile dynamics crossover to strong, Arrhenius-type activated dynamics.

The Vogel-Fulcher-Tamman law, which models fragile dynamics, predicts To ≈ 0.30. Much

like how pseudonematic domains result in slow, power-law decay of orientational time corre-

lation functions in liquid crystals, we conjecture that the slow, fragile dynamics of the 2dLW

supercooled liquid are caused by molecular-orientational hexatic domains. This is in con-

trast to literature expectations of the general unimportance of structure to glassy dynamics.

Our findings of ordered domains suggest a microscopic mechanism behind the famous slow

dynamics of supercooled liquids. 2dLW domains are mesoscopic, with lengthscale ranging

from the length of a few molecules to the length of dozens of molecules. Finite-size-scaling

arguments show that the structural order is truly mesoscopic rather than long-range or

quasi-long-range. We find that supercooling gives rise to two nearest-neighbor lengthscales

with different orientational ordering associated with each length. In summary, we find in a

two-dimensional supercooled liquid and glass unexpected molecular-orientationally ordered

structures that we believe are structural signatures of glassy dynamics.
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CHAPTER 1

Introduction

One of the current problems in condensed matter is understanding the liquid state. Studying

the physics of liquids is particularly challenging. Liquid systems are disordered and thus lack

the symmetries that facilitate solid state theory. Gas theory is not applicable either because

particle interactions are fundamental to liquid properties. Our technique is to use statistical

mechanics and numerical simulation to help us learn more about liquids.

Supercooled liquids and liquid crystals are two subsets of liquids examined in this thesis.

Both have unusual properties. Harnessing the anomalously slow dynamics of supercooled

liquids and glasses led to revolutionary advances in microscopy (see Nobel Prize in Chemistry,

2017) and continues to find application in fields like food science. [1] [2] These applications

are in addition to the ubiquity of glass as an engineering and optical material. On the

other hand, liquid crystals flow like ordinary liquids yet attain symmetries otherwise found

only in crystals. Liquid crystals’ unique optical properties enabled the invention of liquid

crystal displays (LCDs) while their symmetry properties endow materials like Kevlar with

the integrity to stop bullets. [3] This thesis introduces a numerical model for a supercooled,

glassforming system that also attains liquid crystalline order in its supercooled state. Special

attention will be paid to the unique nature of the liquid crystalline order and the dynamics
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of the supercooled liquid.

1.1 Supercooled liquids and glasses

Supercooled liquids are liquids cooled below their freezing temperature. As such, they have

a thermodynamic preference for being crystal. In other words, a crystal structure below the

freezing point will have a lower free energy than its corresponding liquid structure. Then in

order for a liquid to become supercooled, it must find a way to avoid crystallization. This

is not the only concern when preparing a supercooled liquid sample. In fact, supercooled

liquids have another option when cooled far past their freezing points. Here, a competition

on the atomic level between two processes in a liquid becomes relevant: crystal nucleation

time and liquid relaxation time. There is an art to the science of preparing laboratory (and

numerical, in our case) supercooled liquids. [4] One starts with an ordinary liquid and cools

it according to some cooling schedule. If the cooling rate is too slow, then the atoms have

ample time and opportunity to form a stable crystal nucleus because it is thermodynamically

favorable to do so. On the other hand, if the cooling occurs on a timescale quicker than the

liquid’s relaxation time, then the system will fail to equilibrate and undergo dynamic arrest.

This forms an amorphous solid - what we call glass.

The delicacy of preparing a supercooled liquid comes from its thermodynamic metastabil-

ity. The supercooled liquid can remain liquid over finite timescales if undisturbed. However,

the supercooled liquid would actually rather be anything other than liquid. It negotiates

between two choices of solids: crystal and glass. Of interest is the supercooled liquid at the

point where it chooses glass over crystal. This is the deeply supercooled liquid, a regime

in which liquid dynamics become so slow that it becomes impossible for a crystal nucleus

to grow. We are concerned with the anomalous viscous slowdown of dynamics in deeply

supercooled liquids.
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1.2 Liquid crystals

Soft matter as a subfield of condensed matter was popularized by the celebrated work of de

Gennes and other scientists in the 1970s. [5] Compared to the light speed and high energy

of particle physics, the cosmic scales of astrophysics, and the ultracold temperatures of hard

condensed matter physics, soft matter physics can be understood as the study of systems

with familiar lengthscales that evolve on familiar timescales. The physics of soft matter

is many-body in nature, with lengths as short as a few atoms or as long as thousands of

molecules. The interesting physics occurs over nanoseconds or milliseconds - timescales on

which very interesting (or very slow) processes become relevant.

Liquid crystals are no exception to these lengthscales and timescales. Such liquid crystal

systems form a considerable number of distinct liquid phases, of which we will concern

ourselves with just two - the isotropic and nematic liquid crystals. The nematic phase of

liquid crystals draws the closest analogy to the order we discover and describe in this thesis.

The following exposition draws from de Genne’s book, The physics of liquid crystals. [6]

1.2.1 Order and disorder

We consider a system liquid if knowledge about one molecule’s properties does not betray any

information about the properties of another molecule when sufficiently far from the original

molecule. In such systems we say that correlation is lost over some finite lengthscale. The

loss of orientational correlation over finite distances is a property that we call “isotropic”.

Similarly, we refer to a liquid with positional disorder as ”homogeneous”.

Ordinary liquids are isotropic. Liquid crystals in their various ordered phases are not.

Instead, constituent molecules of nematic liquid crystals have liquid-like positional disorder

and crystal-like molecular-orientational order. This liquid-like positional disorder means that

the liquid crystal loses positional correlation over finite distances. However, there remains

macroscopic orientational order, meaning that the orientation of molecules in one portion of
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Figure 1.1: Nematic liquid crystal molecules represented as (a) rods and (b) disks. Figure
from reference [6].

a sample gives information about orientations of molecules in any other part of the sample.

The nature of this molecular-orientational order is that molecules, on average, will favor

being parallel to some common axis called the director. To facillitate the study of nematic

order, one typically defines a nematic order parameter tensor, Qαβ. Since we work with a

two-dimensional system for this thesis, Qαβ reduces to a matrix Qm. These are given as:

Qm =

Q(m)
1 Q

(m)
2

Q
(m)
2 −Q(m)

1

 (1.1)

Q
(m)
1 =

1

N

N∑
j=1

cos mθj (1.2)

Q
(m)
2 =

1

N

N∑
j=1

sin mθj (1.3)

where N is the number of particles and θj is the angle between molecule j and any lab-frame

axis.

We parametrize the order parameter matrix using an integer m with great foresight. The

nematic order parameter matrix with m = 2 captures the two-fold molecular-orientational
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order of nematic liquid crystals: molecules that prefer being parallel or antiparallel to the

director. We generalized to m-fold order because our model system displayed 6-fold order,

and we were interested in seeing what kinds of order showed up in similar models.

Because Qm is traceless, we can quickly deduce that Qm has two eigenvalues ±λm. To

capture the extent of m-fold orientational order in terms of single particle contributions, we

define a complex quantity sm:

sm =
1

N

N∑
j=1

eimθj (1.4)

where θj is the angle between the orientation vector of molecule j and an arbitrary lab-frame

axis. sm is related to the eigenvalue λm by

λ2m = −detQm

= Q
(m)
1 +Q

(m)
2

= − 1

N2

N∑
j,k=1

[cosmθjcosθk + sinθjsinθk]

=
1

N2

N∑
j,k=1

cosm(θj − θk)

= |sm|2

This allows us to write a simple formula for the m-fold orientational order parameter |sm|:

|sm| = |
1

N

N∑
j=1

eimθj | =

√√√√ 1

N2

N∑
j,k=1

cos m(θj − θk) = λm (1.5)

Note that sm is a complex number which takes on the value 1 in a system with perfect m-fold

orientational order and vanishes in the macroscopic (N →∞) limit for disordered systems.

Similarly, we can define for each configuration a preferred axis of alignment, n̂, called

the director. The eigenvector of Q2 is the director for a configuration with nematic order,
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but the eigenvector of Q6 is not the director for a configuration with hexatic order. We will

prove that the eigenvector of Qm is the director for m = 2, but not for m 6= 2.

Proof. Let Ω̂j =

cosθj

sinθj

, where Ω̂j is the unit orientation vector of molecule j.

Certainly we can express the top left element of Qm in terms of an argument φ. The

traceless property of Qm determines the bottom right element. The determinant must be

−1, which determines the top right and bottom left elements. Thus we can express Qm in

terms of an argument φ:

Qm =

cosφ sinφ

sinφ −cosφ


we have its positive eigenvector:

q̂+ =

cosθo
sinθo


such that

Qmq̂+ = q̂+

.

Then cosφcosθo + sinφsinθo

sinφcosθo − sinθocosφ

 =

cosθo
sinθo


.

Using trigonometric identities, this simplifies to

cos(φ− θo)
sin(φ− θo)

 =

cosθo
sinθo


So θo = φ/2.

7



Consider

S =
1

N

N∑
j=1

Tm(Ω̂j · n̂)

=
1

N

N∑
j=1

cos(m(θj − θo))

=
1

N

N∑
j=1

(cosmθocosmθj + sinmθosinmθj)

= cosmθo
1

N

N∑
j=1

cosmθj + sinmθo
1

N

N∑
j=1

sinmθj

=

cosmθo
sinmθo

 · |sm|
cosφ
sinφ


= |sm|cos(φ−mθo)

.

Thus S = |sm| if and only if θo = φ/m+ 2πl, l an integer.

We saw previously that θo = φ/2, so we conclude that S = |sm| only when m = 2. This

proves that the eigenvector corresponding to the positive eigenvalue of Q2 is the director.

For m = 6 and θo defined as above,

n̂ =

cos3θo
sin3θo

 (1.6)

1.3 Slow dynamics

We will explore the characteristic slow dynamics of supercooled liquids further in Chap-

ter 3. The salient feature of this slowness is the separation of timescales between ballistic

and diffusive molecular motions. The short-time ballistic motion results in what is called β

relaxation, whereas the hydrodynamic self-diffusive motion is called α relaxation. This phe-
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nomenon of two-step relaxation is a result of molecules becoming trapped in a “cage” formed

by neighboring molecules on intermediate timescales, but the cage is sufficiently sparse to

permit the eventual diffusion of the molecule into the rest of the system. This temporary

caging effect is referred to as “transient localization”, and it is a distinct signature of deeply

supercooled liquids. We can see the different relaxations and the transient localization in a

quantity called the mean square displacement ∆r2(t) (see Figure 1.2):

δri(t) = ri(t)− ri(0) (1.7)

∆r2(t) =

〈
1

N

N∑
i=1

(δri(t))
2

〉
(1.8)

where i indexes the molecules, and ri is the position vector of the i-th molecule. The mean

square displacement allows us to quantify relaxation processes in liquids. The diffusion

constant, which we explain further in Chapter 3, can also be calculated from the mean

square displacement. The temperature dependence of this constant is of great interest as

a way to touch base with theories of the glass transition which make predictions about the

scaling behavior with temperature. [7]

The Fayer group at Stanford had an interesting insight that supercooled liquids and liquid

crystals have similar temperature dependence of their dynamics. [8] They discovered using

orientational time correlation functions that both supercooled liquids and liquid crystals

experience a temperature-independent power law decay, then a dynamical crossover regime,

and finally a temperature-dependent exponential decay. Their study conjectures that because

the slow dynamics of isotropic liquid crystals correspond so closely to the slow dynamics of

supercooled liquids, one can expect a common microscopic explanation for the slow dynamics.

It is known that isotropic liquid crystals actually form structures called “pseudonematic”

domains, which are the origin of the slowness in a liquid crystal’s isotropic phase. For

this reason, Fayer suggests investigation into microscopic structures of supercooled liquids

as a way forward in understanding supercooled slow dynamics. This thesis builds on this
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Figure 1.2: Mean square (cage-relative) displacement of systems of N=800 2dLW molecules.
Averages are taken over 2×105 trajectories. τ is on the order of 10−12 seconds, and
ε/kB = 600K. Observe the ballistic regime with timescale less than τ and slope 2, a
plateau (lengthening with decreasing temperature) with slope 0 indicating the separation
of β relaxation and α relaxation, and an eventual diffusive regime with slope 1.
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conjecture by examining mesoscopic structures in a deeply supercooled liquid.

1.4 Two-dimensional systems

In 2015, a paper by Flenner and Szamel arrived at a disturbing conclusion about fundamental

differences between dynamical results in two and three dimensions. [9] Their study discovered

that transient localization was absent in two dimensional simulations of a binary glassformer.

Their model also lacked dynamical heterogeneity, another signature of deeply supercooled

liquids in which dynamically active molecules tend to be near other dynamically active

molecules whereas the rest of the system is inert. Since we study 2d supercooled liquids, it is

important that we acknowledge Flenner and Szamel’s findings about fundamental differences

between supercooled dynamics in 2d and 3d.

There is a growing body of work on 2d dynamics in spite of Flenner and Szamel’s work

which show that 2d dynamics are actually not so different than 3d dynamics. A number

of papers came out to address Flenner and Szamel’s results. [10] [11] [12] They describe

the Mermin-Wagner theorem, a well-known theoretical result that separates three dimen-

sional space from lower dimensional spaces, and a clever coordinate system that permits

measurements of translational correlations by correcting for the Mermin-Wagner effect. The

takeaway from these papers is a solid defense of the theoretical soundness of studying super-

cooled dynamics in two dimensions.

1.4.1 Mermin-Wagner effect - long-wavelength fluctuations

The Mermin-Wagner theorem states that continuous symmetries cannot be broken in systems

with short-range interactions in two or fewer dimensions at finite temperature. [13] This led

many to doubt the existence of 2D crystals, which would break translational symmetry and

violate the theorem. The mechanism by which the crystalline lattice in low dimensional

systems is destroyed is referred to as long-wavelength or Mermin-Wagner fluctuations.
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It is these long-wavelength fluctuations predicted by the Mermin-Wagner theorem that

quite literally unsettle two-dimensional studies of dynamics whether experimental, numer-

ical, or theoretical. Due to the long-wavelength nature of the fluctuations, the associated

timescale of these fluctuations is very slow. In fact, the long-wavelength fluctuations are

easily mistaken for diffusive α relaxation processes - which is likely what Flenner and Sza-

mel unknowingly reported on in their paper. Fortunately, the many workers who addressed

Flenner and Szamel’s results came up with a solution to dynamical studies in light of long-

wavelength fluctuations: we can move to a coordinate system that takes into account these

long-wavelength fluctuations.

1.4.2 Cage-relative coordinates

A simple modification to translational correlation functions and similar quantities like the

mean square displacement allows us to see past the long-wavelength fluctuations. While the

mean square displacement is given by Equation 1.7, one can make the following change to

define the mean square cage-relative displacement:

∆r2CR(t) =

〈
1

N

N∑
i=1

(∆ri,CR(t))2

〉
(1.9)

where

∆ri,CR(t) = δri(t)−
1

Nnn

∑
j∈{n.n.}i

δrj(t) (1.10)

where {n.n.}i is the set of indices for the neighbors of molecule i.

The cage-relative displacement given by Equation 1.10 works to undo the effects of long-

wavelength fluctuations. Instead of measuring displacement of a molecule, we can instead

measure the displacement of that molecule relative to the displacements of its neighboring

molecules, i.e. its cage. Since the fluctuations have long wavelengths, the cage of any given

molecule and the molecule itself will move together in a wave motion. Then by only measur-

ing displacement relative to a particle’s cage, we can recover the true dynamics independent
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of long-wavelength processes. Thus, cage-relative coordinates rescue two-dimensional dy-

namical studies from the Mermin-Wagner effect. The mean square displacement in Figure

1.2 is in fact cage-relative displacement. For comparison between cage-relative and ordinary

mean square displacement, see Figure 1.3.

1.4.3 Note on bond-orientational order

Two-dimensional liquids are famous for “bond-orientational” order. [14] This is explained

by KTHNY theory, which studies how topological defects lead to continuous liquid-liquid

phase transitions. In particular, there is a 2d hexatic phase where particles in a system

have hexatic bond-orientational order. A longer discussion of bond-orientational order can

be found in Section 4.5. One of the essential findings about our model system is that it

has what we call hexatic molecular-orientational order, where molecules prefer to align their

molecular orientations along six preferred directions. Referring to hexatic order (emphasis

on omitting “molecular-orientational”) in the case of two-dimensional systems usually one

means hexatic bond-orientational order. This should not be confused for our finding of

hexatic molecular-orientational order, which is a new idea.

1.5 “Phase diagram”

To work in the constant-NVE ensemble, we fixed in our simulations the number of particles

N , simulation box size L2, and total mechanical energy E. The relevant thermodynamic

parameters are density (ρ = N/L2) and temperature (proportional to average kinetic energy).

We will use dimensionless temperature T ∗ and dimensionless density ρ∗ paremeters whose

exact definitions will become meaningful when the parameters of our model are defined in

Chapter 2. For this thesis, all simulations were conducted at constant density ρ∗ = 0.25.

There are three distinct regimes: high temperature, intermediate temperature, and low

temperature. At high temperatures (T ∗ ≥ 0.45) we have an ordinary isotropic liquid char-
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Figure 1.3:
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acterized by simple diffusion, rapid relaxation processes, and weak temperature dependence

of diffusion constant. These are the expected characteristic features of ordinary liquids. We

learn about diffusion through the mean square displacement (Figure 1.2) and a study of dif-

fusion constant versus temperature (Figure 3.3). Relaxation processes are studied similarly,

using the mean square displacement as well as orientational correlation functions (Figure

3.2, 3.1).

At intermediate temperatures (0.35 ≤ T ∗ < 0.45), we have a fragile supercooled liquid

state with higher density than the isotropic liquid, mesoscopic six-fold molecular-orientationally

ordered domains, Vogel-Fulcher temperature dependence of diffusion constant, and dramatic

slowing down of orientational dynamics. The domains are pictured in Figure 4.5. The prop-

erty of kinetic fragility in the supercooled liquid is modeled by a fitting equation called the

Vogel-Fulcher-Tamman law (VFT). The Vogel-Fulcher form predicts To ≈ 0.30 (Figure 3.3),

where To is a finite temperature at which relaxation times are predicted to diverge and the

diffusion constant to precipitously plummet. We show that the domains are mesoscopic as

opposed to long-range or pseudo-long-range in Chapter 4 using a finite-size-scaling study

(Figure 4.8). We also examine the local order in Figure 4.11, Table 4.3, and Figure 4.5. We

did not know a priori that our model would form a supercooled liquid, so the fact that the

VFT law is a good fit helps us confirm we have a supercooled liquid, among other dynamical

and structural factors discussed in Chapter 3. It is very surprising that mesoscopic domains

form in the supercooled liquid. Supercooled liquids are understood to be structurally indis-

tinguishable from ordinary liquids, yet in our model we establish that the supercooled liquid

attains domains of six-fold molecular-orientational order. This is a shocking break from the

expected behavior of supercooled liquids. Additionally, the six-fold molecular-orientational

order itself is very novel, as we have not been able to find any remark in the literature

of six-fold orientational order in physical systems (with a notable exception by the Mason

group at UCLA). The Mason group finds six-fold molecular-orientational order in equilateral

triangles, and makes no mention of any supercooling in their experiments. [15] We note that
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our particles do not have the symmetries of a triangle, nonetheless an equilateral triangle.

It is very surprising to see molecular-orientational order with a mesoscopic lengthscale, and

even more so since our model has a particle geometry that we would not normally expect to

support molecular-orientational order.

At low temperatures (T ∗ < 0.35) the system has undergone a glass transition and is now

amorphous solid. This glass has slightly higher density still than the supercooled liquid,

with more numerous and shorter-lengthscale six-fold ordered mesoscopic structures. The

directors of these numerous mesoscopic structures vary significantly from domain to domain,

resulting in a drastic decrease in global orientational order parameter (Figure 4.2, 4.5).

The temperature dependence of the diffusion constant is Arrhenius (Figure 3.3), indicating

that dynamics are dominated by activated events. Relaxation processes are frozen out -

α relaxations have negligible magnitude in the mean square displacement (Figure 1.2) and

orientational correlations (Figure 3.2, 3.1) do not decay over the timescales of our simulations.

It is interesting that the mesoscopic structures persist through the supercooled liquid and

into the glass. That the structure of the supercooled liquid and the glass are similar is no

surprise, but normally it is because both are structurally similar to ordinary liquids!
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CHAPTER 2

Method - Computer Simulations of Liquids

This chapter will cover the numerical techniques employed to model our supercooled liquid

system. After briefly discussing the paradigm of computer simulation in modern scientific

research, we introduce the particular numerical model that we use to model supercooled

liquid behavior. The chapter explains our reasoning in the design and choice of this model,

and goes into explicit detail regarding the various protocols and routines involved in prepa-

ration of the supercooled liquid and calculation of the correlation functions. The exposition

of this chapter pulls strongly from Allen and Tildesley’s excellent reference on simulation,

Computer Simulations of Liquids (ed. 2). [16]

2.1 Using computers to solve liquid problems

Computer simulation is a relatively new addition to the paradigm of science, beginning

in the 1950s at Los Alamos. Two classes of algorithms come to mind when considering

computer simulation. There are the Monte Carlo algorithms which broadly rely on proba-

bility to generate thermodynamic data, and the Molecular Dynamics algorithms which use

finite-difference methods to solve the differential equations dictated by Newton’s equations

17



of motion. To study the dynamics of supercooled liquids, one uses the latter method of

molecular dynamics. Monte Carlo simulations do not give microscopically correct dynam-

ics, whereas Molecular Dynamics simulations generate accurate trajectories and permit the

computation of dynamical observables.

2.1.1 A brief review of theoretical progress

Theoretical progress is guided by attempting to model and predict actual supercooled liquid

behavior. For example, take Mode Coupling Theory (MCT), the only first-principles theory

of the glass transition. [17] MCT comes with impressive success at predicting scaling be-

haviors of supercooled liquids at higher temperatures. As temperatures approach the glass

transition, MCT makes incorrect predictions including mistakenly predicting the glass tran-

sition to occur at a higher temperature than in experiment. [7] Further, MCT fails to predict

a phenomenon called dynamical heterogeneity, an important signature of deeply supercooled

dynamics. For these reasons, MCT is regarded as a successful theory of moderately super-

cooled liquids while its low-temperature predictions must be considered with great caution.

Our simulation work fits into this paradigm by providing a virtual laboratory where we can

test theories and probe our system for higher resolution data than experimentally accessible.

Other than MCT, the two dominant approaches to glass theory use Random First Or-

der Transition (RFOT) theories and dynamical facilitation. The reader is encouraged to

read Berthier and Biroli’s review on glass theories as an introduction to these ideas. [7]

RFOT is a collection of mean-field theories of the glass transition that study the free energy

landscapes in model systems as they approach the glass transition. It has been successful

in predicting certain thermodynamic signatures of the glass transition, such as vanishing

entropy and discontinuity in the specific heat. For our purposes, it is important that certain

RFOTs predict VFT law divergence in relaxation times. [18] We show in Figure 3.3 that

at intermediate temperatures, our model supercooled liquid has diffusion constant following

the VFT law. When existing theories predict results in numerical simulations like ours, it
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is very important to examine the microscopic mechanisms underlying the theory. This is

particularly important for mean-field models like RFOTs, where the theory may not teach

us everything about the actual processes that give rise to the many interesting phenomena

of supercooled liquids.

Dynamical facilitation is another approach that focuses solely on the dynamics of particles

as responsible for the glass transition. This can be viewed in opposition to RFOTs and MCT

which use mean-field theories. Dynamical facilitation gives rise to kinetically constrained

models (KCMs), for which we refer the reader to Berthier and Biroli’s review. [7] In short, the

KCM approach uses the idea that in viscous liquids, a local relaxation event will propagate

through a system. KCMs assert that for a region of a sample to be mobile, it must be

adjacent to another mobile region. This is a strong requirement that captures an aspect of

glassy mobility at the expense of ignoring other mechanisms of mobility. KCMs also predict

a VFT divergence in relaxation times, but in this case also provide a responsible mechanism,

albeit an unphysical requirement about mobility propagation. As a purely dynamical theory,

KCMs have been the most successful in modeling dynamical heterogeneity.

2.2 Velocity Verlet algorithm

Newton’s equations of motion describe the classical dynamics of particles as a system of

differential equations. Solving these equations in practice is generally impossible for systems

of more than two particles. The advent of computers made it possible to apply numerical ap-

proximation algorithms to iteratively and approximately solve difficult or impossible systems

of equations. Of these algorithms, we will focus on a particular finite-difference algorithm

called Velocity Verlet.

The Velocity Verlet algorithm is simple and accurate. It takes the positions and velocities

of each molecule in a state at a certain time t, and computes the positions and velocities at

a new time t+ δt. [16] The equations for this algorithm are as follows:
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v(t+
1
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δt) = v(t) +

1
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δt a(t) (2.1)

r(t+ δt) = r(t) + δt v(t+
1

2
δt) (2.2)

v(t) = v(t+
1

2
δt) +

1

2
δt a(t+ δt) (2.3)

Each successive equation in this algorithm depends on the last, and the last equation

requires one to know the forces on the molecule at the next timestep. The right hand side

of each equation is a truncated Taylor expansion of the left hand side. As such, the global

error of this algorithm depends on δt2 (the local error depends on δt4). We use a small δt to

minimize this. Despite Velocity Verlet’s reputation as a numerically stable algorithm that

produces accurate solutions, we took precautions to check the accuracy of the algorithm.

This was as simple as confirming conservation of total mechanical energy in a variety of

model systems and simulating simple systems with known analytical expressions for certain

correlation functions.

2.3 Numerical model (2dLW)

2.3.1 The Lewis-Wahntröm model in three dimensions

The most important feature of a supercooled liquid is its ability to avoid crystallization.

Ortho-terphenyl is a molecule that excels at remaining amorphous when cooled, leading

Lewis and Wahnström to introduce a simple model for a supercooled liquid based on ortho-

terphenyl. [19] The Lewis-Wahnstrom model (3dLW) is a popular choice of glassformer for

three-dimensional studies. We report on a few key 3dLW studies. In Lewis and Wahnström’s

original paper introducing and testing the model, they find that their 3dLW model is a fragile

glassforming fluid, as is laboratory ortho-terphenyl after which 3dLW is modeled.[19] Later

studies find that the temperature dependence of the diffusion constant in 3dLW is well
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predicted by Mode Coupling Theory at high temperatures, and a crossover is observed to

activated dynamics at lower temperatures. [20] [21] We will make our connection to these

discussions in Chapter 3. Finally, Pedersen, Hudson, and Harrowell published a study on

the crystallization of 3dLW that finds that the supercooled liquid typically crystallizes after

about 100 times the relaxation time of the supercooled liquid. [22] In other words, it is

not as difficult to crystallize 3dLW as workers thought at the time. Most important to our

work is the crystal structure of 3dLW that they find. Although 3dLW has low symmetry,

the crystal structure is close to a body centered cubic (BCC) lattice. The BCC ordering of

the molecules imposes molecular orientational order on the constitutive atoms in the lattice.

This leads to cubatic orientational order, where molecular orientations are either parallel or

perpendicular to each other. Since one of our key findings is molecular orientational order

in 2dLW, we conjecture that this 3d molecular orientational order is somehow related to the

2d molecular orientational order we report in Chapter 4.

2.3.2 The Lewis-Wahnström model in two dimensions

To study supercooled liquid dynamics in 2d, we use a two-dimensional version of the Lewis-

Wahnström model (referred to as 2dLW, see Figure 2.1). While the three-site 2dLW model

does not capture the complexity of orthoterphenyl’s three phenyl rings, it is sufficient to

model an awkward-shaped molecule that frustrates crystal formation. The glassforming

ability of 3dLW (drawn in 2d in Figure 2.1) comes from its molecular geometry as approxi-

mating an isosceles triangle with 75◦ apical angle. The 75◦ angle is a geometrical frustration

that inhibits crystal formation, as the molecules do not fit together in a way conducive

to translational patterns. Our other option was to study what is called a binary glass, a

two-component glassforming system. In three dimensions, both one-component molecular

systems and binary systems are studied in the context of supercooled liquids. In two dimen-

sions, however, binary and polydisperse systems dominate the literature due to the difficulty

of supercooling one-component molecular liquids. We chose to design a one-component su-

21



percooled liquid because 2d studies exclusively examine binary glasses with few exceptions.

With Flenner and Szamel’s conclusions about fundamental differences of dynamics of binary

glasses in 2d and 3d, we were very hesitant to study binary systems since our ultimate goal

is to understand dynamics in general. [9] Part of our findings in this thesis is that our 2dLW

model overcomes this difficulty and readily supercools in two dimensions, complete with

dynamical features seen in 3d systems.

2.4 Simulation parameters

Our simulations were carried out in the microcanonical (NVE) ensemble with square periodic

boundary conditions. The equations of motion were numerically integrated using the Velocity

Verlet algorithm. Rotation was handled using RATTLE, a constraint dynamics algorithm

designed to work with Velocity Verlet.[23] We used RATTLE to fix bond-length constraints

for the three atoms in each molecule, enforcing rigidity at every integration step. RATTLE

fixed a 1σ bond-length constraint between the center atom and either outer atom. To fix

the apical angle, a phantom bond of length 2 sin((75/2)◦) was enforced between the outer

atoms. The RATTLE tolerance was set to 10−7. Our time step was δt = 0.001τ .

The 2dLW molecules are bent-core trimers consisting of three rigidly bound atoms rep-

resented by three Lennard-Jones sites with bond length σ and 75◦ apical angle (see Figure

2.1). Each Lennard-Jones site interacts with all other Lennard-Jones sites in the system

except for the other two sites in the same molecule.

We used a shifted, truncated, three-site Lennard-Jones pair potential given by Equation

2.4. The Hamiltonian for our model is identical to that of the Lewis-Wahnström model,
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Figure 2.1: (a) A two-dimensional version of the Lewis-Wahnström model for ortho-
terphenyl. (b) Chemical structure of ortho-terphenyl projected onto two dimensions.

except we are conducting our study in two spatial dimensions rather than three.

V (R) =
N∑
j,k
j<k

3∑
a,b=1

u(rja,kb), rja,kb = |rkb − rja| (2.4a)

u(r) =

 uLJ(r)− uLJ(rc) r ≤ rc

0 r > rc

(2.4b)

uLJ(r) = 4ε[(σ/r)12 − (σ/r)6] (2.4c)

The cutoff distance is rc = 2.5σ by convention. V is the total potential energy of the system,

and rab is the distance between two atoms labelled a and b.

Like the usual Lennard-Jones potential, ε is the potential well depth, and m and σ are

the mass and diameter of a site, respectively. We use Lewis and Wahnström’s choice of

physical units, where σ = 4.83 Angstroms and ε/kB = 600K. Dimensionless time is given

in units of t/τ , where τ =
√
mσ2/ε. We let m = 77 amu, so τ ≈ 2 picoseconds. We also

define temperature as a function of average kinetic energy, since we are in the constant NVE
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ensemble where temperature fluctuates. Instantaneous temperature is given by equipartition:

kBT =
2K
3N

(2.5)

where K is the system kinetic energy, and N is the number of molecules in the system.

While T fluctuates, the ensemble average 〈T 〉 does not - whenever temperature is mentioned

in the report, we mean 〈T 〉.

2.5 Protocols

Computer simulations like ours are sometimes referred to as computer experiments, since

the aim of the simulation is to produce data about some system. This is in close analogy

to taking a measurement in a laboratory setting. Like with real experiments, a detailed

write-up of the method is crucial for good science. Readers may be interested in studying

our model, or wish to use our methods to study their own. It may be that we or others

need to reproduce our results. In any case, we present details of the important protocols

programmed into our simulation.

2.5.1 Beginning the simulation

We begin the simulation by specifying an initial configuration file consisting of positions for

each atom. For simplicity, we begin with a crystal (square) lattice configuration (see Figure

2.2). There are many ways to assign initial configurations, but it requires little code to

produce a repeating pattern like a crystal structure. This initial lattice configuration also

avoids overlap events of soft-spheres that lead to numerical instability.

Next, we assign an initial velocity distribution to the atoms in the lattice. The velocities

are obtained using random numbers picked from a normal distribution with zero mean and

unit variance, and scaling by the square root of a desired initial temperature (in units of

kBT/ε). This ensures that the system’s center of mass momentum PCM is near zero. To
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zero the center of mass momentum within numerical precision, a simple routine subtracted

each component of the vector PCM/3N from the momentum vector of each atom.

Our model system consists of rigid bodies, so it is also desirable to zero the initial angular

momentum of the system. From classical mechanics we have the relation L =
←→
I ·ω, where

L is the system angular momentum,
←→
I is the inertia tensor of the system of particles, and

ω is the system angular momentum all with respect to the origin at the center of the box.

Projecting the 2-dimensional system onto the z = 0 plane in 3-D Cartesian coordinates, note

L =
←→
I · ω =


I11 I12 0

I21 I22 0

0 0 I33

 ·


0

0

ωz

 =


0

0

I33ωz


It is simple to calculate I33 and L:

I33 =
∑
α

mα(x2α,1 + x2α,2)

L = Rcm × Pcm +
∑
α

(rα × pα)

where α denotes indexing over all the particles and xα,1, xα,2 indicates the separation of

the particle from the origin in the two Cartesian coordinates.

Angular momentum is finally removed by subtracting from each atom’s velocity the

cross product of ω and the position vector of the atom. Note that by the definition of L, the

angular momentum will not be a conserved quantity due to periodic boundary conditions.

2.5.2 Simulated Annealing

Our initial configuration is a lattice, but we aim to study a liquid. The next step is to melt

the lattice to obtain liquid configurations. We do this through a process called simulated

annealing. The idea is to use an initial velocity distribution scaled to a high temperature

(kBT/ε = 5.0 is more than sufficient), and wait for the lattice to melt. We recalculate the
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Figure 2.2: An example of a square lattice configuration used for initialization. The lattice
configuration was generated using a series of tiles each with a molecule on the top right and
bottom left corner of a tile. The molecules are identical. The process begins by choosing an
origin (a blue tile) and populating the adjacent north, south, east, and west with an orange
tile. The orange tiles are to be surrounded by blue tiles, and so forth.

temperature, rescale particle velocities to reduce the kinetic energy, then wait 100τ before

recalculating the temperature again. This process is repeated iteratively until the desired

temperature is reached. 100τ is a very cautious wait period that is two orders of magnitude

larger than an ordinary liquid’s relaxation time. When we handle the supercooled liquids,

we wait 1000τ after the last velocity rescaling before recording data. Our choice of a 1000τ

is chosen to be a time by which the mean square displacement of the deeply supercooled

liquid (T ∗ ≈ 0.35) has hit its diffusive regime in Figure 1.2. This ensures that the liquids are

given a chance to relax. Once the system has become glass, we abandon any hope of relaxing

on a realistic timescale. The long waiting time 1000τ is chosen independent of temperature

because we calculated time correlation functions up to 104or105τ , so waiting 1000τ was not

relatively computationally costly.

An additional routine we add to simulated annealing is a packing (density scaling) routine

that reduces the box size iteratively much like the cooling routine described above. Density
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is an important thermodynamic variable for simulations. In the microcanonical ensemble,

density is constant. Ideally, one can place the tiles for the initial lattice configuration such

that the system has the desired density. We found that as the initial density ρσ2 approached

ρ
CP
σ2, where ρ

CP
σ2 is the density at close packing, RATTLE failed to converge. This was

due to severe overlapping of soft-spheres when laying down tiles, resulting in very large forces

for which RATTLE was unable to ’shake’ the atoms into place to satisfy the constraints.

Our solution was to begin with a low density such that the initial lattice had no overlap-

ping molecules, then slowly increase the density. Density is related to the box length:

ρσ2 =
Nσ2

L2
(2.6)

where ρσ2 is the density, and L is the length of the box. We did not want to increase N , so

the approach was to slowly shrink L during the initial steps of the simulation. The density

scaling algorithm repeatedly scales all distances (and the box length) by some constant

factor, while allowing the system to evolve between successive distance scalings. Shrinking

distances caused overlapping, but repeatedly shrinking the distances by a small amount

(1%) over a period of time was sufficiently adiabatic for RATTLE to converge. Note that

this algorithm also shrinks interatomic spacings inside the molecules - however, RATTLE

immediately shakes the constituent atoms back to the proper interatomic spacings.

2.5.3 Equilibrating and taking data

Applying the given routines will generate a liquid of desired temperature and density in

the NVE ensemble. Ordinary liquids benefit from fast relaxation processes, with relaxation

time on the order of τ . We find that our relaxation times diverge as the liquid goes from

supercooled to glass. An intuitive way to understand systems with long relaxation times

is to describe them as having “memory”. A gas has no memory: particles collide, but are

otherwise approximately non-interacting and uncorrelated. Condensed matter like liquids
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and solids have memory. A liquid configuration at time 0 will look very similar to a liq-

uid configuration at time 0.1τ , but very dissimilar to a liquid configuration at time 10τ .

Statistical independence of configurations is time-dependent.

Having introduced the idea of memory, we can now describe the need to equilibrate

the liquid. Since we are cooling the liquid by rescaling its kinetic energy, we push the

system away from equilibrium. After a cooling event, the energy balance between kinetic

and potential energies is disrupted. Classical mechanics will work to restore thermal balance

between the degrees of freedom, but this is not an instantaneous process. This is the reason

that we measure relaxation times and wait up to 1000τ in the supercooled liquid. Our goal

is to have a range of temperatures over which the system is supercooled. This requires the

careful equilibration process described. The system will otherwise vitrify, leaving us with

glass rather than liquid.

Taking data is perhaps the simplest yet most resource-intensive aspect of simulation.

The Velocity Verlet equations (Equation 2.1) ensure that we have access to coordinates

and momenta of all particles at all times. From this information we calculate all desired

observables. There are two ways to use the coordinates and momenta, of which I have

employed both. The first is to record the coordinates (and/or momenta) at each timestep

of the simulation onto a file for later analysis. This allows one to more easily refactor code,

saves time when debugging, and allows one to backtrack and compute any number of desired

observables without having to rerun simulations. The drawback is that trajectory files are

massive (I have some as large as 60 GB when compressed) and one generally wants thousands

of them. A simpler method is to simply compute observables while the trajectories are held

in virtual memory, i.e. during the course of the simulation. We use both methods, but

generally prefer the latter.
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2.5.4 Taking averages

Quantitative results from simulations are reported as averages, either over time or over

particles in the system - usually both. One of the challenges of studying glassy dynamics

is that the characteristic slow dynamics incur very long simulation trajectories. A routine

calculation for ordinary liquid simulations may become prohibitively difficult in simulations

of supercooled liquids. For example, consider the mean square displacement in Figure 1.2.

To capture the full range of microscopic behaviors, it was necessary to compute translational

correlations over six orders of magnitude in time. While the molecular dynamics algorithm

has complexity O(N2) where N is the number of particles and scales linearly with time,

correlation functions have complexity O(n2) where n is the number of timesteps over which

a quantity is correlated in time. Over many orders of magnitude in time, the process of

calculating correlation functions actually dominates simulation time when it comes to CPU

hours.

A trick we used to capture the six decades in Figure 1.2 was to “stitch” together mean

square displacement curves. This is done by computing a set of correlation functions from

10−1τ to 103τ and another set of correlation functions from 101τ to 105τ . This saves time

and memory because on a log-scale, one needs progressively lower resolution as the x-axis

indices grows exponentially. So for the short-time set of correlation functions, we compute

the correlation functions using a trajectory file where each configuration is separated from the

next by 0.1τ . For the second set, we have the same but with a time between configurations

of 10τ . We then combine the curves for a concise figure. This lets us capture all in one plot

the short-time β relaxation, the long-time α relaxation, and a clear plateau separating the

two.

29



CHAPTER 3

Supercooled dynamics

This chapter describes the nature of slow dynamics in 2dLW. First, correlation functions are

introduced as a way to study time-dependent phenomenon in a statistical context. We move

on to define a number of dynamical quantities and track their evolution in time for 2dLW

systems at different temperatures. We show positional correlations and dynamical degrees of

freedom vanish only over large distances and times, which indicates that the 2dLW systems

are disordered. Finally, we present and analyze our dynamical results in light of supercooled

liquid theory, and establish that our 2dLW model has a temperature range over which it is

a fragile supercooled liquid. Our argument for the liquid’s fragility is made precise using

comparison of the temperature dependence of the diffusion constant in 2dLW to literature

and theory.

There are a number of studies on 2d supercooled dynamics that we review here. Flenner

and Szamel in 2015 were the impetus for the revival of 2d studies with their claims that 2d

dynamics could not be compared to 3d dynamics. [9] A number of publications arose in the

subsequent years demonstrating how cage-relative coordinates recover 2d glassy dynamics.

[10] [11] [12] We follow these studies in using cage-relative coordinates for translational dy-

namical quantities like the mean square displacement. A decade earlier, Shintani and Tanaka
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introduced a one component supercooled liquid model using the Lennard-Jones potential and

an ad-hoc anisotropic spin parameter. [24] They are the first to design a 2d glass-forming

model liquid of one-component particles, and we have not been able to find studies using

other such models other than our study of 2dLW. Interestingly, Shintani and Tanaka find

that the slow dynamics in their model arise from medium-range crystalline ordering in the

supercooled liquid. We make a similar claim with an important distinction. Shintani and

Tanaka’s model has five-fold symmetry in the spin term and shares a low-energy triangular

lattice configuration with the Lennard-Jones potential. For this reason, the crystalline order

they find are crystal nuclei or crystallites. Our model does not have any spin terms, so our

molecular orientational order is also subject to geometric constraints from which the spin

terms are free. Moreover, we are unsure of the nature (or existence) of crystals of 2dLW and

as such do not claim that our medium-range order has any crystalline origin.

3.1 Correlation function

A dynamical observable A(t) is in general a function of positions and momenta of particles

in the system of interest. Given another dynamical observable B(t), we form the equilibrium

time correlation function

CAB(t′, t′′) = 〈A(t′)B∗(t′′)〉 (3.1)

where the brackets indicate what is called an ensemble average, and ∗ indicates complex

conjugation. [25] An ensemble average of a function is computed by taking the mean of a

function using the equilibrium probability distribution of microstates. For simulation, this

can be approximated by a time average over a finite subset of the ensemble. A time average is

taken by averaging over phase space points at a time t′ and presenting the results (assuming

time translation invariance) as a function of the time interval t”−t′. The assumed equivalence

between ensemble average and time average is justified using the ergodic hypothesis - which
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notably fails in glasses. Correlation functions are often physically meaningful as the Fourier

transformation of spectroscopic data. Additionally, correlation functions arise naturally

in statistical contexts outside of physical science as well. For our purposes, correlation

functions comprise a standardized language to quantitatively describe microscopic dynamics

of supercooled liquids.

3.2 Autocorrelation and mean square displacement

To study supercooled dynamics, we consider time correlation functions involving the center-

of-mass motion of the molecules, and orientation of each molecule. These correlation func-

tions will allow us to describe the translational and rotational motions of our system.

The orientational autocorrelation function Cn,s(t) (see Figures 3.2, 3.1) determines how

much one molecule’s initial orientation is correlated with its orientation at some later time

t. Cn,s(t) is given by

Cn,s(t) =

〈
1

N

N∑
j=1

Tn(Ω̂j(0) · Ω̂j(t))

〉
(3.2)

Ω̂j(t) · Ω̂j(0) = cos(θj(t))

where Tn is the nth Chebyshev polynomial of the first kind, N is the number of molecules,

Ω̂j(t) is the unit orientation vector of molecule j, and the angle brackets denote an average

over configurations. Cn,s(t) is written such that if the orientation of molecule j becomes

uncorrelated with itself over time, C(t) will decay to 0 over time. The s denotes that the

quantity is a single-molecule (autocorrelational) property. These Chebyshev polynomials

have the property:

Tn(cosθ) = cos(nθ)

which is sufficient to define our autocorrelation function, as the dot product between unit
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Figure 3.1: The orientational autocorrelation function C2,s for the N = 800 2dLW systems
at different temperatures. The temperatures and colors correspond to those in Figure 3.2

.

orientation vectors is a cosine. The choice of n in Tn is related to the symmetry of the angular

information we are interested in. For nematic systems, we would use T2, and for our molecular

hexatic system we use T6. In Figure 3.1, we looked for nematic order using T2. We found

that there was no correlation at long times in all of the 2dLW liquids. We contrast this with

T6 in Figure 3.2, where there is evidently finite long-time order with a degree of symmetry we

would not have even guessed was there. Note that in three dimensions, the autocorrelation

function is defined using Legendre polynomials in cosθ rather than Chebyshev polynomials.

For translational dynamics, we instead focus on the mean square displacement ∆r2(t)

(Equation 1.7, 1.9). Though mean square displacement is not stricly a correlation function,

its time derivative is related to the position-velocity correlation function, and the mean
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Figure 3.2: The orientational autocorrelation function C6,s for the N = 800 2dLW systems
at different temperatures. Curves are averages over 105 trajectories.
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square displacement calculated in much the same way as correlation functions. There is also

a density-density time correlation function called the van Hove function, and we compute

its Fourier transform in the form of the self-part of the intermediate scattering function

(Equation 3.3). [25] The self-intermediate scattering function is given by:

Fs(q, t) =

〈
1

N

N∑
j=1

eiq·(rj(t)−rj(0))
〉

(3.3)

where q is a wavevector chosen to be the first sharp peak of the static structure factor. How-

ever, we find that analysis of the mean square displacement is sufficient to study translational

autocorrelation.

Mean square displacement gives valuable information about the dynamics because of its

clear physical meaning. Its utility has made it convention to focus attention on the mean

square displacement in favor of other simple translational correlation functions. The mean

square displacement at short times is marked by a ballistic regime (β relaxation) where

particles cover distances proportional to time, which shows up as a curve of slope 2 in a log-

log plot of the mean square displacement versus time. The hydrodynamic regime becomes

relevant when particles diffuse throughout the system according to Brownian motion. This

diffusive regime (α relaxation) can be shown to appear in the log-log plot of mean square

displacement versus time as a line of slope 1. When a system is deeply supercooled, α and

β relaxations become separated in time by an intermediate plateau in a phenomenon called

“transient localization”. [7] The mean square displacement is powerful in allowing us to keep

track of these three regimes.

Equally important is the simple relation between mean square displacement and the

diffusion constant D. In two dimensions, D is given by

∂(∆r2(t))

∂t
= 4D (3.4)

[25] In practice, one must select only the diffusive regime of ∆r2(t) before taking the time
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derivative. This diffusive regime is clearly indicated by the portion of ∆r2(t) that corresponds

to the line of slope 1 in the log-log plot of ∆r2(t) versus time (refer to Figure 1.2).

3.3 Phenomenology

When we refer to the slow dynamics of supercooled liquids, we really mean to make a quan-

titative statement about the functional form of some dynamical quantity like the diffusion

constant. Based on our results in Figure 3.3, we say that 2dLW is a fragile supercooled

liquid for T∗ ≥ 0.35, afer which we see a dynamical crossover to Arrhenius-type activated

dynamics. Both fragility and the Arrhenius behavior are defined by the particular functional

form of the diffusion constant (or quantities representing other dynamical processes). The

Arrhenius equation is known to chemists as the formula governing temperature dependence

of reaction rates. The Arrhenius equation is given by:

D = Doe
−B/T (3.5)

where Do and B are nonnegative fitting parameters while T is temperature. The physical

picture of Arrhenius dynamics is clear: D is large, i.e. a system has fast dynamics, when

temperature is large. Likewise, a system has slow dynamics when temperature is low. In

particular, if diffusion is Arrhenius then we expect activated processes to dominate diffusion

via rare thermally driven diffusion events. B has the physical meaning of the activation

energy (modulo a dimensionful factor like kB).

Fragility describes diffusion obeying the following functional form:

D(T ) = Ae−
B

T−To (3.6)

where A, B, and To are parameters of the fit. This function is called the Vogel-Fulcher-

Tamman (VFT) law. [7]
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When a glassy system is well-described by VFT, we refer to the system as kinetically

‘fragile’. [26] The idea of fragility is that diffusion processes precipitously slow down (and

relaxation times spike sharply) at some nonzero temperature To. This is in contrast to

Arrhenius dynamics which suggest that diffusion continues to slow down gradually until

zero temperature. When dynamics are described well by the Arrhenius equation, we refer

to the system as ‘strong’. From Figure 3.3, VFT followed by an Arrhenius form is a very

good fit to our diffusion constants. For this reason, we conclude the dynamics of our 2dLW

system crossover from fragile to strong as the liquid undergoes supercooling and an eventual

glass transition. This is consistent with molecular dynamics studies of 3dLW. [21]

We mentioned previously another important phenomenon called dynamical heterogeneity

(DH). A system is dynamically heterogeneous when the microscopic dynamics vary spatially.

DH is a trademark of deeply supercooled and glassy systems, where relaxation processes oc-

cur on different timescales at different locations in a sample. DH relaxations are characterized

by a molecule seeing long periods of inactivity punctuated by short-lived bursts of motion.

We draw displacement maps in Figure 3.5 to track DH in N=1800 2dLW. We find that on the

timescale that the majority of the system is inert, small pockets of activity exist in separated

regions of the system. This is evidence of DH, which is an encouraging result suggesting our

2dLW model captures another essential feature of glassy dynamics.

3.4 Amorphous solid

We have presented a great deal of dynamical information. This section is a detour to examine

temperature dependence of positional correlations. We show that there is no crystal lattice

in our simulations of 2dLW. Since the dynamics arrest (time correlation functions have no

noticeable decay over 105τ) while particle positions remain amorphous, we conclude that

our 2dLW system at low temperatures (T ∗ < 0.35) becomes glass. This was also strongly

indicated by the dynamical crossover in Figure 3.3 where diffusion becomes best described by
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Figure 3.3: Temperature dependence of the cage-relative self-diffusion constant (CR-D) and
ordinary self-diffusion constant (D) for N=800 2dLW systems. The solid line is a fixed To
VFT law through the liquid and supercooled liquid temperatures for CR-D. The dashed line
is an Arrhenius equation fit to CR-D for the temperatures at which 2dLW is glass. The figure
plots logarithm of diffusion versus inverse temperature to emphasize the Arrhenius-type dy-
namics at low temperatures. VFT indicates the following function: -1.007161 - 0.131572/(T-
0.300949). Arrhenius indicates: -0.495461 - 1.135303/T. Diffusion constants are computed
using long-time behavior (t > 80000τ) of the cage-relative mean square displacements. Each
data point corresponds to diffusion constants computed from 2× 106 trajectories.
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Figure 3.4: Displacement map for the N=1800 ordinary liquid 2dLW, T* = 0.65. Colors are
assigned according to the displacement of the molecule (measured in σ) after 10,000τ .
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Figure 3.5: Displacement map for the N=1800 supercooled liquid 2dLW, T* = 0.35. Colors
are assigned according to the displacement of the molecule (measured in σ) after 10,000τ .
The voids are a known phenomenon resulting from “cavitation”, discussed in Section 4.4.1.
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Arrhenius. The absence of long-range translational order at any temperature confirms that

we never encounter 2dLW crystals. Then between the high temperature liquid and the glass,

we must have a supercooled regime. The temperature ranges for the different behaviors of

2dLW given in the “Phase Diagram” section of Chapter 1 are determined using a combination

of the temperature dependence of the diffusion constant, the divergence of relaxation times

with temperature, and the (absence of) translational structure as determined by positional

correlation functions.

The primary correlation function we use to measure positional correlations is called the

radial distribution function, g2(r). The radial distribution function measures how local

density changes with distance from a reference particle. Intuitively, g2(r) is proportional the

conditional probability of finding a particle at a distance r given that there is also a particle

at the origin. We computed g2(r) for a secondary model consisting of a bent-core trimer

comprising an equilateral triangle molecule with an obvious triangular lattice ground state.

g2(r) for this system is representative of what the radial distribution function looks like for

a 2D crystal (see Figure 3.6). This should be compared with Figure 3.7, which computes

g2(r) for the 2dLW systems. For the crystal-forming system in Figure 3.6, there is a stark

contrast between the top (coldest) curve and the bottom curves. This difference is attributed

to a first-order phase transition from liquid to crystal. For our glass-forming 2dLW system in

Figure 3.7, there is no clear structural change as temperature is lowered through supercooled

liquid to glass. It is not pictured in Figure 3.7, but g2(r) at T*=0.4 is indistinguishable from

g2(r) at any higher temperatures. We conclude that there is no crystal structure in our

2dLW simulations.

The radial distribution function is given formally as an ensemble average over pairs:
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g2(r) =
1

Nρ

〈
N∑
j

N∑
k 6=j

δ(r− rjk)

〉
(3.7)

=
V

N2

〈
N∑
j

N∑
k 6=j

δ(r− rjk)

〉
(3.8)

where δ is the Dirac delta function, V is the volume of the space we are considering, and rjk

indicates the separation vector between molecules j and k.

In practice, we calculate g2(r) by assuming a homogeneous and isotropic liquid, so we

can make the following simplification:

g2(r) =


1
N

1
4πr2ρ

〈∑N
j

∑N
k 6=j δ(r − rjk)

〉
three dimensions

1
N

1
2πrρ

〈∑N
j

∑N
k 6=j δ(r − rjk)

〉
two dimensions

(3.9)

We can corroborate the lack of crystal structure by computing what is called the static

structure factor Ŝ(k). As Ŝ(k) is related to the Fourier transform of g2(r) − 1, Ŝ(k) picks

up on any periodicity in translational order - useful for finding lattice constants of a crystal,

or short-range structure in a liquid. We compute the static structure factor (Figure 3.8)

to rule out crystalline translational order and to find conventional scattering momenta for

other scattering functions like Equation 3.3. Figure 3.8 lacks sharp diffraction peaks, and

the diffuse peaks are consistent with typical liquid structure factors. From Ŝ(k) (Figure 3.8),

we confirm that there is no translational symmetry in our 2dLW systems.

The static structure factor is formally given by

Ŝ(k) =
1

N

〈
N∑

j,k=1

e−ik·(rj−rk)

〉
(3.10)
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Figure 3.6: Radial distribution function of N=800 equilateral trimer (not 2dLW!) systems
with 60◦ apical angle at different temperatures. Averages are taken over 3× 105 configura-
tions. The distance r is measured between the centers of mass of the molecules.
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Figure 3.7: Radial distribution function of the N=1800 2dLW systems at different tempera-
tures. Averages are taken over 3× 105 configurations. The distance r is measured between
the centers of mass of the molecules.
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But in practice, we compute Ŝ(k) in liquids by relating to g2(r):

Ŝ(k) = 1 + ρ

∫
e−ik·r(g2(r)− 1)dr + Nδk,0

In two dimensions, it is given by

Ŝ(k) = 1 + ρ

∫
e−ik·r(g2(r)− 1)dr + Nδk,0

= 1 + ρ

∫
e−ikr cos θ(g2(r)− 1)rdrdθ

= 1 + ρ

∫ [∫
e−ikr cos θdθ

]
r(g2(r)− 1)dr

= 1 + 2πρ

∫ ∞
0

Jo(kr)r(g2(r)− 1)dr (3.11)

where we let k 6= 0 and Jo is a Bessel function:

Jn(x) =
1

2π

∫ π

−π
ei(x sin τ−nτ)dτ

For completion, in three dimensions the static structure factor is given by

Ŝ(k) = 1 + 4πρ

∫ ∞
0

r2
sin(kr)

kr
(g2(r)− 1)dr (3.12)

45



 0

 2

 4

 6

 8

 10

 12

 14

 0  5  10  15  20  25  30  35  40  45

pi 2pi 4pi

kBT/ε = 0.65

kBT/ε = 0.2

S(
k c

m
)

kσ

Figure 3.8: Center of mass static structure factor via Fourier transform of the pair corre-
lation function for the system of N=1800 molecules. Averaged over 3 × 105 configurations.
Temperature increases by 0.05kBT/ε for each successive curve from the top. Curves are
displaced vertically to improve visibility. The 2nd curve from the top (kBT/ε = 0.25) is
missing due to corrupted data.
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CHAPTER 4

Mesoscopic structure

We demonstrated that the 2dLW model systems captured the important features of super-

cooled dynamics. While supercooled liquids are understood to be structurally identical to

ordinary liquids, we now give surprising evidence that there are in fact structural signa-

tures of supercooling. Existing work, including the purely dynamical theories discussed in

Section 2.1.1, studies dynamical phenomena in supercooled liquids as completely indepen-

dent from any structural phenomena. Our results defy such literature expectations of the

insignificance of structural phenomena to glassy dynamics, and as such constitute profound

evidence that structural phenomena cannot be ignored in dynamical studies of supercooling.

In this chapter, we elaborate on our discussion in Section 1.3 on the Fayer group’s conjecture

that supercooled dynamics accompany the formation of structural domains much like the

pseudonematic domains in isotropic liquid crystals. [8] [27] In a similar vein, a few workers

have attempted to understand fragility in the supercooled liquid as a consequence of the

formation of slow, long-lived domains from locally preferred structures. [28] [29] [30] We will

connect our own findings regarding mesoscopic structures in 2dLW with discussions of slow

dynamics and fragility in the greater context of supercooled liquids in general.
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4.1 Hexatic molecular orientational order

Close inspection of configurations of the 2dLW simulations showed that molecules’ orienta-

tions would prefer lining up along six preferred axes. This is similar to order in nematic liquid

crystals, in which molecules on average favor being parallel or antiparallel to a common axis

called the director. In analogy to nematic liquid crystals, we refer to the six-fold molecular

orientational order in the 2dLW simulations as hexatic molecular orientational (MO) order.

Recall the expression for the (complex) m-fold order parameter sm given in Equation 1.5.

We gauge six-fold order using this s6 order parameter (Figure 4.2). By construction, the

magnitude of the order parameter measures the extent of order in the system on a scale

between 0 and 1. A perfectly ordered system, in our case a system whose molecules line up

perfectly along an axis n̂ or the five equivalent axes generated by 60 degree rotations of n̂,

has |s6| = 1. Disordered systems have lower values of the order parameter. Due to finite-size

effects and thermal fluctuations, isotropic liquids will have nearly but not exactly s6 = 0.

In section 4.1.1, we calculate sm for m 6= 6 to show that there is no significant m-adic MO

order for any m < 6.

Consider Figure 4.2. We see that at high temperatures T∗ ≥ 0.45, the order parameter is

close to zero. Since we know there is no hexatic MO order in the high temperature regime,

this is our baseline for a disordered system. The order parameter sees modest growth at

T∗ = 0.4. We then see a drastic increase in hexatic MO order for all temperatures below

this point. Given the growth of the order parameter, we conclude that there is unmistakeable

structural order in the supercooled liquid (0.35 ≤ T∗ < 0.45) and glass. For a discussion

of how we arrived at this temperature range for the supercooled liquid, see Section 1.5.

In fact, there is a hint of hexatic MO order even at T∗ = 0.45, where there is a very

small but noticeable increase in order. We will elaborate on this hint in the next section.

We can learn more from the order parameter by plotting its probability density, obtained by

making a normalized histogram over configurations (Figure 4.3a). At high temperatures, the
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liquid

supercooled liquid
(molecular hexatic)

Figure 4.1: Comparison between an ordinary liquid configuration (T ∗ = 0.65) and a su-
percooled liquid configuration (T ∗ = 0.35), N = 1800. Molecules are assigned one of three
colors depending on the angle between the molecular orientation vector and an arbitrary
axis. Molecules of the same color are roughly parallel or anti-parallel to each other. The
figure introduces our primary finding regarding 2dLW structure: in the supercooled liquid,
structural order takes the form of six-fold molecular orientational order.
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isotropic liquid’s order parameter distribution is entirely consistent with finite-size effects.

The order parameters in the supercooled liquid and glass are narrow with distributions

peaked at significantly positive values of the order parameter. That the order parameter

is even sharper in the glass, yet the magnitude of the order is much smaller than in the

supercooled liquid is not a coincidence. This curious feature in the probability densities led

us to examine more closely the nature of hexatic MO order in the supercooled liquid and

glass. We wondered whether we had a true thermodynamic MO hexatic phase. We discuss

how we arrive at the conclusion that we do not have a thermodynamic MO hexatic phase in

Section 4.2. Figure 4.3 is discussed in more detail in Section 4.4.

4.1.1 How about m-adic order for m 6= 6?

After learning about hexatic order, it is important to ask whether there is m-adic order for

m 6= 6. We conducted a study at T∗ = 0.65, 0.35, and 0.2, N = 1800, of P (sm) in Figure 4.4.

We only show the T∗ = 0.35 results. The result was expected: s6 order is significant while

the distributions of s1, s2, s3, s4, s5, and s8 do not indicate other m-adic order. In general,

if m-adic order is present, we also expect n ∗ m-adic order where n is any integer. The

comparison in Figure 4.4 shows that the lowest m for which sm order is significant in the

supercooled liquid of 2dLW is m = 6. This is why we refer to the order in the supercooled

liquid as “hexatic” molecular-orientational order.

4.1.2 Literature precedent

Mart́ınez-Ratón, Dı́az-De Armas, and Velasco released a study in 2018 that found pack-

ing hard objects in two dimensions can lead to molecular-orientational order with different

symmetries than those found in the molecules themselves. [31] The authors find that the

hexatic MO phase (what they refer to as ’triatic’) is stable for hard anisotropic equilateral

triangles and isosceles triangles with different aspect ratios. They use Scaled Particle Theory

and a density functional theory to derive these results. Since the 2dLW model is in a sense
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Figure 4.2: Mean of the order parameter versus temperature for the N=1800 2dLW system.
Data comes from 5× 104 trajectories. Error bars are standard error of the mean.
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Figure 4.3: All figures correspond to systems of N=1800 2dLW molecules. (a) Probability
density of the order parameter. Averages are taken over 3× 105 configurations. Solid curves
are central limit theorem predictions, but for the purposes of this thesis can be taken as
guides to the eye. (b) Probability density of the relative molecular orientation angle between
all pairs of molecules. (c) Probability density of the distance between Voronoi-determined
nearest neighbors. (d) Probability density of the relative molecular orientation angle between
neighboring pairs of molecules. (b-d) Averages are taken over 1000 configurations.

52



isosceles with its trimer shape, and the order they predict is the same as the kind we report,

the findings of Mart́ınez-Ratón, et. al., are very relevant to our work. There are important

distinctions between our methods: their work is analytical, requiring certain assumptions

and truncations to compute their answers while our numerical simulations do not require

such assumptions. Further, their particles are modeled as hard isosceles triangles while ours

are soft trimer molecules. The hexatic MO phase they predict also requires packing fractions

larger than 0.92, which corresponds to unphysical densities in more realistic models of glass-

formers. Finally, their study finds phase transitions among the differently ordered phases

and as such predicts that the hexatic MO order indicates a true thermodynamic phase, un-

like in our simulations. It is significant that despite the differences in model and method,

we both find hexatic MO ordering. This indicates that m-adic MO ordering, m > 2, should

be expected in models other than ours. As a preliminary study of MO ordering in different

systems, we varied the apical angle in 2dLW in Appendix A. There is some evidence that

some of the models we explored have MO order in the absence of a crystalline lattice, but

we do not make any conclusions at this time.

4.2 Mesoscopic structure

We were able to show that we should not expect a macroscopically ordered hexatic phase of

2dLW molecules. At a qualitative level, we saw that local directors in the glass (centered on

a molecule and incorporating a small box around it) were spatially heterogeneous, and local

order parameters were sharply peaked around large values of the order parameter (Figures

4.6, 4.7). It is important to note that the local order parameter distributions were spatially

heterogeneous, as seen by the variation in order parameter distributions in different parts of

the systems in Figures 4.6 and 4.7. This indicated that upon supercooling, the liquid was

forming structurally ordered domains. Our findings suggest that molecular orientational

ordering leads to numerous mesoscopic structures in supercooled liquids that contribute to
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Figure 4.4: Comparison between probability distributions of sm for a N=1800 2dLW simu-
lation run at T∗ = 0.35. The only significant peak is for s6.
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kinetic fragility in supercooled liquids.

4.2.1 Neither macroscopic nor quasi-long-range order

Before we continue discussing structural domains, it is important to quantitatively establish

that in our simulations of 2dLW molecules, the hexatic MO order is mesoscopic rather than

macroscopic or quasi-long-range. To rule out macroscopic order, we plot the order parameter

s6 to test its scaling with particle number N (Figure 4.8). < |s6| > clearly vanishes (converges

to zero) as N−1/2 in the ordinary liquid and glass. < |s6| > in the supercooled liquid follows

the N scaling trend of the ordinary liquid and glass. The order parameter in the supercooled

liquid does not fit perfectly to N−1/2, but it clearly vanishes at least as fast as N−1/2. This

finite-size scaling behavior rules out the possibility of macroscopic MO hexatic order (at least

for the thermodynamic parameters we have chosen). Thus we conclude that the hexatic MO

order we observe does not correspond to a thermodynamic phase.

Further, this shows that

< |s6| > ∼ η

L

where η is a correlation length and L is the length of the system. This arises from the scaling

factor we determined previously, and the relation:

N = ρL2

From this we deduce that the convergence of the order parameter with system size is

much faster than the algebraic decay (power law) predicted by Kosterlitz-Thouless-Halperin-

Nelson-Young (KTHNY) theory for quasi-long-range correlations corresponding to two-

dimensional liquid phases. [14] This allows us to conclude that the hexatic MO order we

find is distinct from macroscopic order and KTHNY phenomenon.
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Figure 4.5: (top) Voronoi tesselation of an N=1800, T ∗=0.65 system of 2dLW molecules.
(bottom) Local order parameter probability density of two sections of the simulation box in-
dicated in the top row. ψ (open circles) corresponds to bond-orientational order, and s (solid
circles) corresponds to molecular-orientational order. Averages are over 1000 configurations.
Inset: sections of the simulation box with molecules represented by their molecular orien-
tation vectors, alongside the local director corresponding to that section of the simulation
box.
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Figure 4.6: (top) Voronoi tesselation of an N=1800, T ∗=0.35 system of 2dLW molecules.
(bottom) Local order parameter probability density of two sections of the simulation box in-
dicated in the top row. ψ (open circles) corresponds to bond-orientational order, and s (solid
circles) corresponds to molecular-orientational order. Averages are over 1000 configurations.
Inset: sections of the simulation box with molecules represented by their molecular orien-
tation vectors, alongside the local director corresponding to that section of the simulation
box.
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Figure 4.7: (top) Voronoi tesselation of an N=1800, T ∗=0.2 system of 2dLW molecules.
(bottom) Local order parameter probability density of two sections of the simulation box in-
dicated in the top row. ψ (open circles) corresponds to bond-orientational order, and s (solid
circles) corresponds to molecular-orientational order. Averages are over 1000 configurations.
Inset: sections of the simulation box with molecules represented by their molecular orien-
tation vectors, alongside the local director corresponding to that section of the simulation
box.
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4.3 Structural domains

We have established that six-fold MO order in the 2dLW systems is not long-range. This begs

the question of obtaining a lengthscale for six-fold order. Recall g2(r), the radial distribution

function, given in Equation 3.7 by

g2(r) =
1

N

1

2πrρ

〈
N∑
j

N∑
k 6=j

δ(r − rjk)

〉
(4.1)

We will abbreviate g2(r) as g(r). We can also introduce a very similar function

g(6θ|r) =
1

N

1

2πrρ

〈
N∑
j

N∑
k 6=j

δ(r − rjk)cos(6θjk)

〉
(4.2)

where θjk is the angle between the orientations of molecule j and k. We use these functions

to define correlation lengths. To do so, we demand that the asymptotic form of a correlation

function h(r) is an eigenfunction of the ∇2 operator. For the radial coordinate, this is the

function

h(r/ξ) = Ce−r/ξ/
√
r/ξ

where we introduce the correlation length ξ. In other words, we may take a linear fit to

ln
√
rh(r) versus r where h(r) is g(r)− gasymptotic. We identify parts of ln

√
rh(r) which are

qualitatively linear and compute ξ accordingly (Figures 4.9, 4.10). From these fits we table

pair correlation lengths ξ and hexatic pair correlation lengths ξ6.

kBT/ε ξ/σ ξ6/σ
0.65 2.1±0.9 1.0±0.8
0.4 11.18±0.08 5.31±0.07
0.35 13.0±0.5 36.8±0.2
0.2 5.8±0.9 14.2±0.1

Table 4.1: Table of correlation lengths (N=1800 2dLW). Correlation lengths are computed
from a linear fit in Figures 4.9 and 4.10. Error bars are the root mean square error of the
residuals from the fit. ξ is the center of mass pair correlation length, and ξ6 is the center of
mass hexatic MO pair correlation length.
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The correlation lengths tell us that structural lengthscales grow in the supercooled liquid,

attain their maximum at T ∗ = 0.35 near the glass transition, and shrink - not vanish -

in the glass. We also learn about the temperature at which we consider the liquid deeply

supercooled. Since there is only a modest increase in orientational correlation length at T ∗ =

0.4, and the orientational autocorrelation function C6,s(t) in Figure 3.2 shows relatively rapid

relaxation, we consider temperatures colder than T ∗ = 0.4 to be deeply supercooled or glass.

At and above T ∗ = 0.4 are moderately supercooled and ordinary liquids. Most importantly,

correlation lengths suggest characteristic domain sizes and as such are intimately connected

with many-particle dynamical processes.

4.4 Local order

We saw in Figure 4.5 that it was a useful practice to examine individual liquid configura-

tions to seek qualitative patterns. We examined molecules and their nearest neighbors as

determined by Voronoi construction to draw a schematic of local MO order in Figure 4.11.

The drawings come from actual coordinates from the N=1800 2dLW trajectory files, and are

colored according to the distance from the center of mass of the central molecule. The colors

are meant to highlight molecular orientational order. Close inspection shows that molecules

colored red (≈ 1.7σ from the center molecule) are oriented anti-triatically (60◦, 180◦, or300◦)

from the orientation of the central molecule. On the other hand, molecules colored blue

(≈ 2.28σ from the center molecule) are oriented hexatically (multiples of 60◦) from the cen-

tral molecule. This observation is made quantitative in Figure 4.3(b-d). From Figure 4.3b,

we see that in the systems with MO hexatic order the relative orientational angle distribu-

tion between any pair of molecules is equally and symmetrically peaked around n × 60◦, n

an integer. Figure 4.3c shows the radial distribution of nearest neighbors as determined by

Voronoi construction. Since the distribution is bimodal, we have chosen to represent nearest-

neighbors using two lengthscales as indicated in the figure. The peaks of the bimodal dis-
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Figure 4.9: From g(r)−1, center of mass to center of mass correlation length ξ for the system
of N=1800 molecules, zoomed in. I truncate the domain of the plot (which is the same as the
domain over which the fit is taken) to avoid the noisy parts of the range. Fit parameters can
be found in Table 4.3. Red, blue, black, and cyan correspond to kBT/ε = 0.65, 0.4, 0.35, 0.2
respectively. Curves and fits displaced vertically for visibility.
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Figure 4.10: From g(6θ|r) − gasymptotic, center of mass to center of mass MO hexatic corre-
lation length ξ6 for the system of N=1800 molecules, zoomed in. gasymptotic is zero for most
temperatures, but for the systems with global hexatic MO order it is the value of g(6θ|r) at
half the box length. Red, blue, black, and cyan correspond to kBT/ε = 0.65, 0.4, 0.35, 0.2
respectively.
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tribution are the two characteristic nearest-neighbor distances, which is corroborated by the

schematic drawing in Figure 4.11. In Figure 4.3d, we study the orientational distribution of

neighbors according to either lengthscale. Our findings corroborate the schematic drawing,

as nearest neighbors at 1.7σ favor being anti-triatic relative to the central molecule. Nearest

neighbor orientations at 2.28σ are most likely to be hexatically distributed relative to the

central molecule. These two nearest-neighbor lengthscales have helped us determine what

appear to be locally favorable geometries.

4.4.1 Note on cavitation

Cavitation is a known phenomenon in systems with attractive potentials, including binary

glasses. [32] Cavitation describes a phenomenon in liquids where the system loses its spa-

tial homogeneity. This occurs when the attractive interactions of particles overcome the

material’s tensile strength, resulting in an increase in local density throughout the system.

We observe cavitation in the supercooled liquids and glasses of 2dLW (Figures 4.5, 4.1).

In our constant-NVE simulations, cavitation can be understood as the system’s preference

for a greater density as temperature is lowered. However, the constant volume constraint

of our simulation means that as local density increases, voids must form in the system -

homogeneity and growth in local density are incompatible in the constant-NVE conditions.

We were worried that the molecules on the edges of voids might have faster dynamics than

the rest of the molecules, potentially skewing our dynamical results. To study the extent to

which this is true, we studied how many molecules were on the edges of these cavities. This

endeavor predated our use of cage-relative coordinates, which account for our concern that

the cavities themselves may be diffusing. We have no evidence for cavity diffusion, an effect

that would also be corrected for in cage-relative coordinates, but we proceeded with caution

and studied the cavities in Table 4.4.1. We used Voronoi cell areas to define a criterion

for whether molecules were on the edges of cavities or not. The procedure is described in

the caption of Table 4.4.1. From our study of edge molecules, we conclude that there are
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Figure 4.11: Examples of nearest-neighbor molecular orientational order. Drawings are taken
from configurations of the N=1800 2dLW supercooled liquid. The central molecule is colored
black, while its nearest neighbors are colored red or blue depending on the distance between
the centers of mass of the central molecule and the neighbor molecule. The temperature
of the supercooled example is T ∗ = 0.35, and the temperature of the glassy example is
T∗ = 0.2.
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relatively few edge molecules - and that the edge molecules tended to be frozen like most of

the molecules in the system.

State Molecules on edge Peak center (σ2) FWHM (σ2)
liquid 8.36 (0.46%) 3.7 1.1
supercooled 81.89 (4.55%) 3.35 0.5
glassy 116.56 (6.48%) 3.29 0.44

Table 4.2: Fraction of molecules in the system on the edge of a void. A molecule is de-
termined to be on the edge of a void if its voronoi cell area is larger than two full-width
half-maximums (FWHM) from the center of the peak of the distribution of voronoi cell
areas. Probability distributions of voronoi cell areas are averaged over 100 configurations.
For a normal distribution,

∫∞
4
√
2ln2

[
1√
2π
e−x

2/2dx
]

= 1.24e-6, or 0.000124%. For the normal

distribution, 4
√

2ln2 is two full-width half-maxima from zero. This result is the same for
gaussian distributions, so we find that two FWHM is examining behavior very, very far from
the peak.

4.5 Bond-orientational order

The reason why we refer to our structure as “molecular orientational” order is due to another

kind of orientational order called “bond-orientational” (BO) order. This order arose from

studies of 2D melting using KTHNY theory. A good reference for BO order and 2D melting

is Nelson’s book. [14] BO order does not refer to chemical bonds. Rather, two particles

are considered to be bonded if their Voronoi polyhedra share a face - this is equivalent

to two particles being nearest neighbors. The BO order studied in 2D melting is called

“hexatic” order, because bonded particles tended to have their bond-orientations hexatically

distributed about a central particle. The overlap in naming convention is unfortunate and

coincidental. The local BO order parameter is given by

ψm,j =
1

Nj

Nj∑
k=1

eimθk (4.3)

where Nj is the number of neighbors of particle j, and θk is the angle between the bond

connecting j and k, and an arbitrary axis.
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The global BO order parameter is given by

ψm =
1

N

N∑
j=1

ψm,j (4.4)

We also define correlation functions for MO and BO order:

gmom (r) =
〈
cos(m(θ(r)− θ(0))

〉
(4.5)

=

〈∑
j

∑
k 6=j cos(mθjk)δ(r − rjk)))

〉〈∑
j

∑
k 6=j δ(r − rjk)

〉

gbom(r) =
〈
ψ∗6(0)ψ6(r)

〉
(4.6)

=

〈∑
j

∑
k 6=j ψ

∗
6,jψ6,kδ(r − rjk)

〉〈∑
j

∑
k 6=j δ(r − rjk)

〉
These correlation functions allow us to quantitatively compare the distance-dependence

of orientational order. Comparing Figures 4.12 and 4.13 indicate that triatic MO order is

not very pronounced except for at short lengthscales. Hexatic MO order is not noticeable at

T∗ = 0.4, but correlations become incredibly sharp only slightly colder at T∗ = 0.35. This

suggests that the MO order is not yet evident by T∗ = 0.4, and one must cool further before

finding these mesoscopic structures. Figure 4.14 indicates that BO order is very muted in

2dLW at all temperatures. The magnitude of the order parameter is insignificant even at

short lengthscales. In light of the well-studied phenomenon of the hexatic BO ordered phase

in 2D melting studies, we deduce that MO order certainly does not arise from BO order.

We conjecture that perhaps MO order is suppressing BO order, since we are working in two

dimensions in a temperature regime in which one would typically expect BO order.
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Figure 4.12: Six-fold MO correlation function for the N = 1800 systems, averaged over 3×105

configurations. Curves displaced vertically for visual clarity.
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Figure 4.13: Three-fold MO correlation function for the N = 1800 systems, averaged over
3× 105 configurations. Curves displaced vertically for visual clarity.
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Figure 4.14: Hexatic BO correlation function for the N = 1800 systems, averaged over 3×105

configurations. Note that the scale in this figure is much smaller than that of Figures 4.12
and 4.13.
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CHAPTER 5

Conclusion

This thesis began by setting up the anomalously slow dynamical phenomena in supercooled

liquids in general. We proposed a two-dimensional model to successfully capture these dy-

namical phenomena, but came to a surprising finding that the liquid upon supercooling

attained high degrees of symmetry in the form of locally ordered domains. The focus of

this thesis shifted from a purely dynamical study to one trying to understand the implica-

tions of clear structural order in the midst of supercooling, in direct contrast to literature

expectations about the equivalence between supercooled liquid and ordinary liquid structure.

An important task was to separate our molecular-orientational hexatic order from the

well-known 2d phenomenon of bond-orientational hexatic order. It is not difficult to imag-

ine how bond-orientational order might enforce molecular-orientational order. We establish

that this is not the case in our simulations, as we find in the supercooled liquid that bond-

orientational correlations were too small in magnitude and decayed too quickly to be related

to the bond-orientational order of 2d melting. Rather than finding significant local bond-

orientational order, we actually find different kinds of local molecular-orientational ordering.

Upon supercooling, two nearest-neighbor lengthscales arise. One lengthscale, 1.7σ, is dom-

inated by anti-triatic molecular orientational order relative to the central molecule, where
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neighboring molecules’ orientations are 60, 180, or 300 degrees out of phase with respect to

the central molecule. The other lengthscale, 2.28σ, features true hexatic molecular orienta-

tional order. It would be an interesting focus of future study to determine the relationship

between this nearest-neighbor ordering with a lengthscale of about a particle’s length, to the

mesoscopic ordering we find with a lengthscale as long as dozens of particles’ lengths.

Our findings about domains indicate that structure is an important consideration in

the study of supercooled liquids. Our study is limited in that we only examine one model

supercooled liquid in detail, with an incomplete study of other models in Appendix A. In light

of the experimental and theoretical work on hard triangles of various symmetries that find

phases with hexatic molecular-orientational order, we ponder whether m-adic molecular-

orientational order (m 6= 1, 2) occurs in other, more realistic physical systems like ours.

[15] [31] We note that neither of these studies made a connection between their molecular-

orientational order and glassy dynamics. In particular, we would be interested to see whether

molecular-orientational order has existed all along in molecular glassformers and simply has

gone unnoticed until now. If not, we are interested to know what aspects of our model give

rise to molecular-orientational order.

Whether molecular-orientational order is present in all glassformers or not, our results

have further implications. The exact mechanism of domain formation may not be important.

What is more likely to be fundamental to glassy dynamics is the fact that domains form

at all. This thesis presents evidence that links domain formation to supercooled dynamics,

which suggests that future studies look to local ordering processes in order to find structural

signatures of glassy phenomena. That the 2dLW supercooled liquid is perfectly described

by the drastic divergence of relaxation times modeled by the VFT law all while sustaining

ordered domains indicates at the very least that supercooled liquids are capable of supporting

structural order. It remains to be shown the exact nature of this link between structure and

order, but certainly in our study the two are very much compatible. Our work suggests just

one microscopic example of domain formation. Future work may determine whether our
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example is archetypal of domain formation in supercooled liquids. In any case, we hope our

work leads the way to bridging structure and dynamics in supercooled liquids.
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APPENDIX A

Results from other trimer models

We also conducted studies on models obtained by varying the apical angle in the 2dLW

model. In addition to the 75◦ angle, we conducted simulations on N = 800 trimer molecules

with angle 45, 55, 65, 85, 95, 105 degrees. The aim of these simulations were to determine

whether other trimer models attained some degree of molecular-orientational order. sm for

m = 1, 2, 3, 4, 5, 6, 8 and g2(r) were computed from these simulations. We summarize the

results here in Table A.1. These studies are incomplete, but contain important information

that will inform future work.

The following figures are g2(r) and P (sm) data from these non-75◦ studies. All high

angle (degrees) lattice? nontrivial order comment
45 no s6, s8 broader-than-expected distributions near zero
55 yes s6, s8
65 yes none
85 no none
95 no none
105 no s1, s2, s4, s6, s8 sharp distributions at small, nonzero sm

Table A.1: Summary of structural results obtained for N = 800 simulations of trimer models
with the same parameters as 2dLW except for the listed apical angle. Presence of a lattice is
determined qualitatively using g2(r), and nontrivial order is determined using the probability
distribution of global order parameters sm.
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Figure A.1: Radial distribution function obtained from N = 800 simulations of 45◦ trimers.
Results are averaged over 3 × 104 configurations. The simulation runs are started up using
the same procedures we used for 2dLW, described in Chapter 2. Distances are measured
between centers of mass of molecules. Curves are displaced vertically for visual clarity.

temperature T∗ = 0.8, 0.6 results for P (sm) are omitted. The g2(r) plots are mostly un-

interesting, but we will show the 45◦, 55◦, 105◦ results and omit the rest. The temperature

progression of g2(r) for 45◦ and 105◦ represent well the g2(r) for other models labeled “no

lattice” in Table A.1, and likewise for 55◦ and “yes lattice”.
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Figure A.2: Radial distribution function obtained from N = 800 simulations of 55◦ trimers.
Results are averaged over 3 × 104 configurations. The simulation runs are started up using
the same procedures we used for 2dLW, described in Chapter 2. Distances are measured
between centers of mass of molecules. Curves are displaced vertically for visual clarity.
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Figure A.3: Radial distribution function obtained from N = 800 simulations of 105◦ trimers.
Results are averaged over 3 × 104 configurations. The simulation runs are started up using
the same procedures we used for 2dLW, described in Chapter 2. Distances are measured
between centers of mass of molecules. Curves are displaced vertically for visual clarity.

76



 0

 20

 40

 60

 80

 100

 120

 140

 160

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

m

s�

m = 1, T*=0.4
m = 2, T*=0.4
m = 3, T*=0.4
m = 4, T*=0.4
m = 5, T*=0.4
m = 6, T*=0.4
m = 8, T*=0.4

Figure A.4: Probability distribution of the order parameter sm in N = 800 simulations of 45◦

trimers. Results are averaged over 3 × 104 configurations. The simulation runs are started
up using the same procedures we used for 2dLW, described in Chapter 2.
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Figure A.5: Probability distribution of the order parameter sm in N = 800 simulations of
45◦ trimers.
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Figure A.6: Probability distribution of the order parameter sm in N = 800 simulations of
55◦ trimers.
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Figure A.7: Probability distribution of the order parameter sm in N = 800 simulations of
55◦ trimers.
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Figure A.8: Probability distribution of the order parameter sm in N = 800 simulations of
65◦ trimers.
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Figure A.9: Probability distribution of the order parameter sm in N = 800 simulations of
65◦ trimers.
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Figure A.10: Probability distribution of the order parameter sm in N = 800 simulations of
85◦ trimers.
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Figure A.11: Probability distribution of the order parameter sm in N = 800 simulations of
85◦ trimers.
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Figure A.12: Probability distribution of the order parameter sm in N = 800 simulations of
95◦ trimers.
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Figure A.13: Probability distribution of the order parameter sm in N = 800 simulations of
95◦ trimers.
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Figure A.14: Probability distribution of the order parameter sm in N = 800 simulations of
105◦ trimers.
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Figure A.15: Probability distribution of the order parameter sm in N = 800 simulations of
105◦ trimers.
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