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Abstract

There is substantial evidence to suggest that approximately 84% of the

material in our universe is comprised of non-luminous matter called “dark

matter.” One promising candidate for dark matter is the Weakly Inter-

acting Massive Particle (WIMP), a theoretical particle that interacts via

gravity and a weak-like force. The Large Underground Xenon (LUX) ex-

periment was an initiative to detect WIMP recoils using a liquid xenon

scintillator placed deep underground. Due to the motion of the solar

system through the Milky Way, WIMP’s are expected to preferentially

scatter along the axis of their incidence direction. As such, the ability

to resolve the directionality of a recoil would be a powerful metric for

discriminating WIMP recoils from terrestrial background. This thesis ex-

plores a potential method for resolving the axial direction of a recoil, using

107.2 live hours of nuclear recoil calibration data to try and identify any

anisotropy in the ionization yield as a function of the angle between the

xenon nuclear recoil track and the applied electric field in the LUX detec-

tor. The purported anisotropy would come from increased recombination

emission in ionization tracks parallel to the electric field vs. perpendicular.

The analysis results indicate no appreciable signal at the 95% confidence

level. Therefore, any anisotropy would be beneath the sensitivity thresh-

old achieved.
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Chapter 1

Dark Matter

1.1 The Origin of Dark Matter

The universe is vast and exotic. It’s both a desert and a jungle, juxtaposing vibrant

swirls of stellar clusters and galaxies with swaths of interstellar darkness, stretching

billions of light years in all directions. For as long as humans have walked the earth,

we’ve studied the cosmos to try and understand our place within it. We’ve progressed

from recording stellar motion with the naked eye to taking stunning deep field images

from space with intricate telescopes that orbit Earth. From our direct observations

we’ve developed detailed models that can explain how stars synthesize fuel to generate

elements, how stellar clusters form and dissipate, and even how high energy radiation

is jettisoned from extremely massive objects like neutron stars and black holes.

However, since the 1930’s it has become increasingly apparent that direct obser-

vations alone cannot account for the physical behavior of some larger scale objects

on the night sky. One of the first detected anomalies occurred in 1932 when Swiss

astronomer Fritz Zwicky used galactic dynamics to estimate the mass of the Coma

Galaxy Cluster.[1] To his surprise, Zwicky obtained a value 400 times larger than the

expected mass contribution from luminous matter.1 He therefore inferred that there

must be non-luminous, or “dark” matter present to explain the discrepancy, placing

his trust in the theory of gravity. Zwicky’s postulate gave rise to the name “dark

matter,” and in the past 80 years there has been a wealth of evidence to substantiate

the presence of this non-luminous matter. In fact, the most successful cosmological

models to date rely on the existence of dark matter to create the large scale structure

of the universe we see today.

1See Appendix A-1 for a more detailed discussion of how Zwicky estimated the mass of the cluster.
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This chapter aims to provide context for understanding the motivation to search

for dark matter by explaining the importance of such a discovery, walking through

the leading theories for what comprises the missing mass, and then surveying some

of the evidence for its existence.

1.2 Why Does it Matter?

The presence or absence of dark matter will not swing elections, save coral reefs, or

lower the cost of a college education, but qualifying the nature of dark matter is so

important that the first experiment to do so will most assuredly win a Nobel Prize

in physics. This is in part because dark matter has become increasingly essential to

explain the makeup and evolution of the universe, but also because, simply put, we

believe there is a lot of it. Dispelling the mystery of dark matter would elucidate a

substantial fraction of the cosmos.

We cannot discretize and count how much dark matter exists in the universe, so

instead it is most useful to consider the ratio of dark matter to baryonic or, “normal”

matter. In order to get a sense for how much baryonic matter is in the universe,

we have to make two assumptions about the large-scale structure of the universe.

The first assumption is that the universe is homogeneous, meaning there should be

nothing special or unique about making observations from our general location vs.

another arbitrary location in space. The second assumption is that the universe is

isotropic, which means there should be no special directionality to the universe. These

two assumptions are wrapped into a single idea called the Cosmological Principle, and

allow us to extrapolate observations about a slice of the cosmos to the greater whole.2

For example, we can count the number of galaxies in a representative sample of the

sky and scale that number up to give an estimate for the total number of galaxies in

our observable universe. Through this technique, current estimates infer that there

are as many as 2 trillion galaxies or more beyond our own Milky Way![2] What’s

more, each galaxy could contain anywhere from 100 million to 100 billion stars, hot

balls of gas which are individually so massive that they provide enough gravitational

energy to induce nuclear fusion. Evidently there is an enormous amount of visible

material in the universe, but these numbers still pale in comparison to the projected

amount of dark matter that surrounds it.

2These assumptions have been substantiated by evidence from the CMB, which shall be discussed
in more detail in the next section.
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Figure 1.1: Chart outlining the composition of the universe according to the 2015
Planck Collaboration results.

In 2015 the Planck Collaboration published results from their study of the Cos-

mic Microwave Background (CMB), in which they provided refined estimates for the

breakdown of energy in the universe, shown in Figure 1.1.3 As pictured above, bary-

onic material comprises a meager 4.9% of the total energy density, dark matter 26.8%,

and dark energy a whopping 68.3%![3] The Planck measurement reveals how much

we have left to learn about the makeup of our world. All in all, according to the

Planck results, more than 95% of the energy in our universe is unaccounted for, and

there is over five times as much dark matter than baryonic matter.4 Next, we shall

dive deeper into understanding this result.

1.2.1 Baryonic Matter

As referenced previously, the term baryonic matter was used synonymously with

“normal” matter. Examples of baryonic matter include kitchen tables, the sun, and

all living organisms. The underlying connection between these objects is that they

are built from atoms containing protons and neutrons. Protons and neutrons are two

examples of subatomic particles called baryons, hence the term baryonic matter. This

definition allows for a clear distinction between dark matter and objects such as far

away planetary bodies or highly dispersed interstellar gas that could be considered

3An overview of the methodology behind obtaining these measurements will be presented in the
next section.

4Note that mass can be represented as energy by converting through Einstein’s famous formula,
E = mc2.
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“dark” because we technically cannot see them. Unlike dark matter, the baryons

that planets and gas clouds are built from do interact with light through various

scattering, absorption, and reflection processes that would render them detectable by

conventional means to a nearby observer. Their constituent atoms are well classified

as a part of the periodic table of elements.

It is still unclear as to exactly how much baryonic material resides in galaxies and

how much is spread across the interstellar medium in the form of gas. However, cur-

rent estimates speculate that less than 10% of all baryonic matter is contained within

galaxies, further contextualizing how much dark matter is present in the universe.[4]

1.2.2 Dark Energy

Looking at Figure 1.1, it is impossible to ignore that dark energy accounts for the

majority of the energy in the universe. Compelling evidence for dark energy didn’t

appear until 1998, but the concept was originally introduced by Einstein in 1917 as an

addendum to his theory of general relativity.[5] He called it called the “cosmological

constant,” denoted Λ. The purpose of the added constant was to counterbalance

gravity and allow for a balanced, static universe (the purported state of the universe at

the time). In 1929, however, Edwin Hubble (for whom the famous Hubble Telescope is

named after) made several distance measurements using Cepheid variable stars, and

discovered that galaxies farther away are receding faster. Hubble’s work indicated

that there was a linear relationship between recession velocity (v) and distance (d).

This relationship today is called Hubble’s Law and is summarized in Eq. 1.1 below:

v = H0d (1.1)

The constant H0 is called Hubble’s constant, and the while the value of the constant

has been explored and refined a lot since 1929, the linear relationship is still valid for

shorter distance scales. Hubble’s results were the first to imply that the universe is

expanding, not static.[6] As a result, there was no longer a need for additional energy

to counteract gravity, and most chose to neglect Λ in the gravitational field equations

for general relativity. For the next 50 years, cosmology models advanced in stride

with observational technology. With the advent of computers came gravitational

simulations with a focus on testing how accurately cosmology models could create

virtual structures that matched observation. By the 1980’s, however, it was becoming

increasingly apparent that there were several discrepancies between observational

data and even the most advanced simulation results. In particular, models at the
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time could not replicate large-scale galaxy clustering.[7] One solution that emerged

was to re-introduce the cosmological constant in a modified theory of state called the

Λ-CDM model, though there was still no definitive evidence to back it up.

Then, in 1998, results from Reiss et. al., a study similar to Hubble’s work in

1929, demonstrated that objects very far away are receding at a rate that is higher

than previously anticipated.[8] This was an indication that the universe is not only

expanding, but is expanding at an increasing rate. Consequentially, an energy source

beyond radiation and matter is necessary to propel space to accelerate outwards, and

the Λ parameter, nicknamed dark energy, gained relevance once more. There are

plenty of theories as to what contributes the energy represented by the cosmological

constant. One prominent theory is that dark energy is a property of space itself, and

arises from quantum fluctuations and annihilations in vacuum. Suffice it to say that

dark energy is not fully understood, but comes from a temporally uniform energy

source necessary to cause space to accelerate as it expands.

1.2.3 Dark Matter

As with dark energy, dark matter is not fully understood and there are several different

ideas as to what form it could take. Below are four prominent theories that are actively

debated and explored today:

1. MACHO’s: MACHO stands for MAssive Compact Halo Object. Examples of

these objects include black holes and neutron stars, baryonic material that ex-

ists undetected in regions surrounding galaxies and stars. While this may sound

like a plausible explanation, there are several issues with the idea. First, if dark

matter were baryonic, that would contradict the abundance of elements pre-

dicted by Big Bang nucleosynthesis. Additionally, astronomical searches should

have uncovered more MACHO’s through events like gravitational microlensing.

On top of that, detailed analysis of the CMB suggests that dark matter only

interacts gravitationally, and therefore must be non-baryonic in nature.[9]

2. Axions: Axions are a theoretical particle put forth in 1977 to solve a prob-

lem in the field of quantum chromodynamics called the strong Charge-Parity

(CP) problem. Quantum chromodynamics is the branch of physics that studies

the strong force that governs interactions between quarks and gluons, the force

that holds atomic nuclei together.5 In short, CP symmetry is the idea that if

5Protons and neutrons are made up of quarks. In fact, a baryon is defined as a 3 quark particle.
Gluons are what “glue” quarks together.
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a particle is replaced with its antiparticle (same mass, opposite charge), then

the laws of physics should not change (C-symmetry), but the spatial coordi-

nates should be flipped (P-symmetry). For example, an electron and a positron

should accelerate at the same rate but in opposite directions when placed in an

electric field. In reality, CP symmetry can be violated, a very important result

that could explain the dominance of matter over antimatter that we see in our

universe today. The CP problem arises from the fact that quantum chromody-

namics does not seem to violate CP symmetry. Understanding exactly how the

axion solves this problem is quite complicated, but suffice it to state that the

theorized parameters for the axion coincide well with the necessary conditions

for a dark matter candidate. Detecting axions experimentally would therefore

knock out two birds with one stone, or so to speak.[10]

3. Sterile Neutrinos: Neutrinos are extremely light particles that only interact

through the weak force and gravity. Sterile neutrinos are a theorized counterpart

to Standard Model neutrinos, but differ in that they only interact gravitation-

ally. This theory is motivated by the observation that standard model neutrinos

only exhibit left-handed chirality. All particles have an intrinsic property called

“spin.” Neutrinos, as fermions, have two possible orientations for their spin: in

the direction of motion or against the direction of motion. Left-handed chiral-

ity means that their spin is always aligned against the direction of motion. All

other known fermions exhibit both forms of chirality, and therefore it is ratio-

nal to postulate that sterile neutrinos might exist. Similar to the axion, the

theoretical particle has projected properties that fall in line with the expected

parameters for dark matter. One complication with this idea is that sterile

neutrinos are expected to decay, producing X-rays that have not been observed

for the expected mass range for dark matter.[11]

4. WIMP’s: Weakly Interacting Massive Particles (WIMP’s) comprise one of

the most enticing explanations for dark matter. Similar to neutrinos, these

theoretical particles do not have electromagnetic charge. Instead, they interact

via gravity, and possibly through an alternate, unknown mechanism with a

probability for interaction similar to that of the weak force. To understand why

the WIMP model has such value, it is necessary to rewind to the very beginning

of the universe.

Big Bang nucleosynthesis is the study of the formation of particles and elements

very early in the universe, from the instant after the Big Bang to about a minute.
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(a) Relationship between WIMP cross sec-
tion for interaction and comoving number
density. This shows that greater cross sec-
tion leads to more annihilation and a lower
number density at freeze out.[12]

(b) Summary of the different types of WIMP
interactions and methods to identify each
one. In this subfigure, χ represents a WIMP
particle and q represents a quark.[13]

Figure 1.2: WIMP freeze out and interaction diagrams.

The early universe was extremely hot and dense, which meant that particles were

constantly interacting through various processes. In particular, when the thermal

energy exceeded the mass energy of any given particle, these particle antiparticle pairs

were created and destroyed in equilibrium. As the universe expanded it cooled. Once

the thermal energy dropped below the mass energy, particle antiparticle pairs were

no longer created, but continued to annihilate, exponentially decreasing in number

density. The rate with which particles annihilate is dependent on their number density

(n) and cross section (σA). Cross section is a physical parameter describing the

probability with which an interaction process occurs, governed by subtle, small-scale

physics and usually measured experimentally. As the universe expanded, the rate

of annihilation decreased until it became insignificantly small, at a number density

determined by the cross section. This cessation is known as “freeze out,” and sets the

abundance of the fundamental particles that exist in the universe today. The concept

of freeze out is represented in Figure 1.2(a). Interestingly, if WIMP’s self-annihilated

through a mechanism similar to the weak-force, the corresponding cross section for

annihilation would result in a WIMP abundance that is consistent with the mass

density of dark matter we measure today! This is also known as the Wimp Miracle.

With the cross section for annihilation, and the expected relative velocity between
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dark matter particles in a distribution at thermal equilibrium (v), we can solve for

the expected number density of WIMP’s at freeze out. Then, with the measured

mass density of dark matter today (ρ), we can obtain the expected mass of a WIMP

particle (m) through the relationships expressed in Eq. 1.2 and 1.3 below:

n ∝ 1

< σAv >
(1.2)

m =
ρ

n
(1.3)

There is some uncertainty in the cross section for annihilation, and therefore the

WIMP mass energy range that is actively explored spans anywhere from .01 GeV to

1000 GeV, depending on the source.

There are several approaches to verifying the existence of WIMP’s. For one, dark

matter annihilation could still occur in dense regions of the universe today, such as

galactic centers. Byproducts from the annihilation, gamma rays for example, could

be an indirect way of detecting WIMP’s. There is also the possibility to create a

WIMP-like particle from Standard Model particle collisions within particle accel-

erators. Particle collider experiments were vital in exploring the Super Symmetry

(SUSY) theory, an additional motivator for the WIMP search. This model theorized

that all fermions have ties to corresponding bosons, with the purpose of beautifying

and connecting abstract mathematical formulas within the realm of particle physics.

The low mass boson that is associated with the neutrino in the SUSY model, called

the neutralino, would be a great candidate for dark matter.[14] Unfortunately, the

Large Hadron Collider (LHC) in Switzerland has been searching for these partner

bosons to no avail, casting doubt on the SUSY theory. Then there are direct detec-

tion experiments like the Large Underground Xenon (LUX) experiment, the focus of

this thesis. LUX relies on the idea that if dark matter does interact via a mechanism

similar to the weak force, then there is a cross section for dark matter to scatter off

of standard nuclei. LUX operates under the pretense that one can pick up byprod-

ucts from such a scatter in the form of scintillation. These three ways in which dark

matter may be detected (indirect detection, particle colliders, and direct detection)

are outlined in the schematic shown in Figure 1.2(b).

To summarize, characterizing the source of the missing mass in the universe has

spawned intricate theories and experiments that intersect both astrophysics and par-

ticle physics. Yet, how much evidence is there to substantiate the existence of dark

matter beyond Fritz Zwicky’s discovery in 1932? The next section will survey the

most tenable evidence for dark matter that has arisen in the past century.
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1.3 Evidence for Dark Matter

While the exact nature of dark matter might be mysterious, there is a wealth of

evidence to establish it exists all around us. The following sections outline four

distinct sources of evidence for dark matter.

1.3.1 Galaxy Rotation Curves

In disc-shaped galaxies like the Milky Way, luminous matter forms a plane, orbiting

the galactic center with sporadic overdensities in the form of spiral arms that curl

themselves around and around. Most of the luminous mass in these galaxies is located

in the galactic bulge at the center, and the material in the disc orbits the central mass

according to Newton’s laws of gravity, just like Earth orbits the sun. At least this

is what everyone thought, until Vera Rubin published a pivotal study in 1980 that

pointed out a discrepancy between expected and observed rates of rotation in a survey

of galactic discs.[15] According to Newton’s law of gravity, expressed in Eq. 1.4, the

force on any small star with mass m orbiting the galactic center of mass M will fall

off with the square of the distance (r) between the two. Note that G is the universal

gravitational constant.

F =
GMm

r2
(1.4)

Approximating the material in the disc as following circular orbits, we can invoke

Newton’s Second Law F = ma and substitute in the centripetal acceleration, a =

v2/r. Setting the resultant expression equal to Eq. 1.4 and solving for velocity yields

Eq. 1.5:

v =

√
GM

r
(1.5)

Thus, the velocity is expected to fall off as 1/
√
r, but referencing Figure 1.3,

observational evidence instead shows that the velocity does not decrease at all with

distance from the galactic center. Instead, the galactic rotation curve appears to be

flat.

This result has been corroborated from observing many different galaxies. Some

theorized a form of modified Newtonian dynamics to explain the flat rotation curves,

but the most accepted explanation is that there is additional, unseen mass distributed

in a halo around these galaxies: dark matter. If the galaxy’s mass were to increase
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Figure 1.3: A depiction of the discrepancy between the expected and observed rela-
tionship between orbital velocity and distance from the galactic center.[16]

linearly as a function of radius, that would offset the radial dependence and generate

the flat rotation curves that are observed.

1.3.2 Gravitational Lensing

Einstein’s general relativity is a celebrated theory of gravity that expresses how mas-

sive objects distort the fabric of space like a bowling ball sitting on a foam mattress.

We learn in secondary school that light always travels in a straight line until it im-

pinges on another object. When the fabric of space is warped, however, the path of

light gets warped with it, leading to distorted images of faraway objects. This is the

phenomenon known as gravitational lensing. This effect was first theorized in the

1930’s, and first observed in 1979 with the discovery of the Twin Quasar, a galactic

nucleus that had its image replicated by a massive galaxy in the line of sight between

the quasar and Earth.[17] Interestingly, the way in which light from distant sources is

distorted reveals information about the mass of the lensing object. Therefore, gravi-

tational lensing can be used to make a comparison between the mass calculated from

the amount of luminous matter and the mass expected from severity of the distortion.

As one might expect, there is a distinct discrepancy between the two measurements,

providing more evidence that extra, unseen mass exists in galaxies. Figure 1.4 shows
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(a) Schematic demonstrating how massive
objects can bend space and light.[18]

(b) Example of strong gravitational lensing.
Light is distorted from a point source to a
horseshoe shape.[19]

Figure 1.4: Gravitational lensing schematic and example.

a schematic of how space is stretched by massive objects as well as a real-life example

of strong gravitational lensing.

1.3.3 Cosmic Microwave Background

As mentioned earlier in the discussion of freeze out, the early universe was incredibly

hot and dense. Nanoseconds after the big bang, temperatures still exceeded 1014K.

It took approximately 10 microseconds for the universe to expand and cool to where

quarks and gluons became bound into protons and neutrons, at temperatures of

around 1012K. 100 seconds after that, the universe had cooled to where protons and

neutrons could bind together to create light nuclei, hydrogen and helium. However,

the universe was still so hot and dense that electrons could not bind to nuclei before

getting ripped off (ionized) once again by high energy photons. Photons could not

travel very far before colliding with an electron, and for the next 300,000 years the

universe existed as an opaque plasma of light nuclei. After this period of time had

passed, the universe finally cooled to approximately 4000K, and the density became

low enough for photons to travel unimpeded.[20] The photons that first escaped this

primordial plasma and traveled for billions of year across the vast universe to reach

our eyes today, constitute the Cosmic Microwave Background. The CMB is a bath of

radiation coming from all directions, predicted in 1948 by Ralph Alpher and Robert

Herman and then experimentally verified by Arno Penzias and Robert Wilson in 1964.

The radiation has a blackbody temperature of 2.75K, which peaks in the microwave

region of the electromagnetic spectrum.
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(a) The CMB as imaged by the Planck
collaboration in 2013. Red/Blue spots
represent higher than average/lower
than average temperature.[21]

(b) The CMB power spectrum.[22]

Figure 1.5: The CMB and its power spectrum.

Depicted in Figure 1.5(a), the CMB was an immensely valuable discovery and

has had a huge impact on modern cosmology. First and foremost, the CMB is crit-

ical evidence for the Big Bang, a singular explosion happening from a very smooth,

concentrated source. Secondly, the CMB is largely uniform, which validates the Cos-

mological Principle, the assumption that the universe is homogeneous and isotropic,

to a high degree. Third, by measuring temperature fluctuations at various angular

scales, one can produce the power spectrum of the CMB, shown in Figure 1.5(b). This

spectrum is packed with information about the mass distribution of the early uni-

verse, and contains enough information to fill a graduate level physics class. Fourth,

analysis on the polarization of light from the CMB could provide evidence for cosmic

inflation, a monumental theory about the expansion of the universe just moments

after the Big Bang that could solve several mysteries in cosmology.[23]6

The link between the light of last scattering and the mass distribution lies in

the temperature fluctuations. The universe was dense enough so that matter was in

thermal equilibrium and the gravitational field was very smooth, but overdense and

underdense regions of mass still existed. Overdensities created gravitational potential

wells, and photons escaping from these wells at the time of last scattering lost energy,

resulting in the cold spots within the CMB. Likewise, hot spots in the CMB are from

photons coming from regions where the mass density was lower. While the tempera-

ture fluctuations at face value give us a general picture of mass inhomogeneities, the

6Light, when considered a transverse wave, oscillates in a given planar orientation, called its
polarization. Certain materials can filter light with a specific polarization, which is how some 3D
glasses work.
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distinction between baryonic matter and dark matter comes from a process known as

baryon acoustic oscillations.

The key to understanding baryon acoustic oscillations comes from studying grav-

itational instability, or what happens when there are mass density fluctuations. For

a given overdensity, gravity will pull matter together until the pressure builds up.

Pressure in a gas is communicated at the speed of sound, cs. If the time scale of

gravitational collapse, tg, is faster than the speed at which pressure can build (the

speed of sound), the overdensity will continue to collapse under its own gravity. If,

however, the time scale at which pressure builds is faster, then the matter will get

pushed back out. This results in an oscillatory cycle of collapsing and rebounding.

The determinant for these two eventualities is set by the Jeans length, λJ , which

is essentially the distance over which pressure can be communicated in the time of

gravitational collapse. This relationship is expressed in Eq’s 1.6 and 1.7 below:

λJ = 2πcstg (1.6)

tg =
1

2π

(πc2
Gε̄

)1/2
(1.7)

At the time when photons were coupled to baryons in the dense plasma, radia-

tion dominated the average energy density (ε̄) and set the scale of the Jeans length.

Just before the time of last scattering, the Jean’s length was approximately .6 Mpc,

or 1.9x1022m, much larger than the scale of the mass inhomogeneities. Therefore,

pressure had the chance to build during collapse, and the overdensities oscillated at

a frequency set by its size. This continued until the time of last scattering, when the

baryons and photons separated. The baryon gas raised the average energy density

and lowered the sound speed, decreasing the Jeans length scale dramatically. The

speed of sound in the baryon gas was a factor of 2.5E-5 slower than in the gas of rel-

ativistic photons, and the Jeans length scale decreased to where the inhomogeneities

stopped oscillating and began to collapse into the large scale structure we see today

(i.e. galaxy clusters).[20] The peaks in the CMB power spectrum represent the den-

sity fluctuations that were at maximum compression or rarefaction at the time of last

scattering. Note that the value on the Y axis can be considered an absolute value

of the deviation from average temperature. The larger the angular scale, the larger

the inhomogeneity and the slower the oscillation. Therefore, the first peak represents

overdensities that just reached the first compression at the time of last scattering, the
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Figure 1.6: An image from Fermi-LAT demonstrating an excess of gamma ray radi-
ation from the center of the galaxy.[24]

second peak represents higher frequency oscillations that reached the first rarefaction,

the third peak represents the second compression, etc.

Now let us tie in how dark matter affects these acoustic oscillations. Recall that

one of the fundamental properties of dark matter is that it does not interact electro-

magnetically. Therefore, it would not feel the radiation pressure that causes baryonic

matter to rebound in the oscillatory cycle. As such, the presence of dark matter in

the initial mass distribution serves to accentuate overdensities, since it adds to the

infall but not the rebound. Without dark matter, the density perturbations would

be a lot smaller, and we would not see the as much large scale structure as we do

today. This is further evidence that dark matter is real, and not some miscalculation

in Newtonian dynamics or baryonic matter that has been overlooked. Taking the ra-

tio of the third to first peaks in the CMB power spectrum allows us to place bounds

on the ratio of dark matter to the ratio of baryonic matter, resulting in the Planck

percentages discussed earlier.

1.3.4 Gamma-Ray Excess/Dwarf Galaxies

Previously we mentioned that dark matter annihilation could occur today in overdense

regions of the universe. The self-annihilation of dark matter would result in gamma

ray radiation in a specific energy range corresponding to the expected mass range for

WIMP’s. One method for indirectly detecting dark matter is to isolate sources of
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gamma rays in this energy range that cannot be explained by other, more conven-

tional methods of production. Excitingly, in 2010 Dan Hooper and Lisa Goodenough

published an analysis of data from the Fermi telescope, confirming the existence of

an excess of gamma rays coming from the galactic center that is consistent with dark

matter annihilation predictions. This gamma ray excess is shown in Figure 1.6.

However, an alternative explanation for this gamma ray energy has since emerged,

stating that the radiation could also come from astronomical objects known as mil-

lisecond pulsars. Millisecond pulsars are examples of rapidly rotating neutron stars

that emit a beam of high energy synchrotron emission out along its poles.7 If the

orientation of the neutron star is such that the the beam moves in and out of sight

at a regular time period from our perspective, we see pulses of light, in this case on

the order of milliseconds. Although this is a rational explanation for the gamma ray

excess in the center of the galaxy, astronomical observations of milliseconds pulsars

and their precursor, X-ray binary systems, indicate that there does not seem to be

enough pulsars and binaries present to explain more than 10% of the excess gamma

radiation.[25] This debate will likely be resolved in the next 10 years, with the advent

of the astronomical technology to study the centers of nearby dwarf galaxies and re-

solve more millisecond pulsars within our own galaxy. Even so, the gamma ray excess

observed could be evidence for the self-annihilation of dark matter in the center of

the Milky Way.

7Synchrotron emission occurs when charged particles, such as electrons, spiral through a magnetic
field.
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Chapter 2

The LUX Experiment

The Large Underground Xenon (LUX) experiment was a direct detection dark matter

experiment that ran from 2013 to 2016 at the Sanford Underground Research Facility

(SURF) in Lead, South Dakota. The LUX detector, shown in Figure 2.2a, was

a titanium cylinder filled with 370kg of cryogenically cooled liquid xenon located

4850ft below the surface in the Homestake Mine, the largest and deepest gold mine

in North America until its closure in 2002. LUX operated in the Davis Cavern, the

site made famous by Ray Davis, who was the first person to experimentally detect

solar neutrinos in the late 1960’s. The basic idea behind building LUX, as referenced

in the previous chapter, was that dark matter can scatter elastically off of an atomic

nucleus, producing an observable signal.

LUX set the record for the most sensitive direct dark matter detection experi-

ment in the summer of 2016, after approximately 332 live days of data taking. The

sensitivity, shown in Figure 2.1, is represented as a region in WIMP parameter space

over which there is > 90% confidence that a WIMP would have been detected with

those parameters. While LUX did not detect dark matter, it placed more stringent

limits on the viable parameters for dark matter candidates, constraining theories and

informing future experimentation.

This chapter begins with a description of the mechanics behind the generation

and detection of signals within the LUX detector. We then survey the methods used

to discriminate this signal from other activity in the detector, before introducing the

topic of neutron calibration and linking that to the research question that guides the

analysis in Chapter 3 of this thesis. Please note that for convenience, LUX will from

now on be referred to in the present tense to provide the context in which the data

analysis was performed.
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Figure 2.1: The 2016 LUX sensitivity results in WIMP parameter space, shown in
black. The dark grey and light grey represent the 1-σ and 2-σ expectation regions for
WIMP parameters favorbed by a SUSY model. Also shown here are sensitivity lines
from PandaX-II, XENON100, and DarkSide-50 as of June 2016.[26]

2.1 Signals in LUX

2.1.1 Emission mechanisms

Collisional activity within LUX is picked up as scintillation released by liquid xenon

when it gets struck. In dark matter direct detection experiments, there are several

motivations for using liquid xenon as a target material. First and foremost, xenon has

a large nucleus, which increases the probability of a scatter. Given the low expected

cross section of dark matter, sizable nuclei are incredibly important.1 Secondly, xenon

has many stable isotopes, and does not radioactively decay at rates that interfere

with signal detection. Third, xenon is transparent to its own scintillation, so that the

intended signals will be allowed to propagate throughout the liquid xenon medium

and get picked up by photomultiplier tube (PMT) arrays above and below the xenon

volume. When an electromagnetically neutral particle collides elastically with a xenon

nucleus (a nuclear recoil (NR)), the recoil energy catalyzes several emission generation

mechanisms, ultimately converging to two types of signals, S1 and S2.

1In fact, the nomenclature for the “cross section” in particle physics stems from the physical
representation of a sliced spherical particle. That’s why bigger is better.
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(a) Diagram of the internal LUX cryostat containing active Xe volume.

(b) Diagram of the external structure surrounding the cryostat.

Figure 2.2: Schematics of the LUX detector.[27]
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When nuclear recoils occur, the recoil energy goes into exciting electrons to higher

energy states within xenon atoms, creating Xe∗. The Xe∗ atoms will then de-excite,

producing photons (γ’s) through the following process:

Xe∗ + Xe→ Xe∗2

Xe∗2 → 2Xe + γ (2.1)

As indicated by Eq. 2.1, Xe∗ atoms will join with a ground state xenon atom (Xe)

to form Xe∗2, an excited dimer. This dimer then de-excites by emitting a 175 nm pho-

ton and leaving behind two ground state xenon atoms. It is vital to characterize the

time scale over which these signals appear and subside in order to determine whether

these signals can be differentiated or not. In this signal generation process, Xe∗2 has

two possible excitation states, the singlet and triplet states, that have characteristic

relaxation times of 3.1 ns and 24 ns respectively. These timescales are too short for

the two eventualities to be picked apart, and they both contribute to the same S1

pulse, which will be formally defined shortly.

Nuclear recoils can also ionize xenon, kicking off electrons (e−) to create a posi-

tively charged Xe+ ion. The freed electrons either get sucked up by LUX’s electric

field or recombine with other Xe+ ions, eventually creating another excited Xe∗ that

generates more emission in the recombination process outlined below:

Xe+ + Xe→ Xe+2

Xe+2 + e− → Xe∗∗ + Xe

Xe∗∗ → Xe∗ + heat (2.2)

This recombination process has a characteristic relaxation time of 45 ns. This

time scale is too short to discriminate recombination photons from those generated in

the process described by Eq. 2.1. Thus, the S1 signal is defined to be the joint photon

emission from the processes outlined in Eq. 2.1 and 2.2. The S1 signal demarcates the

beginning of a scattering event, even if the event includes multiple scatters. LUX is

lined with PTFE reflector panels to maximize the efficiency of photon detection. Even

still, individual photons are difficult to detect with high efficiency, and an important

metric is the S1 detection efficiency or gain, denoted g1. For this analysis, g1 was

calibrated to be .115 ± .004, meaning approximately 11.5% of generated photons will

be recorded.
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Figure 2.3: Summarization of the different Xe signal generation processes outlined by
Eq. 2.1 and 2.2.[28]

The ionized electrons that escape the interaction site drift up in LUX’s 180 V/cm

applied electric field at a rate of 1.51 ± .01 mm/µs. Once the electrons reach the

liquid surface they are extracted with an efficiency (g2) of .48 ± .04 into a gaseous

xenon layer. In the gas layer they undergo electroluminescence, producing a second

batch of photons referred to as S2. This secondary light yield was measured to be

23.77 ± .01 detected photons (phd) per ionized electron, and is typically much larger

than the S1 signal. Figure 2.3 summarizes the different emission mechanisms that

generate the S1 and S2 signals.

The time scale at which S2 signals reach the top PMT array are relatively longer

than their corresponding S1 signals, with drift times stretching up to 324 µs. Given

the constant rate at which electrons travel, the time between the S1 and S2 signals

allows us to determine the depth at which the collision occurred. Furthermore, know-

ing the shape of the electric field and which PMT’s saw the signal, one can constrain

the x-y position of the scatter to within a centimeter. Therefore, the LUX detector is

able to resolve when and where a nuclear recoil happened to great precision. These

key points are represented in Figure 2.4 on the next page.

2.1.2 Detection Mechanisms

S1 and S2 signals in LUX are picked up by 122 Hamamatsu R8778 photomultiplier

tubes split into a top and bottom array. Pictured in Figure 2.5a, these 5.7cm diam-
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Figure 2.4: An overview of the S1, S2 signal detection process in LUX. A particle
enters the liquid xenon volume and collides elastically with a xenon nucleus, producing
S1 photons and ionizing electrons. The electrons then drift up and get extracted into
the gas layer where they undergo electroluminescence, producing the second signal,
S2. [28]

21



(a) Image of the Hamamatsu R8778
PMT. Behind it is the copper mount-
ing structure for the PMT array.

(b) Diagram of the amplification process
within a PMT.

Figure 2.5: Image of the R8778 PMT and drawing of its internal operation
mechanism.[28]

eter, cylindrical detection devices utilize the photoelectric effect to amplify a single

photoelectron into a cascade of 105 to 107 electrons. The photoelectric effect occurs

when an incoming photon causes an electron to be emitted from a material, referred

to as a photoelectron (phe). Located within the glass housing of the front end of

the R8778 PMT is the cathode, made from a mixture of rubidium, cesium, and an-

timony. Within the PMT is a series of 12 dynodes, slices of a secondary emissive

material each connected to a pin on the back of the PMT. When operational, the

pins are attached to a base with a step-wise electrical circuit of increasing resistance

that creates a voltage gradient between each of the dynodes, generating an electric

field in the direction of the cathode. As depicted in Figure 2.5b, an incoming photon

will hit the cathode of the PMT and kick off a photoelectron that propagates down

the electric field, crashing into each dynode and creating more photoelectrons in the

process. In between the final two dynodes is the anode, a wire mesh that collects the

charge and transmits the signal to the user for processing. The signal is digitized and

recorded as a pulse of voltage.

PMT’s are hardy, as they can operate at liquid xenon temperatures of 177K

(−96oC) and up to 5 atm of pressure. Even still, they occasionally break. In particu-

lar, PMT’s can develop leaks that ruin the vacuum within. A compromised vacuum

can cause increased activity within the PMT, obscuring external signals. One way

to test for this is to immerse the PMT in complete darkness and measure the rate

at which pulses above a certain threshold are received. This measurement is called

the “dark rate,” and PMT’s with abnormally high dark rates never make it into the
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LUX detector. Additionally, a poor PMT vacuum can lead to unwanted behavior

called “afterpulsing.” Afterpulsing occurs when the transmitted cascade of electrons

ionizes residual gases inside the PMT, accelerating the ions towards the cathode and

generating a secondary pulse that appears after the original photoelectron pulse. The

time between the initial signal and the afterpulse is governed by the mass to charge

ratio of the ion, and is typically on the order of a few µs.[28] One of Brown Univer-

sity’s primary responsibilities within the LUX collaboration is to run dark rate and

afterpulsing tests on each PMT that ensure the integrity of the PMT vacuum will

hold up in the cold liquid xenon environment.

Ideally, every photon that strikes a PMT will generate a photoelectron and be

recorded. In reality, however PMT’s have a detection efficiency of approximately

30%. The detection efficiency is a product of two variables: quantum efficiency (QE),

and collection efficiency (CE).

1. QE: Quantum efficiency is defined as follows:

QE =
# of photoelectrons produced

# of incident photons
(2.3)

For an photoelectron to be emitted, an incoming photon must first pass through

the glass window of the PMT, get captured on the cathode, and then impart

enough energy for an electron to escape into the PMT body. These three actions

each have an associated probability that is dependent on the energy of the

photon, the material of the cathode and glass, and even the conditions of the

external environment. LUX PMT’s have a quantum efficiency that is normally

distributed with a mean of 33% and a standard deviation of 2.3%.[28]

2. CE: Collection efficiency refers to the percentage of electrons emanating from

the cathode that strike the first dynode. This value is calculated by comparing

the ratio of currents between the anode and the cathode to the total electron

multiplication factor. The latter is dependent on the photoelectron striking the

first dynode while the former is not, and the ratio between these two measure-

ments yields a CE of about 90%.[28]

After photons are picked up by PMT’s, the amplified signals travel through 12m

of cable to a set of pre-amplifiers, which linearly magnify the signal 5x more. Then

the signal makes its way to a series of post-amplifiers which amplify, shape and output

the signals to three different locations to be digitized and filtered. The filtering and

organizing of signals saves an immense amount of computer memory and time for
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data analysts to work with the information. One basic filter that is applied when

deciding which pulses to digitize, is a base threshold below which information coming

from the PMT’s will not stored. At the end of a very complex processing framework,

the information is classified and organized into large data structures accessible in

Matlab. For a more in depth description of LUX’s data processing setup, see James

R. Verbus’ [27] or Carlos H. Faham’s PhD dissertation [28].

2.2 Background Discrimination

There are many strategies in place to minimize unwanted particles from entering the

internal volume of the LUX detector. First and foremost, the detector is located

in Lead, South Dakota, a very rural and quiet location. While South Dakota does

have snowstorms and hailstorms (even during the summer) that do cause occasional

electrical disturbances in the equipment monitoring the health of the detector (not the

PMT’s), it is not located on a fault line that might cause quakes and geological tremors

that could disturb the interior of the experiment. Secondly, the detector is located a

mile beneath the surface, shielded from high energy particles streaming to Earth from

outer space (of which there are many), as well as any other atmospheric disturbances

like storms. Third, the LUX cryostat is surrounded a by a 7.1 m diameter, 6.1 m

tall, purified water tank to shield it from radioactivity coming from the Davis Cavern

(shown in Figure 2.2b). Within the water tank are 20 Hamamatsu R7081 10” PMT’s

to detect radiation from any high energy cosmic muons that do manage to make it

into the cavern. The data from these PMT’s is recorded in tandem with the PMT

arrays in the cryostat to veto these events as background radiation. Fourth, all of the

materials from which LUX was built went through an involved radiation screening

process to minimize the amount of radioactive interference that comes from LUX

itself. Finally, liquid xenon is self-shielding, and it protects the inner 300kg active

xenon volume from passive detector radiation.

Even with all of these prevention strategies, there are plenty of electromagnetic

particles that reach the innermost xenon volume. An important discrimination method

to separate electromagnetic recoil (ER) events from NR events like WIMP scatters,

is to take the ratio of S2 to S1. Plotting this measurement over a range of S1 values

creates two distinct, though slightly overlapping bands known as the ER and NR

bands respectively (shown in Figure 2.6a). The discrepancy between the bands arises

from the fact that there is a greater rate of recombination in nuclear recoils, which

enhances the S1 signal and lowers the S2 signal. Due to the overlap shown in Figure
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(a) Plot of the ER and NR bands marked in black
and red respectively.

(b) Overlaid histograms showing over-
lap between ER and NR bands, with
blue highlighted region to show WIMP
acceptance.

Figure 2.6: Visualizations of the ER and NR bands and the overlap between the
two.[28]

2.6b, only the lower portion of the NR band is considered in WIMP searches in order

to veto 99% of electromagnetic recoils.

Another way to isolate WIMP-like scatters is to recognize that for extremely low

cross sections for interaction, the odds that a WIMP would scatter more than once

is negligible. Therefore, we can rule out any multiple scatter sites. Beyond this

technique and those mentioned above, the best line of defense is to classify as many

processes as possible that could create background interference, such as radioactive

decay, impurities in the liquid xenon, inelastic captures on detector materials, and

even irregularities that may occur farther down the data stream. The better the

background discrimination, the more confident one can be that an unaccounted for

nuclear recoil is actually from a WIMP.

2.3 D-D Neutron Calibration

One method to calibrate for WIMP-like nuclear recoils is to use neutrons, which

are similarly neutral, massive particles, but with a much higher cross section for

interaction. Calibrating the detector’s response to nuclear recoils is much harder than

calibrating electron recoils for several reasons. When calibrating for electron recoils,

it is possible to inject a source material that radioactively decays into electromagnetic

particles with very specific energies dependent on the reaction. Unfortunately, there is

not a convenient monoenergetic neutron source that can be deployed in that manner.
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Figure 2.7: A picture of the author standing next to the D-D neutron generator in
the Davis Cavern in the summer of 2016.

Additionally, the amount of energy imparted in a nuclear recoil is dependent on the

angle of the scatter, which would be difficult to control if a neutron source were

located inside the detector. Therefore, the methodology for neutron calibration used

in the LUX experiment was to set up a deuterium-deuterium (D-D) neutron generator

outside the LUX water tank and install an air-filled collimated tube to transmit the

neutrons through the water to the outer surface of the cryostat. The conduit tube

itself is 4 m long with a 5 cm diameter.

An Adelphi Technologies Inc. DD108 neutron generator was used to perform the

neutron calibration after the 2013 and 2016 LUX WIMP searches. The D-D generator

works by ionizing deuterium fuel and accelerating the ions towards a titanium-covered

copper target, shaped like a ‘V’. The incident deuterium atoms bond with the tita-

nium, then get hit by subsequent deuterium atoms streaming down onto the target,

producing He3 and a neutron (n), outlined by the reaction in Eq. 2.4.

H2 + H2 → He3 + n (2.4)

The neutrons produced by the generator are highly monoenergetic, with energies

of 2.45 ± .05 MeV, and exit the generator in all directions at a tunable rate that
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Figure 2.8: The difference between θLAB and θCM for neutrons that scatter from Xe in
the forward direction. The maximum difference is about .76%. ∆θ = θLAB−θCM

θCM
× 100

can reach as high as 108 neutrons per second. One can also temporally modulate

the rate of production by adjusting the ion source and level of ionization with the

generator’s magnetron. To minimize the radiation hazard to people and electronics

alike, shielding was placed around the generator while active. The shielding consisted

of a layer of lead, as well as several layers of borated-polyethylene to minimize the

neutron flux everywhere save for an opening near the tube(shown in Figure 2.7). A

flux of 108 neutrons would saturate the LUX detector, so for neutron calibration a flux

of 106 was used. While this sounds like a large rate, given the random directionality,

the distance, and everything in between the neutron generator and LUX, only a

small fraction of the neutrons actually make it into the central region of the detector

(around 15-20 per second).

As mentioned previously, the angle at which neutrons elastically scatter from a

xenon atom determines how much recoil energy is deposited on the xenon nucleus

in the interaction. This angle can be measured in the laboratory frame of reference

(LAB), but due to the large mass ratio between xenon and neutron, the center of mass

(CM) frame of reference can be used as an approximation that greatly simplifies

solving for the recoil energy. The CM frame of reference takes the center of mass

to be the origin of the coordinate system. Figure 2.8 shows the strength of that

approximation for the recoil energy range of interest in this thesis.
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The formula that relates the center of mass scattering angle, θCM , to the recoil

energy deposited on the atom, Enr,A, is given by Eq. 2.5 below, where Ein is the

incident neutron energy, and mn and mA are the masses of the neutron and the atom

respectively. Note that θCM is defined as the angle between the scattered neutron’s

altered path and the original line of motion in the CM frame.

Enr,A = Ein

[ 4mnmA

(mn +mA)2

]1− cos(θCM)

2
(2.5)

For completeness, the relationship between θLAB and θCM is given by Eq. 2.6:

θLAB = tan−1
[ sin(θCM)

mn/mA + cos(θCM)

]
(2.6)

With the position reconstruction capabilities of LUX, one can use the angle be-

tween scatters in double scatter events to calculate the recoil energy of the first scatter.

This is extremely useful for calibrating light signals coming from nuclear recoils in a

given energy range. James Verbus of Brown University performed a calibration for

sub 1 keV nuclear recoils using this technique.[27]

2.4 Dark Matter Directionality

As mentioned in Chapter 1, nearly all galaxies appear to have dark matter spread

throughout. One viable hypothesis is that the dark matter distribution is in the form

of an isotropic, spherical halo, with a Maxwell-Boltzmann velocity distribution that

peaks at ∼200 km/s. With this assumption, we can use our expectation for the mass

of WIMP’s (∼10 GeV/c2), together with the speed at which our solar system orbits

the center of the galaxy (∼230 km/s), to derive the expected flux of WIMP’s through

the earth. The exact number varies on the hypothesized dark matter distribution and

the mass of the WIMP candidate, but a reasonable expectation for the flux is on the

order of 104 or 105 particles/cm2/s.[29] Due to the motion of the earth around the

sun, there is an annular modulation to the dark matter flux. When the earth’s orbit is

aligned with the direction of the solar system’s path of transit through the galaxy, the

flux will be greater than when the orbit is in the opposite direction. This modulation

is on the order of a few percent, and other forms of direct detection experiments

(DAMA/LIBRA for example) are aiming to prove dark matter exists by picking up

this signal.

In addition to this annual modulation, the motion of the solar system through

the galaxy leads to a preferred direction of WIMP scatters in the detector’s frame of
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Figure 2.9: A drawing showing how the transition from the isotropic CM scattering
frame to the Solar System frame leads to scatters along the axis of incident WIMP’s.

reference. Statistical estimates demonstrate that one should expect an order of mag-

nitude more WIMP scatters along the axis of incident direction than perpendicular

to the axis of incident direction.[30] This effect is a product of the transition between

the galactic frame of reference and the comoving, solar system frame of reference.

Summarized in Figure 2.9, WIMP’s scatter isotropically in the frame of reference

where the center of mass is immobile at the origin. However, when the same scatters

are viewed in the solar system frame of reference, the added horizontal component

of velocity from the motion of the center of mass results in scattering angles that

preferentially converge along the axis of the incident WIMP. Therefore, if we could

discern the axial direction of a xenon recoil, we could use that knowledge to better

discriminate for WIMP recoils. This discriminatory feature is so powerful because

this directional behavior is specific to the precise orientation of the earth, the sun,

and the solar system with respect to the dark matter in the galaxy, which rules out

background events originating from terrestrial sources. If one were to observe a series

of WIMP-like scatters spread out in time with a directionality that is in line with

expectation, that would have enough statistical significance to claim the discovery of

dark matter.

The issue at present is that no dark matter experiment with a large target mass

> 1 kg has the necessary resolution to determine the axial direction in which target

nuclei scatter. In noble element scintillators like LUX, the best bet for resolving

this feature is if the S2 signal modulated discretely based on the direction of the

nuclear recoil. Interestingly, it turns out that we do have a basis for expecting an

anisotropy in the S2 signal based on the orientation of the scattered xenon nucleus.

The reasoning is closely tied to the level of recombination emission present in the
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S2 signal. Liquid xenon is dense, so when a xenon nucleus scatters, it collides with

more xenon to form a nuclear recoil track of excited and ionized atoms. The detailed

behavior of energy loss by ionization electrons along the nuclear recoil track relative

to the applied electric field, may modify the chance of recombination. The chance

of recombination should be lower when electrons are lifted from a recoil track into a

region of higher effective electric field. The size of the S2 signal would be therefore

be dependent on the angle between the xenon nuclear recoil track and the applied

electric field in the LUX detector (hence the title of the thesis).

This information gives rise to the following research question:

• Using the rationale above, can we measure a variance in the ionization yield

(S2) based on the direction of the xenon recoil track?

The objective of this thesis is to explore this question with the nuclear recoils from

a neutron calibration dataset. It is important to note that the size of the expected

variance in S2 is also dependent on the length of the xenon nuclear recoil track and

the strength of the electric field. Because xenon is heavy, the xenon nuclear recoil

track is short (on the order of µm). Therefore, the expected anisotropy may be

small, but even if no signal is seen, this measurement could inform the structure of

future experiments that intend to resolve this feature. In the words of the late, great,

Stephen Hawking:

No one undertakes research in physics with the intention of winning a prize. It is

the joy of discovering something no one knew before.

- Stephen Hawking
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Chapter 3

Nuclear Recoil Analysis

The dataset used for the analysis in this chapter spans 107.2 live-hours of D-D cal-

ibration data collected after LUX’s 2013 WIMP search run. In total, over 2 million

events were recorded and classified into a data structure for processing in Matlab. The

first step in the analysis was to place filters, or cuts on the initial dataset to isolate

the events of interest to us. These events had to have the following two fundamental

criteria:

• The events must be nuclear recoils involving neutrons from the D-D generator.

• The events must be double scatters, so we can measure the recoil energy and

calculate the trajectory of the xenon nucleus.

The code used to distinguish double scatter NR events and calculate their energy

was heavily based off of the low-energy nuclear recoil calibration done by James R.

Verbus at Brown University in 2016 (see [27]). The recoil energy was calculated by

measuring the angle between the two scattering vertices and then substituting that

into Eq. 2.5. In accordance with the low-energy nuclear recoil analysis, the following

cuts were placed on the initial dataset to ensure the energy purity of the incident

neutrons, the credibility of the double scatters, and the scarcity of background inter-

ference:

1. Neutron energy purity cuts:

• First scatter vertex > 15 cm from the neutron entry point. This cut elimi-

nates neutrons that lose energy from interactions with the detector mate-

rial around the conduit/detector junction, thus ensuring the monoenergetic

property of the neutron source.
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• First scatter vertex within 2.5 cm radius of the center of the neutron beam

center. This ensures the nuclear recoils are from D-D neutrons coming

through the conduit.

• Both scatter vertices within a detector fiducial radius of 21 cm. This is to

eliminate contamination from sources originating in the outer regions of

the xenon body.

• Electron drift time between 30 and 290 µs. This cut removes external

events from the surface and bottom edges of the liquid xenon volume.

Together with the first three energy purity cuts, this ensures that 97% of

events have incident energies within 6% of 2.45 MeV.

2. Position Resolution Cuts:

• Separation between scattering vertices > 5 cm. This cut places an upper

limit on the position reconstruction uncertainty. Scatters too close together

could be improperly ordered due to overlapping uncertainty ranges.

• Width of S2 pulse for a single interaction site < 775 ns. This cut is

intended to eliminate multiple scatter vertices that occur at similar heights,

resulting in conjoined S2 signals that can be misinterpreted as a single

scatter. The 775 ns width comes from simulation results that indicate

99% of true single interaction vertices are accepted while 69% of multiple

interaction vertices are rejected.

• Second S2 < 1500 phd. This cut is 95% effective at eliminating scatter ver-

tices that were misordered, and accepts 89% of correctly ordered scatter

vertices. 1500 phd corresponds to the expected maximum recoil energy of

a forward scatter ( 36 keV), and thus, with this cut we can rule out back

scatters that were misidentified as forward scatters by the LUX detec-

tor. The reasoning behind filtering for forward scatters shall be explained

shortly.

3. ER rejection:

• S1 < 300 phd. This cut eliminates ER events and accepts > 99% of double

scatters.

• S2 < 5000 phd. This cut rejects all 39.6 keV gamma rays from inelastic

neutrons scatters on Xe129 and accepts > 99% of double scatters.
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4. Other cuts:

• S2 > 36 phd. This is the low threshold established for identifying valid S2

events, set by the low number of accidental events that are likely interfere

with double scatter identification.

• Second S2 > 225 phd. This cut ensures 90% efficient identification of

double scatters for events with no S1 contribution from the first scatter.

The cut accepts 70% of double scatters before other cuts are applied.

These strict requirements whittle down the 2 million recorded events to 2544 clean

double scatters for further analysis.

3.1 Making the Measurement

The first stage of analysis was to verify the position and direction of the incident

neutron beam in order to ensure that the cuts mentioned previously are effective. To

do so, single scatter neutron events were isolated and plotted in XY and YZ slices

of the detector, shown in Figures 3.1a and 3.1b respectively. From these maps, the

neutron beam was determined to have an entry point of (7.1, -23.0, 16.1) cm in LUX

coordinates and an exit point of (2.9, 24.2, 17.0) cm. Due to the slight horizontal

misalignment of the neutron beam path, it is convenient to create a neutron beam

coordinate system, one that is parallel to the neutron beam with the origin at the

entry point. The relationship between the LUX coordinate system, x, y, z, and the

neutron coordinate system, x’, y’, z’, can be expressed as a linear transformation as

shown in Eq. 3.1. Note that z’ = z and θrot in this case is 5.1o.[
x

′

y
′

]
=

[
cos(θrot) −sin(θrot)
sin(θrot) cos(θrot)

] [
x− 7.1cm
y + 23.0cm

]
(3.1)

To ascertain the direction of the xenon recoil track with respect to the electric

field, we need to measure the angle between them, designated φ. Similar to the polar

angle in spherical coordinates, this angle will vary between 0o and 180o, where 0o

corresponds to a xenon recoil track that is directed vertically upward and anti-parallel

to the electric field, and 180o corresponds to a xenon recoil track directed downward,

parallel to the electric field. Note that the electric field lines stretch downward, but

for physical intuition it is useful to define φ in terms of the direction electrons will drift

(upward). To calculate φ, we can use the neutron recoil to calculate the direction of

the xenon recoil. Working in the CM frame, we invoke the conservation of momentum
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(a) XY map of single scatters in LUX. The horizontal entry point for the neutron beam is
(2.9, -23.0) cm and the exit point is (7.1, 24.2) cm.

(b) YZ map of single scatters in LUX. The vertical entry point for the neutron beam is at
16.1 cm (107.3 µs) and the exit point is at 17.0 cm (113.3 µs).

Figure 3.1: XY and YZ maps of single scatters in LUX.34



(a) Diagram of the scatter plane coordinate
system.

(b) Diagram defining the angles involved in
the scattering process.

Figure 3.2: Clarification of the scattering coordinate system and angles.

and traditional kinematics to derive a relationship between θCM and the angle through

which the xenon scatters, denoted ψCM . This relationship is summarized in Eq. 3.2:

ψCM =
π − θCM

2
(3.2)

With the understanding that there is a < 1% difference between θCM and θLAB,

we can make the approximation that ψLAB ≈ ψCM . We can then obtain the coor-

dinates of the xenon recoil track by rotating the neutron scatter vector in the plane

of scattering by the angle θLAB + ψLAB, as shown in Figure 3.2b. Eq. 3.3 defines a

vector basis for the plane of scattering comprised of three orthogonal vectors, ~n, ~w,

and ~r and their corresponding unit vectors n̂, ŵ, and r̂. In Eq. 3.3, the neutron entry

point, first scatter position, and second scatter position are denoted P0, P1, and P2

respectively. These angle and vector definitions are visualized in Figure 3.2.

~n = (P2− P1)n̂

~r =
[
~n× (P1− P0)

]
r̂

~w = (~n× ~r)ŵ (3.3)

To obtain the xenon nuclear recoil track orientation in LUX coordinates ( ~Xelux),

we first write the vector in terms of the scattering plane coordinates ( ~Xesc). Then,
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to convert ~Xesc into LUX coordinates we multiply by the inverse of the LUX-to-

scattering plane coordinate transformation matrix. This procedure is outlined in Eq

3.4:

~Xesc =

cos(ψ + θ)
sin(ψ + θ)

0


~Xelux =

n̂x n̂y n̂z
ŵx ŵy ŵz
r̂x r̂y r̂z

−1 ~Xesc (3.4)

Finally, to obtain φ we can rearrange the dot product formula between ~Xelux and

the unit vector (0, 0, 1) in LUX coordinates, which points directly upward. Let us

call this the ~E, as it is anti-parallel to the electric field and sets the orientation of φ.

Eq. 3.5 specifies how this is formulated:

φ = cos−1
[ ~Xelux · ~E
| ~Xelux|| ~E|

]
(3.5)

At this point it is important to note that we can approximate the electric field as

vertical in LUX due to extensive modeling carried out in [31]. Additionally, it must

be clarified that ~r is not necessarily parallel to ~E as it might seem from Figure 3.2.

~r is perpendicular to the plane of scattering, whereas ~E points to the liquid xenon

surface. This will become clear in later visualizations of the neutron scatters.

3.2 Selecting The Energy Range

We are interested in making a comparison between S2 and φ, but allowing for the

entire range of recoil energies would result in a wide range of expectation values for

S2, and would obscure any kind of subtle variation. Therefore, we must select a small,

fixed range of nuclear recoil energies over which to draw events from. There are three

factors that motivate our choice of energies:

1. The energies must be small enough to allow for a wide range of φ values.

2. The energies must be large enough to lengthen the xenon recoil track to where

anisotropies might be identifiable.

3. The energies must be large enough to adequately resolve the position of the first

scattering vertex.
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4. We desire an energy range that maximizes the number density of events.

The reasoning behind the first point is not immediately obvious. It turns out

that the neutron scattering angle, θ, places a lower limit on φ. This comes from the

condition that the momentum, ~p, of the nuclear recoil system must be conserved,

which means that the net momentum must remain the same before and after the

collision. The conservation of momentum in the lab frame is summarized in Eq. 3.6:

~p = m~v

mn~vn = mn~v
′

n +mA~v
′

A (3.6)

In this case, the initial velocity of the xenon atom is zero and therefore the neutron

initially carries all of the system’s momentum. If a neutron scarcely scrapes the

xenon nucleus, it will retain most of the forward momentum, imparting most of the

horizontal momentum to the xenon nucleus, which, as a result, will scatter nearly

perpendicularly.1 If the scattering plane is parallel to the electric field, and the

neutron scatters downwards, then the relationship between θ and φmin is given by

Eq. 3.7:

φmin =
π

2
− ψ =

θ

2
(3.7)

Subsequently, φmax = 180−φmin, and happens when the neutron scatters upwards.

At Eq. 3.7 shows, lower θ maximizes the range of φ. This effect, together with the

fact that the neutron source is perpendicular to the electric field, constrains us to

consider forward scatters with lower energies.

The second factor for considering in choosing an energy range is the length of the

xenon recoil track. The higher the recoil energy, the longer the recoil track, and if we

are constrained to considering forward scatters, a scattering angle of 90o would yield

the best results. This conflicts with what produces the greatest range of φ values,

and therefore a compromise must be made. The third factor for consideration helps

to find that balance.

The third factor to consider is the number density of scatter events as a function

of recoil energy. One might expect the number density to be uniform, but this is not

the case. To measure exactly how the neutron scattering cross section varies with

energy, we ran a simple simulation using the Geant4 simulation software with the

1The conservation of momentum is also the reason that scattered xenon and neutron vectors lie
a plane.
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(a) Schematic of neutron energy cross section
simulation geometry.

(b) Neutron differential scattering cross section.

Figure 3.3: Neutron scattering cross section simulation and results.
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G4NDL3.14 database. The simulation setup involved shooting 2.45 MeV neutrons at

a small volume of liquid xenon, and binning the resultant energies. The geometry of

the setup is shown in Figure 3.3a. Note that, the xenon volume is several order of

magnitudes smaller than the size of the detector sphere, which improves the resolution

of the scattering angles. There is also an extremely small egress hole to avoid recording

neutrons that do not scatter. To estimate how many neutrons we should run through

the small liquid xenon volume to get sufficient statistics, scatters we can do a quick

mean free path calculation. The mean free path (l) is the average distance a neutron

will travel before scattering in the liquid xenon, and is measured to be 12.6 cm.

Described by Eq. 3.8, The initial neutron flux (I0) exponentially decreases as a

function of the distance traveled (x) and the mean free path, leaving I remaining

neutrons.

I = I0e
−x/l

P (scatter) = 1− I

I0
(3.8)

Therefore, the probability a neutron scatters in the xenon volume is the com-

pliment of the fraction that remain, I/I0. Given the mean free path of 2.45 MeV

neutrons in xenon is 12.6 cm, approximately .79% of incoming neutrons are expected

to scatter in the 1 mm of liquid xenon in the simulation geometry. To obtain a

smooth distribution, 109 neutrons were shot through the geometry, yielding nearly 8

million scatters. After filtering out inelastic scatters, the remaining 5 million neutrons

were histogrammed according to their energy and plotted in Figure 3.3b. Figure 3.3b

shows that neutrons preferentially scatter forward (at lower scattering angles). This

bears relevance to the predicted energy spectrum of WIMP scatters that gives rise to

the forward/backward asymmetry, as discussed in Section 2.4.

The scattering angle range 45o < θ < 55o, was chosen to allow for a large range

of φ, a longer recoil track, and a high rate of neutron scatters. This angle range

corresponds to a recoil energy range of 10.765 keV < Enr < 15.675 keV. Figure 3.4

shows the remaining 126 double scatters after the energy cut was applied.

To obtain estimates for the expected S2 size given the recoil energy, we used the

Noble Element Simulation Technique (NEST), an advanced Monte Carlo developed

independently by the LUX collaboration to model scintillation processes in liquid

xenon.[32] Through this technique, we created an expectation region based on the

recoil energy range of the double scatters. Furthermore, using Eq. 3.7 we generated
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Figure 3.4: Plot showing the S2 bounding effect. The expectation region shown in red
corresponds to the anticipated S2 signal size from scatters in the recoil energy range
10.76 to 15.67 keV. The error bars on the data points come from Poisson fluctuation.
Also shown on the left-hand side is the global extraction efficiency error of 4%.
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upper bounds on the expected S2 size.2 As one can see in Figure 3.4, these upper

limits cut through the expectation range for the S2 size. Because we are looking for a

fluctuation about the expectation region, an abnormal absence of data points due to

this bounding effect could impede our analysis, and therefore we decided to narrow

our range of φ values from 30o to 150o in order to exclude this unwanted effect from

the expectation region.

In order to further reduce the spread in the expected S2 from the differing recoil

energies, we choose to normalize the S2 value by the recoil energy, giving us what is

commonly referred to in the literature as the ionization yield, Qy (measured in units

of electrons/keV). After performing this normalization and applying the φ restriction,

the final 109 double scatter events passing all cuts are plotted in Figure 3.5. Our first

attempt at qualitatively observing a φ-dependent fluctuation in Qy was to bin the

data in 10o bins and take the weighted average according to an inverse square weight

scheme outlined in Eq. 3.9.

〈
Qy
〉

=
ΣiwiQyi

Σwi

wi =
1

(∆Qyi)2
(3.9)

The uncertainty in Qy (∆Qy) comes from two sources of error. The first compo-

nent is random Poisson fluctuations in the measured S2 signal, therefore the magni-

tude of the uncertainty scales as the square root of the size (∆S2 =
√
S2). The second

source of uncertainty is the error associated with measuring the recoil energy. This

value is dependent on the position reconstruction uncertainty, and will be derived in

full later on.

Referencing Figure 3.5, one can see that there are several low lying Qy points

that are much more than three standard deviations (3σ) from the expectation range

(circled in red). As a result, the weighted averages are skewed downwards in the cor-

responding bins, convoluting any possible observed fluctuation. In order to continue

analyzing the data, we needed to ascertain where these extreme outliers were coming

from.

We came up with several different theories to test:

2 As an aside, it is important to clarify that the S2 size, as reported in Figure 3.4 and referenced
from here on out is the number of electrons ionized at the site of the scatter. This value is obtained
by taking the raw S2 measurement in units of phd, dividing by the single electron size (average #
of phd per electron), and then dividing by g2, the extraction efficiency.
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Figure 3.5: A plot of the 109 events passing all cuts. Low outlier Qy events are
circled in red, while high outlier Qy events are circled in green. The expectation
region corresponds to the recoil energy range of 10.76 to 15.67 keV. The weighted
average was calculated from Eq. 3.9, and ∆Qy was obtained using the methodology
outlined in Eq. 3.13 to Eq. 3.17. Note that ∆Qy incorporates the recoil energy
uncertainty, which changes the size of the error relative to the expectation region
from what it was in Figure 3.4. The global extraction efficiency error is negligible.
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1. Could the scatters have been misordered, and we are actually seeing a lower

energy second scatter? This was largely ruled out after plotting the S2’s of the

second scatter, as only two of the six events moved within 2σ of the expectation

region.

2. Was there anything apparently anomalous about the digitized set of pulses that

might insinuate these are not neutron scatters? In short, no. There was one

event that was caught towards the end of a data capture window that was

triggered by an unrelated event, but this could not explain the others.

3. Are the pulse widths abnormal? This could suggest suggest a contaminated

event. The pulse widths for both the first and second S2 signals were well

within range of every other data point in the data set, indicating that these

were not coincidental signals of any kind.

4. Could these events somehow be electromagnetic recoils? In order to answer this

question, we plotted the NR band (referenced in Sec. 2.2), and observed that

the ratio of the summed S2 signals to the S1 signals were consistent with nuclear

recoils. Interestingly, however, four of the six events had the lowest S1 signals

of the data set.

5. Could the incident neutrons have energies less than 2.45 MeV? This question

arose from the realization that most of the low-valuedQy points had the smallest

S1 signals in the data set. Given that the recoil energy of each scatter assumes

the incident neutron has 2.45 MeV of energy, a neutron with less energy could

have infiltrated the data set by scattering twice with an angle in the range

of interest. To estimate the chance of this happening, we ran a simulation

using the same Geant4 package but with a modified software that uses intricate

LUX geometry called LUXSim. This simulation ran 500,000 neutrons down

the collimator tube into the LUX volume. With the help of Graduate Student

Casey Rhyne, we applied all the relevant filters to the output and obtained a

histogram of the 284 events left after all cuts, plotted in Figure 3.6 3

Figure 3.6 shows 7 incident neutrons with energies substantially below the 2.45

MeV mark. This corresponds to approximately 3% of the population, subject to

Poisson fluctuation. As a result, this a plausible explanation for the where low-

Qy values in the data set come from. These neutrons must have scattered first in

3Note that the downsizing of the initial number of events was not as drastic as in the real data
from LUX, since the 2 million events from LUX included ER scatters and other background events.
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Figure 3.6: A histogram of incident neutron energies demonstrating a low energy tail.

the detector material, and then in the beam pipe, and once more with the desired

scattering angle.

In addition to the low lying Qy points, there are several high-valued Qy data

points that are > 3σ from the expectation region. These events, circled in green in

Figure 3.5, were put to the same tests as the low Qy outliers. The scatters did not

seem to be misordered, nor was there anything odd about the digitized pulses and

widths. While these three events are within the NR band, they appear at the top

and towards the higher end of the S1 range. This lead us to question whether the

high Qy events might be electromagnetic recoils that made their way into the dataset,

since from Figure 2.6 it can be seen that there is a slight overlap between the ER and

NR bands at higher S1. However, it is extraordinarily unlikely that these events are

electromagnetic recoils due to the very low mean free path of electromagnetic particles

in liquid xenon in the energy range of interest. In addition to these hypotheses, the

following theories were also discussed:

1. Could there be two scattering vertices close enough to pass the cut on pulse

width? Doing out the mean free path calculation, there is only a 1% chance of

this happening, and therefore that is not the most reasonable explanation for

the larger S2 signals.
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2. Is there any cross contamination from scatters close together that pass the 5 cm

separation cut? The separation between two out of the three outlier events is

much too great for there to be cross contamination.

3. Could the excess energy be coming from inelastic neutron scatters? Inelastic

neutrons scatters typically produce energies that are much higher than this

energy range, and are cut out by the filters on S1 and S2 sizes.

As of yet, there are no definitive explanations for the excessively high Qy values.

We decided that the best way to handle the extraneous points was through a likelihood

analysis with a custom probability density function (PDF) that reflects the source of

low energy incident neutrons. This analysis is described in detail in the next section.

3.3 Likelihood Analysis

The general methodology behind the likelihood analysis is to obtain a general metric

for how likely our data is to have come from a specific probability density function.

the PDF should be grounded in physical intuition, and provide a unique likelihood

value to each data point based on where it falls in the Qy distribution. The likelihood

analysis is similar to a χ2 diagnostic, but allows us greater flexibility in using non-

analytical probability functions and experimenting with different ways to treat the

uncertainty and contextualize our data. The goal in performing the likelihood analysis

is to test the likelihood of our null hypothesis, (that the PDF has no φ dependence)

against our alternate hypothesis (that the PDF does have φ dependence). Our initial

expectation was that our data would be clustered around a constant Qy value in a

Gaussian fashion, and we could use a normal distribution to describe the spread of

the data. However, due to the presence of what appear to be low energy neutrons,

we chose to modify that hypothesis by adding a 3% low-end tail to the PDF, which

we shall call a lower tail Gaussian function.4

Normal distributions are described by two parameters, the mean (µ) and the

standard deviation (σ). To get the best estimates for what those parameters might

be for the lower tail Gaussian that describes our Qy data, we first tried to do a

simple maximum likelihood estimation (MLE). A MLE explores a parameter space,

in this case µ-σ space, to find the parameter combination that maximizes the summed

likelihood from all the data points together. Figure 3.7 shows the best fits for three

4A Gaussian function is synonymous with a normal distribution.
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Figure 3.7: A näıve MLE for three different types of Gaussian PDF’s.

different Gaussian functions, solely treating the values of the data points themselves

and not their associated uncertainty.

It does not come as a surprise that the traditional Gaussian fit is very spread out,

since there are outlier events at the low end and the high end of the Qy spectrum.

The lower tail Gaussian is also very spread out due to the high-valued Qy points

that are a factor of two greater than the expected value, even though their associated

uncertainty is large enough to mitigate the egregious gap. The double tail Gaussian

fit is notably the best match to the data, but we have no physical basis with which to

justify a high Qy tail. Therefore, we decided to pursue the likelihood analysis with

the justifiable lower tail Gaussian function.

In order to improve the MLE fit of the lower tail Gaussian, we chose to apply

a weight scheme to the likelihood calculation that is inversely proportional to the

uncertainty of each point. The purpose of the weight scheme would be to reduce the

influence of points with large uncertainty (untrustworthy data). This would ideally

reduce the spread of the best fit function by disregarding high outliers with large

error. An intriguing way of understanding the effect of the weight scheme is to think

of the weights as the number density of data points. The greater the weight, the more

data points present in that location. Thus, the likelihood calculation should adhere
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to the values that have the greatest density of data points. The specific formula for

the weighted likelihood is shown in Eq. 3.10. Note that the likelihood values can

often be extremely large or small, and this is suppressed by taking the logarithm of

the probability.

L = ΣiwiLog10(Prob) (3.10)

Our initial approach was to use the same inverse square weights as with the

weighted average computation. However, when this was implemented, the extremely

low Qy values (with proportionally lower uncertainty) had associated weights that

dominated the overall likelihood. A review of the literature on the proper methodol-

ogy for implementing a weighted likelihood analysis led to the conclusion that there is

no specific weight scheme that is used. The emphasis on each data point either came

from abstract math, i.e. “belief functions,” or careful algorithmic work buried in black

box statistics functions used to work with particle physics data like RooFit (created

by CERN). In the interest of time, two simpler weight schemes will be explored in

this thesis that yield tenable likelihood distributions.

3.3.1 Weight Scheme Tradeoffs

The two different weights that were discussed at length were weights of 1/∆Qy and

dimensionless weights equal to ∆Qy/Qy. The rationale behind these two values

for the weights was that they both lessened the severity with which the likelihood

disproportionately tanked at low Qy. One point of discussion was whether the weights

should be unitless or not. One could argue that the weights should incorporate the

distance from the expectation region, and therefore scale with Qy. However, one

could also posit that the weights should be unitless so that there is no preference

for the Qy value itself and all the focus is on the uncertainty. These two options

for the weights will affect high Qy values differently. ∆Qy increases with the value

of the data point due to the Poisson contribution, therefore high Qy values will

likely have greater absolute uncertainty than lower Qy values. However, both high

and low Qy values may have the same uncertainty relative to the data point itself.

Consequentially, the choice of weight will affect these points differently. We do not

have an adequate answer as to which weight scheme is best, therefore we shall pursue

both weights tangentially throughout the rest of the analysis. The weighted MLE’s

for both versions of weights are shown in Figure 3.8 along with contour plots that

show where the maximum lies in µ-σ space.
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(a) The MLE best fit for weights of 1/∆Qy. (b) A contour plot showing the location of
the maximum likelihood in µ-σ space.

(c) The MLE best fit for weights of ∆Qy/Qy. (d) A contour plot showing the location of
the maximum likelihood in µ-σ space.

Figure 3.8: Summarizing Visualizations for MLE’s of both weight schemes.
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Examining the likelihood distribution for weights of 1/∆Qy, the lower tail Gaus-

sian fit appears to be improved from the un-weighted fit shown earlier. One positive

aspect of the fit is that the largest Qy data point has a very large uncertainty, and

therefore does not drastically impact the summed likelihood. One negative aspect of

the fit is that low-valued Qy points are ascribed more weight due to their low uncer-

tainty, and disproportionately lower the likelihood, even though the PDF incorporates

a low Qy background prediction. Looking at the ∆Qy/Qy weight scheme, the PDF

has more influence over the weights for high-valued Qy, and the fit is pulled apart

by the extrema. It is interesting to see that the low-valued Qy points still appear

to contribute a disproportionately negative amount to the overall likelihood in this

weighting scheme. This could a product of the incorrectly measured recoil energies,

resulting in lower error and higher weights. Overall, each weight scheme has its issues,

but they are still an improvement over the un-weighted lower tail Gaussian fit.

Summed log likelihood values of -90 or -21 do not hold any significance in and of

themselves. In order to contextualize these likelihoods, one must build a simulation

from first principles, and put fake data through the same analysis to obtain a summed

likelihood value. By running this simulation thousands of times, we can produce a

distribution of summed likelihood, and see where the real dataset falls within this

distribution. This is known as “likelihood normalization.” The setup and execution

of this procedure is covered in the next section.

3.3.2 Likelihood Normalization

To create a random Qy dataset, complete with randomized uncertainty, we need to

ultimately obtain the following five variables: S2, ∆S2, Enr, ∆Enr, and φ. These

variables will come from simulated, randomized double scatters that obey all of the

cuts discussed in earlier sections. Creating a Monte Carlo sophisticated enough to

do this was non-trivial, and the description of the build process will be broken down

into two parts.

3.3.2.1 Part 1: Enr, S2, ∆S2, and φ

The first step in generating random Qy values is to sample random recoil energies.

We sampled 97% of energies from the 10.76 to 15.67 keV range. The random sampling

from this range was informed by the neutron scattering cross section discussed earlier.

We fit a log-linear model to the scattering cross section histogram in the relevant

energy range, and used that to weight the random sampling. Then, we uniformly

sampled 3% of the recoil energies from the 0 to 10.76 keV energy range.
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Figure 3.9: NEST model showing relationship between S2 and Enr, as well as a set
of randomly sampled points.

To get random S2 values from the recoil energies, a high resolution NEST sim-

ulation was used to generate a spectrum of expectation values shown in Figure 3.9.

A lookup table was created from the NEST model to match each randomly sampled

recoil energy with its expected S2 signal. Note that this approach does not reflect

Poisson fluctuations in the S2 signal. This will be addressed later in the Monte Carlo.

Figure 3.9 shows that the most random samples are clustered around the intended

energy range as expected, with a few events in the low energy region.

∆S2 can be directly computed as
√

S2 with the S2 value obtained above. We

then randomly sampled φ from a uniform distribution between 30o and 150o. At this

stage, we have all but one random variable: ∆Enr

3.3.2.2 Part 2: ∆Enr

As mentioned previously, ∆Enr is dependent on the reconstruction position uncer-

tainty. The uncertainty for the depth of a collision is constant, but the x,y uncertainty

varies with the specific location in the LUX detector. Therefore, in order to complete

the faux data set, we need to simulate random scatter positions. Before simulating

any scatters, however, we replaced the randomized energies below 10.76 keV with

new randomized energies within the valid energy range. Through this method, we
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are taking the S2 from a low energy collision, but allowing the neutron to still scatter

at angles in the desired energy range, as they do in the real data set.

The first step in creating random double scatters was to choose uniformly random

neutron entry positions within a 2.5cm radius around the neutron tube entry coor-

dinates. These were then rotated into the plane perpendicular to the neutron beam

path, about an angle of 5.1o.

To obtain the first scatter position, the neutrons should propagate in the direction

of the beam path, adhering to mean free path. Eq. 3.8 was used to develop a PDF

from which a distance, D, was sampled, bearing in mind that the distance had to be

shorter than the length of the fiducial volume and place the first scatter more than

15 cm into the detector. The height of the first scatter position was taken to be the

same as the neutron entry height. To figure out the exact first scatter x,y coordinates,

we used the slope (m) of the neutron beam from the entry/exit coordinates, and re-

engineered the distance formula to get Eq. 3.11:

y = mx

x =
D√

m2 + 1
(3.11)

With the first scatter coordinates in hand, we used Eq. 2.5 to solve for θ based on

the random recoil energy. The next step was to obtain the second scatter coordinates

given φ and θ. This process was very involved. First, we used the mean free path

PDF once again to sample a distance the neutron would propagate after scattering,

making sure that the separation between scatters was greater than 5 cm and that the

second scatter position was not outside of the detector. For a given value of θ, any

number of second scatter positions are possible within a cone that emanates from the

first scatter vertex. Specifying φ then isolates two possible points in that cone where

the conditions are met, one in the -x direction and one in the +x direction. Therefore,

a 50/50 random chance was applied to determine which direction the neutron would

scatter in. In reality this is technically not a 50/50 chance, due to the asymmetrical

x-position of the neutron beam in LUX coordinates, but it is a good approximation

for the time being.

In order to obtain the specific coordinates of the second scatter, it is best to work

in the coordinate system of the neutron beam, x’, y’, and z’. This is so that we can

use a method involving direction cosines. Direction cosines give the position of a

vector in a specific coordinate system given the angles between the vector and each
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Figure 3.10: A graphic showing the angles referenced in Eq. 3.12.

one of the coordinate axes. Referencing Figure 3.10, we know two of the three axial

angles for the recoiling xenon, φ and ψ. Therefore, we can use the xenon vector

to find the coordinates of the neutron vector, the reverse of the procedure used to

calculate φ. For our purposes, we shall set the length of the xenon vector, ~Xe, to be

the propagation distance, D. Solving the system of equations outlined in Eq. 3.12

gives us the coordinates of the xenon vector with length D. We can then transform

these coordinates into the LUX frame, and rotate this vector across the scattering

plane by θ + ψ to get the coordinates of the neutron’s second scatter.

cos(φ) =
z′

D

cos(ψ) =
y′

D

cos(a) =
x′

D
cos2(φ) + cos2(ψ) + cos2(a) = 1

D =
√
x′2 + y′2 + z′2 (3.12)

Now we shall derive ∆Enr in full. ∆Enr is directly dependent on ∆θ, which, in turn

is based on both the position reconstruction uncertainty and the length of the vectors

involved. Longer vector lengths will lower ∆θ due to the decreased sensitivity of

the subtended angle on position shifts. The x-y position reconstruction uncertainties

52



were obtained through the Mercury algorithm, a LUX specific algorithm that operates

similarly to an advanced lookup table. As mentioned previously, the uncertainty in

z is constant, and taken to be .1 cm. We can represent each position in terms of its

uncertainty, i.e. ∆P0 = (δP0x, δP0y, δP0z). These position uncertainties are then

wrapped into two vectors of error ∆V 1 and ∆V 2, defined by Eq. 3.13:

∆V 1 =
√

∆P12 + ∆P02

∆V 2 =
√

∆P22 + ∆P12 (3.13)

The uncertainty in the scattering angle, ∆θ is then:

∆θ =

√(
∆V 1

∂θ

∂V 1

)2
+
(
∆V 2

∂θ

∂V 2

)2
(3.14)

Each ∂θ
∂V

term is obtained by differentiating Eq. 2.5 and invoking the chain rule

and the dot product. The results are presented in Eq. 3.15:

∂θ

∂V 1
=

−1√
1−

(
V 1·V 2
|V 1||V 2|

)2
[

V 2

|V 1||V 2|
− V 1(V 1 · V 2)

|V 1|3|V 2|

]
∂θ

∂V 2
=

−1√
1−

(
V 1·V 2
|V 1||V 2|

)2
[

V 1

|V 1||V 2|
− V 2(V 1 · V 2)

|V 1||V 2|3

]
(3.15)

The final step is to input ∆θ into Eq. 2.5 to obtain ∆Enr. This is shown in Eq.

3.16.

∆Enr =

√(
2∆EinmnmA

(mn +mA)2
(
1− cos(θ)

))2

+

(
2EinmnmA

(mn +mA)2
sin(θ)∆θ

)2

(3.16)

Note that in Eq. 3.16, the first part of the contribution to ∆Enr comes from the

small uncertainty in the incident energy of the neutrons, ∆Ein, which is taken to be

.05 MeV. After acquiring ∆Enr, we can finally compute the random uncertainty on

Qy, ∆Qy, summarized in Eq. 3.17.

∆Qy = Qy

√(
∆S2

S2

)2

+

(
∆Enr
Enr

)2

(3.17)

With ∆Enr in hand, the last step of the Monte Carlo was to apply random,

Gaussian fluctuations to each data point along their uncertainty. The purpose of this
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(a) A graphic of the randomized Qy data from the Monte Carlo. As we can
see, there are a number of extremely low Qy points as anticipated from the
low energy tail, while the rest of the data is clustered around the expectation
range with a Gaussian spread.

(b) A visualization of the randomized double scatters produced by the Monte
Carlo. The blue vectors connect P0 to P1, while the red vectors connect P1
to P2. The fiducial volume is plotted as the grey cylinder, while the plane
perpendicular to the neutron beam is shown in yellow.

Figure 3.11: Monte Carlo results.
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was to simulate the changes in observed signal size according to error margins. ∆S2

was then adjusted to reflect the Poisson error of the new Qy position. Diagnostics

show that the results from the Monte Carlo are relatively consistent with the real

data. In particular, the spread of the fake S2 and real S2 signal sizes are very similar.

An example of a fake data set created from the Monte Carlo is shown in Figure

3.11, along with a visualization of the scatters in the LUX volume. Furthermore, the

likelihood normalizations from running the Monte Carlo 1000 times for each type of

likelihood weight are shown in Figure 3.12;

Examining the likelihood normalizations from the Monte Carlo, it is not unrea-

sonable to assume that the real data comes from the hypothesized PDF’s. For the

1/∆Qy weight scheme, it looks as if there’s a 15% chance of obtaining data with a

worse likelihood than the real data. This value is acceptable. However, it is possible

that the Monte Carlo is slightly inaccurate, or that our model is not completely cor-

rect. The normalization for the ∆Qy/Qy weight scheme, on the other hand, shows

that the summed likelihood of the real data is better than 95% of simulated data.

This is on the borderline of indicating there is a systematic difference. Diagnostics

are being carried out to validate the likelihood normalizations.

3.3.3 Hypothesis Test Results

Hearkening back to our initial motivation for comparing S2 with φ, we were looking

to see if there was a discrepancy between xenon recoils that are parallel vs. perpen-

dicular to the electric field. Parallel scatters would fall closer to 0o or 180o φ, whereas

perpendicular scatters would lie in the 90o φ region. We therefore want to test alter-

nate hypotheses that modify the PDF function in the likelihood calculation to reflect

a φ dependence. More specifically, we want to shift the µ of the one-tailed Gaussian

by some function of φ. The three functions that we considered modifying the PDF

with were: Asin(φ), Acos(φ), and A cos(2φ) for an amplitude, A. To implement this

alternate hypothesis, we would introduce the amplitude as an extra free parameter

and perform a MLE on the real dataset with the alternate PDF forming the basis of

the likelihood calculation. If the likelihood of the alternate hypothesis turns out to

be an improvement on the null hypothesis (that there is no modulation in φ), then

we might have wind of an anisotropy.

The test we chose to carry out to determine whether the alternate hypothesis

should be accepted over the null hypothesis is the Wilk’s ratio test. Outlined in

Eq. 3.18, this test takes the ratio of the summed likelihoods of the null and alternate

hypotheses (L0 and LA), and maps it through the natural log function to yield a value
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(a) The likelihood normalization for weights of 1/∆Qy. The real data appears at
the 15% mark in the cumulative distribution.

(b) The likelihood normalization for weights of ∆Qy/Qy. The real data appears
at the 95% mark in the cumulative distribution.

Figure 3.12: Likelihood normalizations for weights of 1/∆Qy and ∆Qy/Qy.
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Figure 3.13: Alternate hypothesis functions.

that can be treated as a χ2 statistic with one degree of freedom. The χ2 statistic can

subsequently be converted into a p-value, and interpreted accordingly.

X = −2ln(
L0

LA
) (3.18)

The visual results for the MLE’s of both weight schemes are shown in Figure 3.14.

A summary table of the is included below that contains the chosen φ dependent func-

tions that maximized the likelihood and the corresponding p-values from performing

the χ2 diagnostic:

Alternate Hypothesis Summary
W = 1/∆Qy W = ∆Qy/Qy

Function p-value Function p-value
.717sin(φ) .9578 .098sin(φ) .9829
.130cos(φ) .9724 .118cos(φ) .9912
-.228cos(2φ) .9588 -.201cos(2φ) .9685

Before interpreting the results, we carried out several validation tests to give us

confidence that they are accurate. Since the sin(φ) and cos(2φ) functions have the

flexibility to form the same shape, we expect them to converge to the same optimal

configuration. We do see this happen in the W = 1/∆Qy scenario, but there is more

of a discrepancy in the W = ∆Qy/Qy case. This could indicate that the µ-σ-A

parameter space has multiple local maxima in the same region. To test this further,
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(a) Alternate hypothesis test for weights of 1/∆Qy.

(b) Alternate hypothesis test for weights of ∆Qy/Qy.

Figure 3.14: Alternate Hypothesis Tests
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Figure 3.15: Validation that the alternate hypothesis testing code is executed cor-
rectly.

we repeated the MLE with various initial positions in parameter space, and looked

to see whether they converged. This check demonstrated that there were indeed

multiple local maxima due to the relationship between µ and A. An increase in A,

counterbalanced by a decrease in µ, resulted in very similar likelihood values that

made the final functional form very sensitive to the initial input to the maximization

algorithm. One important validation was to pass a fake set of data through the

hypothesis testing to see if the code handles it correctly. This was done by generating

a series of 100 data points distributed normally about the actual mean value of Qy

with a smaller standard deviation of 0.5 electrons/keV. Then, the data was made to

vary sinusoidally in φ with a sufficiently large amplitude to where the dependence was

qualitatively visible. The points were given uniform error that scaled with the size.

Running the alternate hypothesis test with the ∆Qy/Qy weights, the maximization

algorithm detected the correct amplitude of the sine function with 95% confidence

(p-value of .05), as shown in Figure 3.15

The traditional interpretation of the p-value is that this it represents the percent-

age of events that are more extreme than the observed data if the null hypothesis

is true. In this context, it may be intuitive to think of the p-value as the amount

of coincidence between the null and alternate hypotheses. As can be seen from the

table above, all of the p-values are above 95%, which indicates that the alternate

hypotheses do not markedly improve the summed likelihood of the data.
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3.4 Conclusions and Further Work

From the results we can conclude that we did not observe any statistically significant

anisotropy in the S2 signal as a function of the angle between the xenon recoil track

and the electric field. This could be an important result in and of itself if all other

statistical biases are adequately constrained, since we could demonstrate that any

existing anisotropy is lower than our sensitivity threshold. However, we have not

been able to fully constrain the events in our dataset, due to the fact that there

are several events with high Qy that are above 3-σ from the mean. We did find a

physical justification for the low Qy outliers, though it is still possible that one of

the six identified events could have come from misordering the scattering vertices.

In fact, it’s possible that one of the events within 1-σ of the mean came from a

similar subdominant error. Therefore, the best way in which to improve the analysis

would be to get more data, which may be possible from relaxing one or more of the

filters placed on the dataset. One cut that could be relaxed is the separation between

scatters cut, which was originally put in place to set an upper limit on the recoil

energy uncertainty in the low recoil energy analysis. Additionally, we could relax one

or more of the neutron energy purity cuts if we accurately modeled the distribution

of low energy neutrons with intricate Monte Carlos. Instead of relaxing cuts, it may

be possible to use Monte Carlos to explore other aspects of the lower energy scatters

that could lead to a cut that would eliminate them from the data set entirely. For

example, four of the six low Qy events had the lowest S1 sizes. Perhaps a cut on the

minimum S1 size would be beneficial. All in all, there are unaccounted for events in

the dataset that impacted the likelihood analysis.

The likelihood analysis seemed to be an effective approach to work with the data,

and the alternate hypothesis validation showed that the analysis had ample scrutiny

to identify a trend in the simulated data. Even so, the weighted likelihood formulas

used in the analysis placed a disproportionate amount of weight on the low-end Qy

values. For weights of 1/∆Qy, this is because of the small uncertainty, whereas for

weights of ∆Qy/Qy, this arises from high relative uncertainty. Ascribing these data

points special treatment under the presumption that they are lower energy recoils is

irresponsible. The solution, instead, would be to modify the likelihood formula to

treat these points in a rational way, either through modifying the weight scheme, or

adding an extra term. The existence of outliers on both ends of the Qy spectrum

lead to a PDF function that did not fit the distribution as tightly as it may have

otherwise. This could have also resulted in a loss in resolution during the hypothesis
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testing. This could also have been reflected in the validation test using simulated data,

since there was a clear trend in an ideal dataset, but the confidence level was only

95%. It might be worth testing how the size of the uncertainty in the data affects

the p-value. To summarize, future work to improve the results presented in this

thesis could involve relaxing cuts to allow for more data, characterizing the outliers,

improving the behavior of the likelihood calculation, and exploring the relationship

between the uncertainty and the p-value metric.

Particle physics can sometimes seem like whack-a-mole in that attempting to con-

strain individual particle interactions is extraordinarily difficult. This results in messy

data that requires a high standard of statistical rigor to work with it. The benefit

to this is that particle astrophysicists develop an expertise in statistical modeling.

In particular, the statistics involved in WIMP search analysis is nothing short of

amazing. The fact that we have been able to create dark matter experiments at the

sensitivity level they are today is also amazing. We are able to isolate and scrutinize

the most fundamental constituents of our universe. The next decade will be exhilarat-

ing to behold, as direct detection experiments improve, new galaxies are discovered,

and more theories get tested. The universe may be expanding but our world is getting

smaller.
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