
Physical Amplification of Chemical Colorimetric Sensing
and a Transfer Matrix Analysis

Keegan Quigley
Advisor: Dr. Jimmy Xu

A thesis presented for the degree of
Bachelor of Science, Engineering Physics

Department of Physics
Brown University

May 3, 2018



Abstract

The development of the Transfer Matrix Method for electromagnetic and acoustic wave
propagation through multi-layered material proves useful for quantitative design, op-
timization, and analysis of photonic and acoustic devices. Its utility is demonstrated
in the exploration of structural coloration in colorimetric sensing, in which we use the
Transfer Matrix Method to simulate reflection spectra and color of a variety of color-
changing material structures. With the introduction of metrics “color-distance” and
“color-change amplification”, we explore the role that physical structure can play in
enhancing color-changes beyond what is currently achievable through chemical reac-
tions. We show that using the methods outlined, physical amplification of color-change
can lead to thinner reactive layers, thereby maximizing both response speed and sensi-
tivity.
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Chapter 1

The Transfer Matrix Method
(TMM)

The Transfer Matrix Method (TMM) is a computational method of describing the prop-
agation of waves through multi-layered media. It has been used extensively in the study
of optics, and can be used to study acoustics, as well. [1, 2, 3] The method uses a matrix
to describe a stack of materials through which waves propagate, yielding a translation
of fields from one side of the stack to the other. It provides a precise solution in cases
where infinite internal reflections in the popular alternative ray-optics approach may
make direct analytical solutions intractible.

Maxwell’s equations dictate continuity conditions that help us understand how elec-
tromagnetic waves transform across boundaries in dielectric material. When incident
light arrives at such a boundary, a portion of that light is reflected and a portion is
transmitted. Fresnel’s Equations, derived from Maxwell’s Equations and boundary con-
ditions, describe the reflection and transmission of electromagnetic waves across a layer
boundary[4].

When light is incident on a multi-layered stack of dielectric materials with more than
one boundary (Fig 1.1), the number of computations required to fully calculate the
reflected and transmitted waves becomes infinite due to internal reflections. Further-
more, these reflections and transmissions between boundaries can lead to constructive
or destructive interference of waves, depending on phase changes during wave propaga-
tion. While simple structures can be approximated with the use of Fresnel’s Equations,
keeping track of the phase of the wave and its reflections quickly becomes a challenging
computational problem with any more than two boundaries.

The Transfer Matrix Method turns to matrix multiplication to solve this complex prob-
lem. It uses a single matrix to describe an entire dielectric stack in one matrix, allowing
for a translation of forward and backward propagating electric field waves (E+ and E�,
respectively) across the multi-layered dielectric material. The electric field at the left
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boundary of the stack is denoted E whereas the electric field at the right boundary is
denoted E

0


E+

E�

�
= T


E

0
+

E

0
�

�
(1.1)

The transfer matrix T , describing the material and its e↵ect on electric fields, mul-
tiplies the electric field vector describing the electric fields immediately to the right of

Figure 1.1: Internal reflections of inci-
dent light in layered media make calcu-
lations of reflected light di�cult. The
Transfer Matrix Method o↵ers an ele-
gant solution to the problem.

the dielectric stack, to find the
electric fields immediately to the
left of the stack. This is how
the transfer matrix will be set up
for the remainder of the deriva-
tion. If we only consider re-
flections, the ratio of the two
field components at the left bound-
ary can be used to describe the
reflected wave, with E

0
� set to

zero.

Although the traditional use of
the TMM is for the analysis of elec-

tromagnetic wave reflections, the same method can be converted into use for acoustic
waves. Acoustic waves satisfy mathematically similar wave equations, leading to similar
boundary conditions and similar formulation of the transfer matrix. In the following,
the TMM is re-derived, instead of adopted from literature, for the benefit of arriving
at a more complete and detailed understanding and a self-contained reference.

1.1 Electromagnetic Transfer Matrix

1.1.1 Reflections at Boundaries (Fresnel’s Equations)

The derivation of the transfer matrix method begins with the electromagnetic boundary
conditions in the absence of free currents or charges.[4]

(i) ✏1E
?
1 = ✏2E

?
2 (iii) E

k
1 = E

k
2

(ii) B

?
1 = B

?
2 (iv)

1

µ1
B

k
1 =

1

µ2
B

k
2

These describe the relationship between electric and magnetic fields (both perpen-
dicular (?) and parallel (k) to the boundary ) on either side of a boundary . Considering
a monochromatic plane wave of angular frequency ! approaching the boundary from
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the left with normal incidence (in the ẑ direction), the incident (I) electric and magnetic
field waves, at time t = 0, are given by

Ẽ

I

(z, t) = Ẽ

I

e

i(kIz�!t)
B̃

I

(z, t) =
k

I

!

Ẽ

I

e

i(kIz�!t)

where Ẽ indicates that E can contain both complex and real components, as it absorbs
any initial phase � as Ẽ = Ee

i�. B̃

I

(z, t) is derived from Faraday’s Law, which states
r⇥ E = �@B

@t

, or put to use here:

B̃ =
k

!

(ẑ ⇥ Ẽ) (1.2)

This incident wave gives rise to reflected and transmitted waves at the boundary surface:

Ẽ

R

(z, t) = Ẽ

R

e

i(kRz�!t)
B̃

R

(z, t) =
k

R

!

Ẽ

R

e

i(kRz�!t)

Ẽ

T

(z, t) = Ẽ

T

e

i(kT z�!t)
B̃

T

(z, t) =
k

T

!

Ẽ

T

e

i(kT z�!t)

Recognizing that k

R

= �k

I

(from Snell’s Law), the boundary conditions (iii) and
(iv) can now be used to relate the reflected and transmitted waves to the incident
wave.[4] From (iii), which states that the parallel components of the electric field must
be equal across the interface:

Ẽ

I

+ Ẽ

R

= Ẽ

T

(1.3)

And from (iv):
k

I

µ1!
(Ẽ

I

� Ẽ

R

) =
k

T

µ2!
Ẽ

T

(1.4)

Together, Equations (1.3) and (1.4) establish the relationships between E

I

, E
R

and E

T

:

k

I

µ1!
(Ẽ

I

� Ẽ

R

) =
k

T

µ2!
(Ẽ

I

+ Ẽ

R

) (1.5)

k

I

µ1!
(2Ẽ

I

� Ẽ

T

) =
k

T

µ2!
Ẽ

T

(1.6)

We can simplify these equations by defining the index of refraction, n = ck

!

, a property
of the material through which the waves travel. The value of n has a dependence on
frequency !, and can be both real and complex valued, such that ñ(!) = n(!)+ i(!).
For a monochromatic plane wave of frequency !,

k

µ!

=

p
✏0µ0

µ

n(!)
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where c = 1p
✏0µ0

, the speed of light in a vacuum. We can define

� =
µ1n2

µ2n1
⇡ n2

n1

(as µ ⇡ µ0 for most materials) to easily express the relationships between incident,
reflected, and transmitted waves (Fresnel’s Equations).

Ẽ

R

=
⇣1� �

1 + �

⌘
Ẽ

I

(1.7)

Ẽ

T

=
⇣ 2

1 + �

⌘
Ẽ

I

(1.8)

These relate the complex amplitudes of the electric fields on either side of the boundary
during reflection and transmission.

The intensity of the fields can be derived from the time-averaged Poynting Vector S

(which describes the energy traveling in an electromagnetic wave), and Equation (1.2):

I = |S| = 1

µ

(E⇥B) =
1

2

p
✏0µ0

µ

n(!)|E|2 (1.9)

such that the reflection and transmission can be described in terms of their respective
intensities (relative to the incident wave)

I

R

I

I

=
⇣
Ẽ

R

Ẽ

I

⌘2

=
⇣1� �

1 + �

⌘2

(1.10)

I

T

I

I

⇡ n1

n2

⇣
Ẽ

T

Ẽ

I

⌘2

=
n1

n2

⇣ 2

1 + �

⌘2

(1.11)

Eqn.(1.10) describes the intensity of a reflection. That is, the fraction of energy in an
incident wave reflected at at the first boundary of the dielectric stack.

1.1.2 Multi-layered Material

To make the transfer matrix useful in calculating reflectance, we need to be able to
derive a transfer matrix equation of the form:


E+

E�

�
= T


E

0
+

0

�

This form is similar to Equation (1.1) with one minor di↵erence: the backward traveling
electric field on the right side (E 0

�) of the last layer of the dielectric stack has been set
to 0. This implies the physical equivalent of a multi-layered dielectric stack with light
incident on only the left side. A transmission through the right boundary is possible
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(E 0
+), as well as a reflection o↵ the left boundary, (E�), but no backward traveling wave

is incident on the stack. This allows for a measurement of the reflection coe�cient �
for an incident wave of any magnitude.

The Transfer Matrix must describe two processes: the reflection and transmission of
waves at boundaries, and the propagation of waves through layers of the dielectric
stack. To do this, the transfer matrix is broken into two types of matrices that can be
multiplied together to describe the full dielectric stack. The first type of matrix derived
will be a Propagation Matrix, denoted P , and the second will be a Boundary Matrix,
denoted M .

Throughout the derivation, we describe the electric and magnetic fields as a super-
position of waves traveling in the positive and negative ẑ directions, previously called
the forward and backward directions.

Ẽ(z, t) = Ẽ+e
i(kz�!t) + Ẽ�e

i(�kz�!t) (1.12)

B̃(z, t) =
k

!

[Ẽ+e
i(kz�!t) � Ẽ�e

i(kz�!t)] (1.13)

We only need to explore spatial dependence, however. At t = 0, (1.12) and (1.13)
become:

Ẽ(z) = Ẽ+e
ikz + Ẽ�e

�ikz

B̃(z) =
k

!

[Ẽ+e
ikz � Ẽ�e

�ikz]

1.1.3 Propagation Matrix

The propagation matrix P is the way that we can model propagation of an electric field
wave through a material of arbitrary thickness l. We can rewrite the expression of the
superimposed forward and backward traveling waves (1.12) in matrix form:

Ẽ(z) =


Ẽ+(z)
Ẽ�(z)

�

In this expression, the phase has once again been absorbed into the complex valued Ẽ.
These phases can also be described as

Ẽ+(z) = Ẽ+(0)e
ikz

Ẽ�(z) = Ẽ�(l)e
ik(l�z)

Focusing solely on the relative phases at either end of the layer, we can rewrite these
relations in matrix form:

Ẽ(l) =


Ẽ+(l)
Ẽ�(l)

�
=


e

ikl 0
0 e

�ikl

� 
Ẽ+(0)
Ẽ�(0)

�
(1.14)
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However, since the Transfer Matrix operates on the field at the rightmost boundary,
the propagation matrix should relate the field at z = 0 to the field at z = l.


Ẽ+(0)
Ẽ�(0)

�
=


e

�ikl 0
0 e

ikl

� 
Ẽ+(l)
Ẽ�(l)

�
(1.15)

The Propagation Matrix P is defined for a layer of depth l as

P =

"
e

�ik̃l 0

0 e

ik̃l

#
(1.16)

Note that the wavenumber k̃ has been changed to a complex value in Equation (1.16).
This accounts for the fact that the index of refraction ñ can be complex-valued, as
shown previously, and k̃ = ñ!

c

. The wavenumber up to this point has been referred to
as k for clarity, but now, it is important to clarify that it may include an imaginary
component, and the math will remain the same. If we substitute k̃ for k, we can see
how this might a↵ect our propagation matrix:

k =
n!

c

=) k̃ =
(n+ i)!

c

= k + i

0 (1.17)

Now, wavenumbers can also include an imaginary component 0. The imaginary com-
ponent multiplied by the imaginary unit in in the exponents of (1.16) yields real-valued
factors that alter the propagating waves. As shown, if ñ contains an imaginary compo-
nent, it manifests as an attenuation factor in the Propagation Matrix:

P =


e

(0�ik)l 0
0 e

(ik�

0)l

�
(1.18)

By including the imaginary component of k̃, we see how our propagation matrix also
takes care of absorption within linear dielectric media.

1.1.4 Boundary Matrix

While the propagation matrix describes the electric field wave’s interactions with layer
thicknesses, we also need to account for how the electric field behaves at boundaries
between layers in our stack. The boundary matrix is built on the same derivations that
were used previously in 1.1.1. Now we define a single boundary (Boundary 1-2) with
electric field Ẽ1 on the left side of the boundary and field Ẽ2 on the right side, along
with indices of refraction of the two dielectric materials, n1 and n2, respective to the
field indices.

The boundary conditions (iii) and (iv) inform us that the parallel components of the
electric fields and magnetic fields must be continuous across any boundary. Since we are
looking at normally incident waves, and the waves are transverse in nature, the electric
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and magnetic fields are parallel to the surface of the boundary, and these boundary
conditions apply directly in our setup. From electromagnetic boundary condition (iii)
and (iv), we find, respectively:

Ẽ1+ + Ẽ1� = Ẽ2+ + Ẽ2�

n1[Ẽ1+ � Ẽ1�] = n2[Ẽ2+ � Ẽ2�]

Some algebraic rearrangement can lead us from here to expressions for Ẽ1+ and Ẽ1�.
(Adding and subtracting the two equations above yields these relationships.)

Ẽ1+ =
1

2n1
[(n1 + n2)Ẽ2+ + (n1 � n2)Ẽ2�]

Ẽ1� =
1

2n1
[(n1 � n2)Ẽ2+ + (n1 + n2)Ẽ2�]

For the purposes of a Transfer Matrix, these are better expressed in factored matrix
form: 

Ẽ1+

Ẽ1�

�
=

n1 + n2

2n1


1 n1�n2

n1+n2
n1�n2
n1+n2

1

� 
Ẽ2+

Ẽ2�

�
(1.19)

It is more convenient to define the terms ⌧ and � to clean up the Boundary Matrix
notation.

⌧ =
2n1

n1 + n2

� =
n1 � n2

n1 + n2

Finally, the Boundary Matrix M can be written as

M =
1

⌧


1 �

� 1

�
(1.20)

This matrix, similar to (1.16), relates the fields on the right side of a boundary to
find the fields on the left side of that boundary. This is how our matrix will operate.
Now we have Propagation Matrix P and Boundary Matrix M relating the amplitude
of the fields across the layers and boundaries of a dielectric stack.

1.1.5 Transfer Matrix

Now, the Propagation and Boundary Matrices can be used to generalize the formation
of a Transfer Matrix. For a multi-layered dielectric media stack with N + 1 bound-
aries and N layers (see Figure 1.2), we can define Propagation Matrices through each
layer P

j

for j = 1, 2, ..., N and Boundary Matrices M

i,j

for i = 0, 1, 2, ..., N, and j =
1, 2, 3, ..., N + 1.
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To relate the fields on either end of the stack, we define the Transfer Matrix T

T = M0,1P1M1,2P2...PN�1MN,N+1

If we remove one matrix from T at a time, starting with M0,1, we can get a glimpse of
the electric fields within the dielectric stack at either side of any boundary, with each
of the matrices modeling light’s interaction with a specific feature of the material. All
together, the transfer matrix describes the total structure of the material, and models
light’s interaction with it.

Figure 1.2: A dielectric material stack, with elec-
tric field components E+, E�, E

0
+, and E

0
�. The

transfer matrix uses refractive indices n
i

and layer
thicknesses l

i

to relate the fields on either side of
the stack.

The entire transfer matrix will
describe, more specifically, the
relation between forward and
backward propagating electric
field waves on either side of the
dielectric stack. Using the nota-
tion E+,� to represent the elec-
tric field’s forward and backward
propagating components on the
left edge of the dielectric stack,
and E

0
+,� to represent the same

components of the electric field
on the right edge of the dielectric
stack:


E+

E�

�
= T


E

0
+

E

0
�

�
(1.21)

A particularly useful application
of the Transfer Matrix Method
is the calculation of reflectance
from a material. We can define

the reflection coe�cient as the ratio between the reflected and incident electric fields:

� =
E�

E+
(1.22)

Focusing on this use in particular, we can choose to set E

0
� to zero, modeling light

incident only from the left. Without a source on the right side, E 0
� = 0. By doing this,

we may choose an arbitrary value of E 0
+, as both E+ and E� will be a linear function

of E 0
+, and the reflection coe�cient is defined as the ratio between them.

The reflectance of a material is defined as the ratio of the intensities of the reflected
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and incident electric fields. Recalling (1.9), intensity is proportional to the square of
the electric field, and the refractive index of the material. Since both the reflected
and incident light are propagating through the same medium with the same refractive
index (the leftmost layer), the ratio of the intensities IR

II
depends only on the ratio of

the electric fields, squared.

I

R

I

I

=
⇣
E�

E+

⌘2

= �2 (1.23)

It follows that the reflectance �2 of the material for light of frequency ! takes on a
value between 0 and 1.

The usefulness of the transfer matrix will be elaborated on in Sections (II) and (III),
but it is important to reflect on the physical interpretation of what we have derived.
Our transfer matrix can be used to describe the intensity of reflection for light of a given
wavelength incident on a multi-layered stack of dielectric materials, each with a complex
refractive index that does not vary through a single layer. We have assumed normal
incidence of the waves on the stack, and we know that any oblique angle incidence
would change the results, since the optical path length through a single dielectric stack
is increased with angle of propagation. Oblique incidence would also require knowledge
of the polarization of incident light, since parallel and perpendicular polarizations will
reflect di↵erently. We have also assumed perfectly smooth surfaces, which lead to per-
fect reflection and transmission described by Fresnel’s Equations.

In practice, the TMM will only act as a model for an ideal material stack. Real man-
ufacturing methods and environmental conditions may produce imperfect boundaries
and non-homogeneous dielectric layers. In this way, the Transfer Matrix will provide an
approximation for a structure, but its results should be approached with caution. The
TMM approach o↵ers scalability, which can also be applied to a continuously varying
medium by discretizing the medium into thin slices.

1.2 Acoustic Equivalence

Given the established transfer matrix method of modeling reflections and transmissions
for electromagnetic waves, we should be able to perform similar computations for all
phenomena that have wave-like behavior. The wave-like nature of light cues us into its
usefulness for modeling other waves, like acoustic waves. Sound is the human response
to slight changes in pressure in the air around us. These pressure changes propagate as
acoustic waves. Like electric field waves, their velocity in a material depends on some
intrinsic property of the material. Similar to how the index of refraction could predict
the speed of light in a medium, density can predict the speed of acoustic waves in media
as well. A derivation of the reflection and transmission of sound at a boundary can
convince us that the transfer matrix may have similar utility in the domain of acoustics.
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1.2.1 Acoustic Reflection and Transmission

Sound propagates as small changes in pressure in gases, liquids, and solids. One of the
biggest di↵erences between propagation of light waves and sound waves is that sound
waves must have a medium through which to travel. This medium will always have an
intrinsic density and pressure, so we must model the waves that carry sound as small
changes in the intrinsic density and pressure.

P = P0 + p (Pressure) (1.24)

⇢ = ⇢0 + � (Density) (1.25)

where p ⌧ P0 and � ⌧ ⇢0. Changes in the density of a medium lead to changes
in the pressure of the medium, which create further changes in density, leading to the
phenomenon of waves. To derive this connection, we must first derive the acoustic wave
equation [5]

If we assume that pressure is some function of density P = f(⇢), then we can say,
with a first order Taylor expansion,

P0 + p = f(⇢0 + �) = f(⇢0) + �f

0(⇢0) (1.26)

Isolating the second term, we can re-express it as

p = �

⇣
dP

d⇢

⌘

⇢0

(1.27)

Now we introduce the first continuity condition: that the displacement of particles
disturbed by sound waves must be continuous. Succinctly, if the displacement of a
particle at position x is denoted ⇠(x), then it follows that

⇠(x+�x, t) = ⇠(x, t) +
@⇠

@x

�x (1.28)

Given this statement, we can describe changes in the density, as well. Changes in density
are also small, so we can express how the density change is related to the change in
displacement. Since we are focusing on all of these quantities in a single dimension, we
can identify that mass can be described as density times a distance. Conservation of
mass with changes in displacement and density gives us:

⇢0�x = ⇢(
@⇠

@x

�x+�x) (1.29)

⇢0 = (⇢0 + �)
@⇠

@x

+ ⇢0 + � (1.30)

Subtracting ⇢0 from both sides and remembering that � ⌧ ⇢0 we can arrive at an
expression for �

� = �⇢0
@⇠

@x

(1.31)
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Now we must add the second continuity condition. This condition follows from
Newton’s First Law, and states that pressure must also be a continuous function, since
the forces acting on every particle must be balanced. If a small mass of air ⇢0�x has
some acceleration related to its displacement as @

2
⇠

@t

2 , the force in the x direction is given
by

P (x, t) = ⇢0�x

@

2
⇠

@t

2
|
x

(1.32)

Given the second continuity condition, we can find that

P (x, t)� P (x+�x, t) = �@P

@x

�x = �@p

@x

�x (1.33)

with the last equivalence given by the logic that when P changes, P0 stays constant
and p varies. We can now say

⇢0
@

2
⇠

@t

2
= �@p

@x

(1.34)

Subbing in from equation (1.27), we find that

⇢0
@

2
⇠

@t

2
= �

⇣
dP

d⇢

⌘

⇢0

d�

dx

(1.35)

and then, using (1.31), we find

@

2
⇠

@t

2
=

⇣
dP

d⇢

⌘

⇢0

@

2
⇠

@x

2
(1.36)

By assuming that
�
dP

d⇢

�
0
= c

2 for c the speed of sound in a material, we have derived
a wave equation for sound,

@

2
⇠

@x

2
=

1

c

2

@

2
⇠

@t

2
(1.37)

With the wave equation in place, we can now refer back to the continuity conditions
for acoustic waves to study how they might behave at boundaries between materials.

⇠ = ⇠

0 (1.38)

p = p

0 (1.39)

That is to say changes in displacement, and changes in pressure are continuous func-
tions within the wave, and must therefore be continuous across boundaries as well. We
can relate pressure changes to displacement just as we were able to relate electric fields
to magnetic fields for the electromagnetic wave equations, as the two are intrinsically
connected in a similar way.

To build the wave equation for acoustic waves, we set
�
dP

d⇢

�
⇢0

= c

2. Referring back
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to equations (1.27) and (1.31), we can make similar substitutions, as they were funda-
mental to building our wave equation.

p = �

⇣
dP

d⇢

⌘

⇢0

= �⇢0c
2 @⇠

@x

(1.40)

Now we have expressions for both of our continuity conditions in terms of one
variable, ⇠. Equation (1.40) is the acoustic equivalent to equation (1.2). This allows
us to move forward quickly with the same analysis that we used in the electromagnetic
case. The incident, reflected, and transmitted waves at a boundary are given by:

⇠̃

I

(z, t) = ⇠̃

I0e
i(kIz�!t)

p̃

I

(z, t) = �ik

I

⇢c

2
⇠̃

I0e
i(kIz�!t)

⇠̃

R

(z, t) = ⇠̃

R0e
i(kRz�!t)

p̃

R

(z, t) = �ik

R

⇢c

2
⇠̃

R0e
i(kRz�!t)

⇠̃

T

(z, t) = ⇠̃

T0e
i(kT z�!t)

p̃

T

(z, t) = �ik

T

⇢c

2
⇠̃

T0e
i(kT z�!t)

For the pressure waves, replacing k by !

c

and ⇢ and c by ⇢

i

and c

i

is useful, as the
incident and reflected waves travel in the same medium, but in the opposite direction.

p̃

I

(z, t) = �i!⇢1c1⇠̃I0e
i(k1z�!t)

p̃

R

(z, t) = i!⇢1c1⇠̃R0e
i(�k1z�!t)

p̃

T

(z, t) = �i!⇢2c2⇠̃T0e
i(k2z�!t)

Applying boundary conditions (1.38) and (1.39), we find the following

⇠̃0I + ⇠̃0R = ⇠̃0T (1.41)

⇢1c1(⇠̃0I � ⇠̃0R) = ⇢2c2⇠̃0T (1.42)

.
By defining the specific impedance of a material Z to be

Z = ⇢c (1.43)

we find, through algebraic rearrangement, the acoustic equivalent to Fresnel’s Equa-
tions (1.7) and (1.8), in terms of specific impedance.

⇠0R =
Z1 � Z2

Z1 + Z2
⇠0I (1.44)

⇠0T =
2Z1

Z1 + Z2
⇠0I (1.45)

The ratio of the intensities defines the reflection and transmission. Intensity
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I =
1

2
⇢c⇠

2
!

2 (1.46)

leads to

I

R

I

I

=
⇠

2
0R

⇠

2
0I

=
⇣
Z1 � Z2

Z1 + Z2

⌘2

(1.47)

I

T

I

I

=
Z2

Z1

⇠

2
0T

⇠

2
0I

=
Z2

Z1

⇣ 2Z1

Z1 + Z2

⌘2

(1.48)

To develop the transfer matrix for acoustic reflections, we can follow the same logic
we used to develop the electromagnetic transfer matrix. It is once again useful to split
up the displacement wave into forward and backward traveling components, ⇠+ and ⇠�.

⇠̃(z, t) = ⇠̃+e
i(kz�!t) + ⇠̃�e

i(�kz�!t) (1.49)

We will look for an acoustic transfer matrix that models the system

⇠+

⇠�

�
= T

A


⇠

0
+

0

�

where ⇠0+,� denotes the displacement to the immediate right of the boundary, and ⇠+,�
denotes the displacement immediately to the left. Just as in the electromagnetic case,
we set E

0
� = 0 so that we are only calculating reflections. We can then populate

our transfer matrix with propagation and boundary matrices, just as we did in the
electromagnetic case.

1.2.2 Propagation Matrix

We can describe the spatial propagation of forward an backward propagating acoustic
waves through a layer of thickness l with the following formula:

⇠̃+(z) = ⇠̃+(0)e
ikz

⇠̃�(z) = ⇠̃�(l)e
ik(l�z)

This leads to the same propagation matrix that we found in equation (1.16).

⇠̃+(0)
⇠̃�(0)

�
=


e

�ikl 0
0 e

ikl

� 
⇠̃+(l)
⇠̃�(l)

�
(1.50)

P =


e

�ikl 0
0 e

ikl

�

This Propagation Matrix describes the propagation of the acoustic waves through a
medium of thickness l, in exactly the same way as the electric field propagation matrix
did. This is unsurprising, considering that the wave equations do not di↵er except for
the physical quantity that is oscillating in the wave.
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1.2.3 Boundary Matrix

Following an analogous approach to section 1.2.2, we begin with our continuity condi-
tions (1.38) and (1.39), and apply our new formulation of the displacement (1.49):

⇠̃+ + ⇠̃� = ⇠̃

0
+ + ⇠̃

0
�

Z1(⇠̃+ � ⇠̃�) = Z2(⇠̃
0
+ � ⇠̃

0
�)

Algebraic rearrangement leads to the following equation, in matrix form:


⇠̃+

⇠̃�

�
=

Z1 + Z2

2Z1


1 Z1�Z2

Z1+Z2
Z1�Z2
Z1+Z2

1

� 
⇠̃

0
+

⇠̃

0
�

�
(1.51)

This is also of the same form as the electromagnetic equivalent, with the specific
impedance Z substituted for index of refraction n. We might notice that the spe-
cific impedance and refractive index describe a similar property: how fast waves move
through the medium.

We can also simplify the equation above by reintroducing coe�cients ⌧ and �.

⌧ =
2Z1

Z1 + Z2
(1.52)

� =
Z1 � Z2

Z1 + Z2
(1.53)

With these definitions, we now can build the exact same boundary matrix as in the
electromagnetic case, with the only di↵erence being the formulation of ⌧ and �.

M =
1

⌧


1 �

� 1

�
(1.54)

This formulation allows for us to easily convert electric field wave propagation calcula-
tions into acoustic ones, as we construct our entire transfer matrix.

1.2.4 Transfer Matrix

To arrive at our final acoustic wave transfer matrix, we set up our structure the same
way as in the electromagnetic case, with a stack of materials N+1 layers thick, with
N borders. We are looking for the displacement on the left-most edge of the stack
as a function of the displacement on the right-most edge, so we will left multiply the
displacement on the right until we reach the left-most boundary.

T

A

= M1P1M2P2...PN�1MN
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The transfer matrix builds the relationship


⇠̃+

⇠̃�

�
= T

A


⇠̃

0
+

⇠̃

0
�

�
(1.55)

The transfer matrix accounts for all internal reflections and transmissions, leading to an
easy calculation which can describe the complex phenomenon of reflection and transition
within layered media. If we set the right incident wave ⇠̃

0
� to 0, we can simulate the

desired setup for our experiments, with sound incident on only the left edge of the stack,
propagating and reflecting through it. Similar to the case of electromagnetic reflection,
our reflection coe�cient is given by

� =
⇠̃�

⇠̃+

(1.56)

The ratio does not depend on any chosen value of ⇠̃0+, so its value can be set arbitrarily.
The reflectance of the incident wave is once again given by the ratio of the intensity of
the reflected wave to the incident wave.

I

R

I

I

= �2 =
⇣
⇠̃�

⇠̃+

⌘2

(1.57)

It is useful to reflect on the Acoustic Wave Transfer Matrix just as we did for the
Electromagnetic Wave Transfer Matrix, as our model describes only an ideal material
stack.

The Acoustic Wave TMM describes the reflection of normally incident sound waves
of a single frequency from a multi-layered material, where each layer of the material
consists of a homogenous density ⇢ and speed of sound c. The normal incidence of
the waves is important, as any oblique angle would produce a di↵erent acoustic path
length for the wave propagation. While we would not have to worry about polarization
of the wave like we did with light, since acoustic waves propagate longitudinally, we
would have to take into account di↵erent complications that arise from acoustic waves.
Specifically, for material solids, whose individual molecules are held together by bond-
ing, acoustic waves can produce vibrations in the material. These vibrations in spatially
finite structures could be coupled to otherwise orthogonal modes that can propagate
as surface waves, and can strongly interfere with TMM calculated reflections.[6] This
means that normal propagation must be imposed in experiments in order for models to
agree with experimental results.

Furthermore, we have again assumed a smooth surface for our reflections and transmis-
sions. Although this is a close approximation, it is not su�cient in every case. As such,
the transfer matrix should be used with knowledge of its usefulness and limitations.

15



Chapter 2

Methods of Structural Coloration
Enhancement in a Colorimetric
Sensing Material

Colorimetric sensing technology o↵ers the means for rapid, inexpensive, portable, always-
on, wearable, and reliable detection of chemicals in an environment. In visual colorime-
try, sensor materials produce an observable color-change at their surface in response to
the presence of environmental stimuli. Traditional colorimetric sensors have employed
the use of a chemically-reactive and relatively thick (order of microns) sensor mate-
rial to produce chemical coloration. As a reaction takes place, the chemical change
induces a color-change at the sensor surface, alerting an observer to the presence of the
environmental stimulus. Structural coloration is assessed for its potential or promise
in enhancing this color change. Here, we present methods for utilizing structural col-
oration for the improvement of colorimetric sensing materials, which may lead these
materials to faster response times, lower detection limits, and enhanced color-change.

Colorimetric sensors o↵er a simple yet e↵ective approach to the detection of chemi-
cals in an environment. With the use of a chemically-reactive material, chemical agents
are allowed to passively di↵use into the material, inducing a chemical reaction with sen-
sor materials. This change alters the material’s optical properties, inducing a change
in its reflection spectrum and observable color. Such technology has applications in the
detection of dangerous chemical toxins given its low power consumption, portability,
agent selectivity, and the intrinsic reactivity of the toxins.[7, 8] Both indicator papers
and reagent arrays can be created to test for a number of chemical agents at once,
widening the application of the technology further. [9, 7, 10] As the need for easily
deployable, low power colorimetric sensors grows, the design of the sensors and the
manipulation of color in chemical detection becomes more important.

Changes in the reactive surface’s absorption spectrum can be measured with spec-
troscopy, providing quantitative data about the presence of chemical agents.[11] A spec-
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trometer can measure slight changes in the shape of a spectrum, while a photodiode can
measure the fine changes at individual wavelengths. Both types of data can be useful in
the detection of specific stimuli. However, the spectroscopic measurement approach to
colorimetry can require bulky expensive equipment and an external power supply. The
human eye has its own spectral analysis capabilities, evident in our perception of color.
Colorimetric sensors that produce perceptible changes in observable surface color can
be just as useful to the detection of chemicals as those that produce spectroscopically
measureable changes, if not more so. A challenge in the case of visual colorimetry is
producing perceptible color changes through the reaction of a chemical agent with a
chemochromic reagent surface.

Existing techniques for colorimetric sensing have used chemical coloration to produce
visually and spectroscopically measureable changes at the sensing material surface af-
ter the adsorption of a chemical agent from the environment. [12, 13, 9, 7, 11, 14, 15]
Chemical coloration is central to colorimetry. The passive di↵usion of chemical agents
into chemochromic reagent surfaces (often a hydrogel-based compound) makes the de-
livery and detection of agents easy. [13, 12, 16] These surfaces can undergo a reaction
with the chemical agents, changing their optical properties, altering their absorption
and reflection spectra, and in turn, their color. If the reagent is chosen correctly, an
observable color-change can be elicited through this di↵usion and adsorption.

However, the utility of chemical coloration is limited—ranges in sensitivity make many
sensors unsuitable in environments other than those with high concentrations of chem-
ical agents. Additionally, the utility of chemical coloration in colorimetric sensing is
limited by the color-change response time, as di↵usion of the agent into the sensing
layer can take anywhere from seconds to many hours. [7, 11, 13]

Structural coloration has the potential to supplement chemical coloration by enhancing
the at-surface color-change of reactive materials, making colorimetric sensing technol-
ogy more suitable for qualitative assessments by the unaided human eye, as well as
providing more spectral contrast for spectroscopic measurements. Structural coloration
takes advantage of interference, di↵raction, and scattering to selectively interfere spe-
cific wavelengths of light, which can e↵ectively reflect light of a desirable color when
tuned in the visible range. Structural coloration is a phenomenon that is common in
nature—thin film and periodic structure interference is the cause of color in many in-
sects and birds, as well as in inorganic structures (Figure 2.1. [17]

Structure has already been hypothesized to improve the ability of colorimetric chemical
sensors to measure spectral changes under di↵erent environmental conditions. [18, 16]
Additionally, the use of photonic crystals has been shown to increase visible color-
changes in response to environmental stimuli through the introduction of a tuneable
structure. [19] A Fabry-Perot optical cavity consisting of an optically transparent di-
electric layer between a metal substrate and absorber layer has also been shown to be
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capable of producing tuneable structural coloration, similar to photonic crystals, but
simpler and more scalable.[20] It may also o↵er promise in enhancing visible colorimet-
ric sensing. In this study, we aim to show through computational simulation that a
combination of structural and chemical coloration can produce a desired amplification
of color-change in a chemical-sensing material structure.

Figure 2.1: An example of structural col-
oration in nature. Thin film interference
produces vibrant colors on the surface
of a soap bubble, as colors change with
film thickness. Fabry-Perot interference,
a similar phenomenon, is hypothesized to
augment chemical color changes in colori-
metric sensing material. (©User: Three-
twoone / Wikipedia Commons / CC-BY-
2.5)

Our approach to this challenge incorpo-
rates the use of an absorber-dielectric-
metal optical resonator structure, as de-
scribed by Oller et al., 2017, to maxi-
mize the possible color-change of the col-
orimetric sensing material during reac-
tion with a chemical agent. We chose
to focus our attention on the role that
structure can play in amplifying chem-
ical induced color-change. Therefore,
we chose a single chemochromic reagent
material to serve as the representative
model for traditional chemical coloration-
based colorimetric sensing systems. We
chose this material, the absorbing layer of
the resonant structure, to be a physical
entrapment of 4-(2-pyridylazo)resorcinol
(PAR) in sol-gel thin films through a base-
catalyzed process, a process which had
been previously studied. [21, 14] This
layer reacts with Cu(II) ions to produce
a noticable change in its absorption spec-
trum, the chemical-coloration basis for
our tests.

We chose to use silicon dioxide SiO2 as our optically transparent dielectric phaser layer.
This layer acts as the cavity space for resonance in the Fabry-Perot optical cavity. The
phaser layer adjusts the phase of the light waves propagating through the structure,
setting up interference at specific wavelengths. SiO2 is chemically inert in the presence
of Cu(II) ions, ensuring that its e↵ect on coloration is purely structural, and that it
does not interfere with the chemical coloration provided by the absorber layer. The
thickness of the transparent dielectric layer serves to interfere light of specific wave-
lengths. For the substrate, which completes the Fabry-Perot optical cavity structure,
we chose to experiment with two di↵erent materials: silicon (Si) and Aluminum (Al).
These substrates are both reflective and highly absorbent, ensuring that all light at the
surface of the PAR layer is reflected or absorbed, and cannot transmitted to or from
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the back side of the sample.

Color change amplifications may also lead to opportunities for faster and more sen-
sitive response to stimuli. With amplification from structural coloration, a colorimetric
sensing material can produce equal response given less stimulation, as the tuneable
Fabry-Perot optical cavity could be used to adjust amplitude of the color-change. With
amplification from such a cavity, similar color response can be produced with a thinner
absorber layer, lower stimulus concentrations, shorter exposure times, or any combina-
tion of the three.

In this study, we aimed to show the possibility of color-change amplification through
simulation. The Transfer Matrix Method (TMM) o↵ers a simple approach to the sim-
ulation and optimization of di↵erent potential colorimetric sensing structures. As was
shown in Chapter 1, the transfer matrix is useful in the determination of reflectance
intensity of monochromatic light o↵ a multi-layered dielectric stack. The TMM can per-
form calculations of reflection for a large number of layers quickly. Given a colorimetric
sensing structural design, we were able to use the TMM to simulate its reflectance
intensity at discrete wavelength intervals, producing the reflection spectrum of that
structure. From reflection spectra, we used color matching functions published by the
International Commission on Illumination (CIE) to map the spectral response to quan-
tified human color vision. Through the use of special color spaces, we were not only
able to digitally produce the expected color of various structures (as seen with normal
human vision), but also to quantify the perceptual di↵erence in surface color before
and after the PAR complexation reaction with Cu(II) ions.[22, 23] This quantification
of perceptual color di↵erence allowed us to explore the e↵ectiveness of di↵erent struc-
tures in amplifying color change tailored for direct human vision.

Structural coloration was shown to be a potentially powerful tool in augmenting chemi-
cal coloration, and color-change in colorimetric sensor systems. While we were confined
to make approximations in our approach to simulations that limited the extent to which
we could truly optimize the structure, the use of the PAR absorber as a representative
model for a colorimetric chemically-reactive material shows the merits of the use of the
TMM and color simulations in optimizing a structure.

2.1 Methods

2.1.1 Material Design

To test our hypothesis, that structural coloration from a Fabry Perot optical cavity
could produce an amplified color-change response from a colorimetric material, we chose
to apply the idea to an existing colorimetric sensing technology. With a chemical sens-
ing layer that had been previously been shown to have colorimetric sensing capabilities,
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we could explore the utility of a structurally enhanced colorimetric sensing material
without altering the chemical coloration of the material. Our choice of a physical
entrapment of PAR in sol-gel was chosen as a representative model for a colorimetric
system based on chemical coloration on which we could test the e↵ects of structure. [14]

The PAR would serve as the absorber layer in our absorber-phaser-substrate Fabry-
Perot optical cavity. However, we would also need a control structure against which to
test the e↵ects of structural coloration. While it’s impossible to eliminate the e↵ects
of structural coloration entirely from any material, the elimination of the cavity phaser
from the Fabry-Perot optical cavity removes resonance, making resonant interference
impossible. As such, a control structure was chosen to consist of a PAR layer directly
on top of a substrate.

(a) Control Structure (b) Colorimetric Resonator Structure

Figure 2.2: (a) A control structure consists of a metallic substrate beneath a chemically-
responsive absorber layer which, in the presence of a chemical agent, undergoes a reaction,
shifting its complex refractive index and with it, its reflected color. (b) In the proposed
structure, a dielectric resonating layer, referred to as a phaser layer, of thickness t

phaser

is inserted between the absorber (of thickness t

abs

) and the metallic substrate. The e↵ect
of the phaser is to produce structural coloration through phase interference, which can
amplify the changes in the reflection spectrum caused by the absorber layer, creating a
more noticeable color-change at surface.

PAR can serve as an optical sensor for the presence of Cu(II) ions. In a study by
Jerónimo et al., 2004, the PAR was immersed in a low concentration Cu(II) solution
(4 mg L

�1), and a PAR-Cu(II) complexation reaction was allowed to occur.[14] Its
absorption spectrum was recorded in the visible wavelengths before and after its im-
mersion. The formation of a PAR-Cu(II) complex within the sol-gel entrapment layer
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was shown to produce a change in the absorption spectrum of the film. The complex
formation led to a decrease in absorption in shorter wavelengths, a new absorption peak
around 550nm, and little change in absorption in wavelengths above 600nm. However,
the absorption of the complex remained relatively low (below 5%) at all wavelengths,
making it optically transparent. For a visually perceived pronounced color change, a
thick layer is needed in the absence of an amplification or enhancing mechanism

The reaction of the copper ions with the PAR produces a change that is characteristic
of any colorimetric sensing material. With design, any change in absorption spectrum
can be exploited so as to produce visual and spectroscopic changes in the presence of
the chemical agent. This makes PAR a good model for a colorimetric sensing mate-
rial, and convenient for us to use in our tests. Its properties are not assumed to lend
themselves to structural color-change amplification any better than other colorimetric
sensing materials.

Use of the TMM requires the thickness and complex refractive index of each dielec-
tric layer. The real part of the refractive index of our absorber layer, the sol-gel PAR
film, was estimated from estimates of the refractive index of electronic-grade silicon
dioxide, since sol-gel, after curing, has properties similar to that of a thin film of glass.
[24, 14, 25] The imaginary part of the refractive index of the sol-gel PAR film was
estimated from its absorption spectrum, before and after the complexation of Cu(II)
ions with the PAR immobilized in the sol-gel material. [14] While we were unable to
determine the precise refractive index of the material because of the great variance as-
sociated with the preparation process and conditions, these estimates provide us with a
model for a colorimetric, chemically reactive layer, with which we can probe the merits
of structural color amplification with the addition of a phaser layer, creating resonating
structure (Fig. 2.2b). With this goal in mind, the exact spectral e↵ects of chemical
coloration of material are secondary to the change that occurs in chemical coloration
upon reaction. In this light, the materials that we test here should be considered repre-
sentative models for colorimetric sensing materials, but the results, however, provide a
direct assessment of potential and a quantified comparison of a given sensing material
with and without the aid of resonant color-change amplification.

To produce structural coloration, which will amplify the chemical color changes from
the PAR absorber layer, we chose to experiment with the simplest Fabry-Perot res-
onating cavity option. Compared to other available options, it is the simplest and most
scalable, and can be readily incorporated as a coating layer of a large variety of mate-
rials. The planar structure treatment remains valid so long as the lateral dimensions
of the material are many times of the wavelengths of interest. This optically transpar-
ent, dielectric phaser layer would be tuneable by the thickness of the layer, as select
wavelength ranges can be either constructively or destructively interfered. We chose to
use silicon dioxide (SiO2) as the dielectric phaser because of its chemical inertness, low
refractive index, and availability. [25] It does not absorb in visible wavelengths due to
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its large optical bandgap ( 9eV), instead serving as the transparent optical cavity of
the Fabry-Perot structure.

The Fabry-Perot structure is completed with the addition of a substrate layer. The
substrate layers silicon and Aluminum were selected on the bases of high refractive
index, availability, and cost.[26, 10] We chose to test two di↵erent substrate layers to
test the e↵ect of substrate reflectivity on the surface color change. Aluminum is highly
reflective and bright white, while silicon is less reflective and dark gray, leading us to
expect a brighter color change from the Aluminum substrate material.

The color change due to the chemical reaction in the absorber layer is a caused by
a change in the reflection spectrum of the material. In the Fabry Perot structure, the
PAR absorber layer and substrate layer act as reflecting interfaces, creating a resonating
cavity which can serve to interfere incident light. We can utilize this structure to inter-
fere certain wavelengths, shaping the spectrum of light passing through the absorber
layer. If the spectrum of the resonating light is adjusted in a certain way by Fabry-
Perot interference, the absorption spectrum change could produce greater contrast in
the overall reflection spectrum of the material. For example, if blue wavelengths ex-
perience a large change in absorption after the reaction takes place, then destructively
interfering red wavelengths and/or constructively interfering blue wavelengths in the
phaser layer could serve to make the visual change in “blue-ness” of the material more
pronounced. This is the case we hypothesized for the PAR absorbing layer, where the
absorption spectrum changes most strongly in the blue region of the spectrum during
the reaction with Cu(II) ions.

While we can hypothesize about the e↵ect of interfering certain wavelengths on the
reflection spectrum of our material, the actual perception of color is complicated by
the human eye’s response to di↵erent wavelengths (Fig. 2.3), and the resulting change
in perceived color. Non-trivial solutions for Fabry-Perot resonant amplification may
exist, and would be almost impossible to consider analytically. To account for this, we
chose to develop computational methods for the determination of the color change of
a given material in the Fabry-Perot configuration. Such methods allow us to quantita-
tively assess all potential structural designs in our search for color-change amplification.
The findings substantatively deviate from the intuitive design guids based on the spec-
troscopically decompositional F-P cavity analysis, highlighting the spectroscopically
convoluted nature of human vision. They also provide definitive support to the no-
tion of color-change amplification by structural coloration and the utility of a di↵erent
measure of color-change: color distance.

2.1.2 Computational Methods

In Chapter 1, the use of the Transfer Matrix Method was focused on calculating the
reflectance of a monochromatic beam o↵ the surface of a multi-layered dielectric ma-
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terial. To be useful in calculating a spectral response, this calculation needed to be
repeated for many wavelengths covering the optical regime.

Using Matlab, reflectance was calculated for 1001 evenly spaced wavelengths from 390-
780nm, an interval width of �� = 0.389 nm. This width was chosen so as to provide
high resolution reflection spectrum data. In this way, we approximated white, incident
light to be made up of equal contributions from each of these wavelengths. In order to
ensure that incident light would either be absorbed or reflected (not transmitted), the
thickness of the substrate was defined as 1cm in simulations, far greater than its optical
thickness. (Fig. 2.3)

Refractive index ñ can be complex valued, as we recall from Section 1.1.3, but it also
takes on di↵erent values for di↵erent wavelengths. This somewhat complicated calcula-
tions, as we needed to know both the real and imaginary components of the refractive
index for every wavelength to be tested. Complex refractive indices were drawn from
previous studies on materials which covered the optical wavelengths. The data on re-
fractive indices across the optical wavelength range was interpolated onto query points
and tested using the TMM. For each wavelength reflectance test carried out by the
TMM Matlab code, the corresponding refractive indices for that wavelength were used
to model the material.

In order to quantify color change, we first needed a way to quantify color. The Transfer
Matrix Method produces a reflection spectrum, given an assumed perfect illuminant
with equal spectral intensity across all wavelengths. This uniform spectral intensity
assumption can be removed and replaced by solar spectrum to better correspond to the
in-field operation of colorimetric sensing. The reflection spectrum gives the percentage
of incident light reflected at each wavelength (the remaining light is absorbed by the
material). However, human vision does not sense all optical wavelengths uniformly.
Human vision roughly covers a range of wavelengths from 390-780nm, through the use
of three distinct cone cell photoreceptors within the retina. Each photoreceptor is sen-
sitive to a di↵erent range of wavelengths, generally regarded to cover the red, green,
and blue parts of the spectrum.[27] However, the intensity response of each cell is wave-
length specific.

With this visual system in mind, we sought to determine the human eye’s response
to an arbitrary reflection spectrum. A number of color spaces have been defined by the
International Commission on Illumination / Commission Internationale de l’Eclairage
(CIE) to serve di↵erent purposes in the quantification of color. The CIE 1931 color
matching functions specify how the cones in our eyes translate di↵erent wavelengths
into color. [22]. (Fig. 2.3) In this way the Transfer Matrix Method of simulating spec-
tral reflectance could be extended to simulate human perception of visible color. The
CIE1931 CIEXYZ space makes available a standard translation from a reflection spec-
trum to visual color. This color space utilizes three “color-matching functions”, which
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imitate the spectral sensitivity of each type of cone cell photoreceptor in the human
retina. These color-matching functions are defined by the CIE, and denoted x̄(�), ȳ(�),
and z̄(�).[22] The method for determining the the three coordinates of the color space,
X, Y, and Z, is defined for our purposes as follows:

X = k

X

�

R(�)x̄(�)�� (2.1)

Y = k

X

�

R(�)ȳ(�)�� (2.2)

Z = k

X

�

R(�)z̄(�)�� (2.3)

where R(�) is the reflection spectrum, and k = 1/
P

�

ȳ(�)��, a normalizing constant
to ensure that X, Y, and Z are all valued between 0 and 1.

The non-linear transformation of a reflection spectrum into the CIEXYZ color space
gives us a way to quantify the color that a person with normal vision would see when
looking at an arbitrary layered material. However, for the purposes of visual colorime-
try, one would be more interested in the color-change that a person would see when
looking at a material undergoing a reaction with a chemical agent. Euclidean distance
in the CIE (human perception) color space o↵ers a promising method for computing the
di↵erence between two colors, since the X, Y, and Z coordinates make up a Euclidean
space, but the CIEXYZ space was not developed with perceptual uniformity in mind.
Perceptual uniformity is the property of a color space that equal Euclidean distances
in the space correspond with equal di↵erences in perceived color.[28] Although two dis-
tances in the CIEXYZ space may be equal, they represent di↵erent shifts in perception.

CIELab is an alternative color space, developed with perceptual uniformity in mind.
The color space meets our requirement, that equal distances between points correspond
with equal di↵erences in color perception, and has been shown to be useful for color
reproduction on metallic substrates.[29, 30] In this color space, the three coordinates
L

⇤
, a

⇤
, and b

⇤ represent lightness, the red-green axis, and the yellow-blue axis respec-
tively. Color di↵erences d are defined between two points (L⇤

1, a
⇤
1, b

⇤
1) and (L⇤

2, a
⇤
2, b

⇤
2) as

d =
p

(L⇤
1 � L

⇤
2)

2 + (a⇤1 � a

⇤
2)

2 + (b⇤1 � b

⇤
2)

2 (2.4)

To use this color space, we transformed color from the CIEXYZ color space to the
CIELab color space using the transformations described by the CIE. [23] The CIELab
space is widely-used, so software such as Adobe Photoshop can be used to reproduce
the color visually (as was done and labeled in some figures of this thesis).

The quantification of color in this way allows us to holistically describe the change
in the reflection spectrum that occurs in the presence of the chemical agent, based on
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the human eye’s response to that change. A measurement of color di↵erence using
CIELab is equivalent to a measurement of the perceptual color change that a person
with normal vision would observe at a material’s surface. Furthermore, calculation of
color using the CIELab coordinate system makes it easy to simulate the physical color
that will be observable on the surface. By applying these two color spaces in our sim-
ulations, we can e↵ectively quantify and visualize the color of the colorimetric sensing
material before the reaction with Cu(II), after the reaction, and the perceived di↵erence
between the two.

2.1.3 Methods of Optimization

Figure 2.3: Reflectance and Human Vision
An example reflectance spectrum, R(�), calcu-
lated by the TMM for a 100nm layer of SiO2

on top of an Al substrate. Also plotted are
the three color matching functions (x̄(�), ȳ(�),
and z̄(�)) defined by the CIE in 1931, which
correspond with each cone’s intensity normal-
ized wavelength sensitivity, and transform the
spectrum into the CIEXYZ color space.

With the tools that have been devel-
oped, we can run simulations to optimize
the performance of an absorber-phaser-
substrate colorimetric sensing structural
design. We can measure the perfor-
mance of a candidate structure in a
number of ways. The structure’s per-
formance could be assessed by the re-
sponse time of chemicals to the ab-
sorbing layer (yielding the fastest color-
change response). The performance
could also be measured by the chem-
ical agent concentration that yields a
perceivable color change. In this
work, however, we are looking to
see what kind of color-change ampli-
fication is possible with the addition
of a phaser layer, so we will fo-
cus our simulations solely on the per-
formance of the material in this re-
gard.

In its nature, a color-changing sensor is
meant to undergo a color change, so it is
this metric which we will attempt to op-
timize, using the quantitative techniques
described in the previous section. The
metric d (color di↵erence) represents the
Euclidean distance between two colors in the CIELab color space.

We have already determined the materials which we will use in the experiments, so
all that is left to optimize in this case is the physical dimensions of the material. We
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have seen that by varying thickness of the phaser layer, di↵erent colors can be pro-
duced at the surface, a result of structural coloration. We also have outlined the goal
of “shaping” the spectrum of available light through use of the phaser layer, such that
the absorber layer absorption changes yield higher-contrast spectral reflectance changes
from the structure as a whole. Thus, we should aim to vary the thickness of the resonant
phaser layer t

phaser

such that we find thicknesses which induce structural color-change
amplification.

However, it is possible that the thickness of the absorber layer (t
abs

) will play a role in
the performance of a sensing structure. The thickness of the absorber has two possible
e↵ects on the performance of the device: the absorber in its nature absorbs light, so the
a thicker absorber layer means greater absorption, but it also o↵ers the opportunity for
interference in a similar way that the phaser layer does. Sol-gel films on top of SiO2

produce thin film interference, and for this reason, have been the subject of study in
anti-reflective coatings.[31] If this is the case for our PAR layer, its thickness will shape
the spectrum of available light for absorption, just as the resonating layer does. We may
even consider the likely case that the certain thicknesses of the absorber layer, without
the addition of a resonating phaser layer, can produce structural color and possibly a
larger color-change.

The manufacture of samples to test a variety of absorber and resonating phaser thick-
nesses (t

abs

and t

phaser

) would be expensive and time-consuming, but with the simulation
tools developed, the potential of a multitude of structures can be assessed at once. For
tests of colorimetric sensor systems, we varied the absorber layer thickness t

abs

from
0-500 nm and the phaser layer thickness t

phaser

from 0-400 nm, both at 5 nm intervals.
All combinations of absorber and resonating phaser thicknesses were simulated, giving
us an idea of how the color change responds to the addition of a phaser layer for various
absorber thicknesses. In addition, two di↵erent substrates were used, Si and Al, to see
how color-change amplification would be a↵ected by reflectivity of the substrate.

To study the amplification of a color-change by use of a phaser layer, it also proves
necessary to define a metric for that amplification. The reference for amplification was
chosen to be the Euclidean color di↵erence of the reaction without the addition of a res-
onating phaser layer (i.e. t

phaser

= 0), called d

⇤
tabs

. This reference could also be regarded
as the “control” that represents the conventional colorimetric sensing approach. If a
structure with the same t

abs

, and some non-zero t

phaser

has a Euclidean color di↵erence
of the reaction d

tabs
(t

phaser

), then the amplification, A
tabs

(t
phaser

) is defined to be

A

tabs
(t

phaser

) = 10 ⇤ log
⇣
d

tabs
(t

phaser

)

d

⇤
tabs

⌘
(2.5)

This metric is designed to help study the usefulness of a resonating layer in ampli-
fying color-change, in the case of a particular thickness of the absorber layer, t

abs

.
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In engineering practice, the optimization of a sensor system is a balance between the
material selection and physical dimensions. For certain materials, only certain color
changes are possible, and so the thicknesses should be arranged in a way that amplifies
those changes. Similarly, if thickness is a design and manufacturing constraint, di↵erent
materials may need to be substituted to amplify color changes in the way we desire.
The physical parameters inform the materials, and vice versa. For the purposes of
assessing the potential of structural amplification of color-change and the usefulness of
the quantification of color-change, however, are constrain the materials to those that
we have described, and allow the thicknesses to vary freely, seeing what kind of color-
change amplification is possible for an arbitrary but representative colorimetric sensing
system.

2.2 Results

2.2.1 TMM and Reflection Spectra Validation

The use of the Transfer Matrix Method to calculate color for colorimetric sensing ma-
terial structures relies on their ability to calculate reflection spectra. This is the fun-
damental purpose for the transfer matrix in these experiments, so the validation of the
Transfer Matrix Method and its implementation in computational code in calculating
reflection spectra is important. To do this, we experimented with two of the materi-
als which we used in the simulation of colorimetric sensing structures: silicon dioxide
(SiO2) and Silicon. The reflectance spectra of two di↵erent test samples was and then
compared to the reflection spectra calculated using the TMM. The two test samples
were 100nm thermally grown SiO2 on a Silicon wafer, and 300nm thermally grown
SiO2 on a Silicon wafer. The tests were conducted using a reflection spectrometer at
8� incidence angle, so the incident angle in transfer matrix calculations was also set to 8�.

The reflectance spectra measured for these two test samples correspond well with the
reflectance spectra calculated using the TMM, with only small di↵erences across op-
tical wavelengths (Fig. 2.4), which is expected given the perfect surface and interface
assumed in calculation, and the however small but inevitable deviation in material
constants between the actual materials and the computational ones. Although other
factors, like the use of exact optical properties corresponding with the actual materials,
could a↵ect the use of the transfer matrix, the primary purpose of this study is to
explore the possibility of color amplification using phaser structures, a characteristic
that can still be studied with imperfect modeling of each material’s complex refractive
indices and dimensions.
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Figure 2.4: Reflection spectra for the two test samples (SiO2 layer on a Si
substrate) used to validate the TMM reflection spectrum calculations. Solid
lines indicate measured spectra, and dotted lines indicate spectra simulated
using the TMM.

2.2.2 Structurally Altered Color-Change

Turning to the study of the absorber-phaser-substrate colorimetric sensing materials,
the e↵ect of structural color in a reaction can be observed with the use of a chromatic-
ity diagram for a single absorber thickness, before and after the PAR reaction with
Cu(II) ions (Fig. 2.5). Chromaticity diagrams are derived from the x and y coordi-
nates CIExyY color space, easily transformed from the CIEXYZ space:

x =
X

X + Y + Z

(2.6)

y =
Y

X + Y + Z

(2.7)

The chromaticity diagram allows us to see changes in the chromaticity of the colors
produced in simulations, a quality of color independent of its lightness. These diagrams
are useful in studying structural color changes that are induced by changing t

phaser

.
The chromaticity diagrams show that the structure of the material, namely the

thickness of the phaser layer, plays a role in both the color produced and the color
change during the reaction. The curves on the two chromaticity diagrams, called color
gamuts, have di↵erent shapes because of the reaction of PAR with the Cu(II) ions, but
the actual individual gamuts are determined by the e↵ect that a phaser layer has on
chromaticity. Evidently, structure can alter color-change in colorimetric materials.
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(a) Before Reaction (b) After Reaction

Figure 2.5: Chromaticity changes for a PAR-SiO2-Si colorimetric sensing material structure,
with t

abs

= 25nm. The points ⇤ on each diagram indicate the chromaticity with a particular
t

phaser

As the phaser (SiO2) thickness increases (indicated by !), the color change between
the diagrams changes, because of the e↵ects of structural color. The true color (from CIELab
color space) is displayed at the top of each diagram. Following the “path” that color takes
as phaser thickness increases on the chromaticity diagram, the corresponding true CIELab
color at each point ⇤ is reproduced in the individual panels at the top of the diagram.
Comparing (a) and (b), we can see that the path that color takes di↵ers significantly before
and after the reaction occurs. The point ⇤ corresponding with the greatest distance between
the paths is colored red, and it is this point which constitutes the greatest color-change for
this particular set of parameters.
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Figure 2.6: True colors produced by holding absorber thickness at 25nm, and
varying resonating phaser (SiO2) thickness from 0 to 100 nm, as in Figure
2.5. The red box indicates maximum color change between the two reaction
stages (60nm SiO2), as determined by Equation (2.4) for color distance.

Looking closer at the true colors produced by varying the thickness of the SiO2 before
and after the reaction (Fig. 2.6), we see that for t

abs

= 25nm, the maximum color change
occurs when t

phaser

= 60nm, as determined through Eq. (2.4). Qualitatively, the color
change also appears minimal without a phaser layer (t

phaser

= 0nm), but grows into a
more noticeable change t

phaser

increases.

2.2.3 Visual Colorimetric Sensor Simulations

In simulations, we allowed the thickness of a phaser layer to vary from 0-400nm for
each thickness of the absorber (PAR) layer, from 0-500nm. The thicknesses were taken
at intervals of 5nm, giving a resolution in results fine enough to determine what the
optimal dimensions of the material would be, but simulating large enough ranges to
see large-scale trends in the results. The PAR absorber layer served as a representative
model for a colorimetric color-change material through chemical coloration. The PAR’s
chemical coloration does not produce a particularly pronounced or visually impressive
color-change—but its properties make it an easy and safe material to use in the labo-
ratory for exploration of a color-changing structure.

The first structure studied was PAR-SiO2-Si. Figure 2.7 shows the true colors of the
colorimetric sensing material with ranges of thicknesses t

abs

and t

phaser

, before and after
the reaction with Cu(II) takes place. The simulated colors show the visual appearance
of the material before and after the reaction, giving us a qualitative measurement of our
perception of color changes at specific absorber and phaser thicknesses. For example,
at t

abs

= 50nm, t
phaser

= 200nm, the color of the material is light purple before the
reaction, and yellow after the reaction takes place. We can observe visual color changes
in this way.
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(a) Before Reaction (b) After Reaction

Figure 2.7: PAR-SiO2-Si Color Change. These diagrams show the expected color of
the model colorimetric sensing material with a silicon substrate before (a) and after
(b) a complexation reaction of the Cu(II) ions, for a range of thicknesses t

abs

and
t

phaser

. The colors displayed are the expected color of the material for each pair of
physical dimensions.

Alternatively, we can use quantitative methods established in the previous sections
to assess the color change amplitude in Figure 2.7. The first quantitative method is the
determination of d, the color di↵erence, for each structure (Figure 2.8a). This provides
a magnitude of the change in color, allowing us to “measure” the perceived change at
the surface of the colorimetric material, without regard to the visual color before and
after the reaction. The second method is the determination of A, the amplitude of
the color change for each phaser thickness, compared to the color change without the
presence of the phaser layer (Figure 2.8b). This allows us to directly compare the color
change for a structure with a phaser layer of thickness t

phaser

to the same structure
without a phaser.
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(a) Color Di↵erence (b) Color Amplification

Figure 2.8: PAR-SiO2-Si Color Di↵erence (a) is a quantitative metric that corre-
sponds with the perceptible change in the material’s color. Greater color change
is indicated by higher color di↵erence (white). Color Amplification (b) shows the
isolated color di↵erence amplification e↵ect of adding a phaser layer to an absorber
layer of thickness t

abs

. The amplification (Eq. (2.5)) compares a physical dimension
coordinate pair (t

abs

, t
phaser

) to a reference coordinate of t
phaser

= 0. Positive ampli-
fication indicates an increase in color di↵erence (yellow) while negative amplification
indicates a decrease (blue). See Fig. 2.2 for visualization of material structures.

The same color change visualization is applied to a di↵erent structure: the same
PAR absorber layer on a SiO2 phaser, but this time, with an aluminum substrate (Figs.
2.9 and 2.10). The appearance of brighter colors in Fig. 2.9 is confirmed by the mean
lightness (CIELab coordinate L) over all simulated structures. The mean lightness for
structures with a Si substrate is L = 37 before the reaction and L = 40 after, while the
mean lightness for structures with an Al substrate is L = 60 both before and after the
reaction.
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(a) Before Reaction (b) After Reaction

Figure 2.9: PAR-SiO2-Al Color Change. These diagrams show the observable color
of the colorimetric material with an Al substrate before (a) and after (b) a complex-
ation reaction of the Cu(II) ions with the PAR absorber layer.

(a) Color Di↵erence (b) Color Amplification

Figure 2.10: PAR-SiO2-Al Color Di↵erence (a) and Amplification (b). Note that
the color scales for both figures have been adjusted from Fig. 2.8, as the magnitude
of the maximum color di↵erences is smaller than it is for a Si substrate structure.
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Brighter colors do not necessarily yield a stronger color-change, however. Comparing
the color changes in the two di↵erent materials simulated, we identify the following
points of maximum color change:

Figure 2.11: Structures of Greatest Color Di↵erence. For each of the
absorber-phaser-substrate materials, a di↵erent structure of greatest color
di↵erence exists. These structures are represented here, with their true col-
ors and the CIELab distance d between the colors also highlighted.

The greatest color change, according to the CIELab color di↵erence (d), is the
change that takes place in the PAR-SiO2-Si structure, with dimensions t

abs

= 95nm,
t

phaser

= 10nm.

However, it can also be instructive to determine the e↵ectiveness of the phaser in
amplifying color change. From Eq. (2.5) and the Figures 2.8b and 2.10b, we can find
the points of maximum color amplification in the structures. These points correspond
with the thicknesses of t

abs

that would most benefit from the addition of a phaser layer,
and also give the thickness of that optimal phaser.

Table 2.1: Structures of greatest Color Di↵erence Amplification

Material
Substrate

t

abs

(nm) t

phaser

(nm)
d (without
phaser)

d (with
phaser)

Amplification
A (dB)

Silicon (Si) 5 85 1.67 22.94 +11.38
aluminum (Al) 5 70 1.63 27.12 +12.21

The structures of highest amplification are found to be similar in physical dimen-
sions. Qualitatively, we can see in Figures 2.8b and 2.10b that the addition of a phaser

34



layer can be most beneficial for the thinnest absorber layer structures (5-20nm). In
these cases, the magnitude of the color change is still much lower than the maximum
possible color change.

2.3 Discussion

Results have shown that the color-change in a colorimetric sensing material can be
strongly a↵ected by the structure of that material. While chemical coloration and the
change in the optical properties of the chemically reactive absorber layer remain the
primary sources of a color-change, the physical dimensions of that absorber layer can
dramatically alter the e↵ectiveness of the absorber in inducing a large color di↵erence,
while also maximizing the response speed and detection sensitivity. Furthermore, the
addition of a phaser layer can, in many cases, amplify that color di↵erence considerably,
leading to more perceptible color-change in colorimetric sensing materials.

The first and foremost factor in producing color in a material is the di↵erent dielectric
layers used in that material. This may seem obvious, but the di↵erences between Fig-
ures 2.7 and 2.9 demonstrate that even the deepest layer in the material, the substrate,
has a great e↵ect on the color produced. Particularly, the reflectivity of that substrate
may influence the lightness of the colors produced at surface. Silicon has lower reflec-
tivity than aluminum, and indeed, its mean lightness value for simulated structures was
much lower than that of aluminum (L = 37 � 40 compared to L = 60). The choice of
substrate can be strategic in producing a desired color at surface.

In contrast, as the thickness of the absorber layer grows, the di↵erences between Fig-
ures 2.7 and 2.9 diminish. Comparing the uppermost portions of each figure, for those
structures with the greatest absorber thicknesses, the type of substrate seems to matter
less in the color produced. We can imagine that with an even thicker absorber layer,
the color-change would solely depend on that layer’s chemical coloration, since a thick
absorber would limit light reaching lower levels, diminishing any structural coloration.
If we look at color di↵erence plots, Figs. 2.8a and 2.10a, we can see that the e↵ect
of increasing t

abs

is the “graying” of those color di↵erences. In other words, the color
di↵erence d becomes more uniform, which we would expect from a colorimetric sensor
una↵ected by structural coloration. Thus, we can say that in the large t

abs

limit, the
system corresponds to that of purely chemical coloration. For the purposes of compar-
ing coloration, it may serve a good “control”.

Without the e↵ect of a phaser (t
phaser

= 0nm in all figures), we see that not only
the observable color but also the color di↵erence d is a↵ected by the absorber thickness
t

abs

. In the development of colorimetric sensing systems, the thickness of the chemically
reactive absorber layer is important to consider for its e↵ect on light phase and color-
change amplitude. These e↵ects of structural coloration on the absorber layer influence
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the performance of the device and cannot be ignored, even in cases where the structure
does not include a phaser layer.

Looking at the Color Di↵erence figures 2.8a and 2.10a, it is also obvious that the
Fabry-Perot cavity structure can influence the magnitude of a color-change (or color
distance d). We have already acknowledged that structure plays an important role in
determining both observable color and color di↵erence d, but these figures, along with
Figure 2.11, show that the inclusion of a phaser layer in that structure can be beneficial
in the design of a visual colorimetric sensor. For each set of materials tested for its
capacity as a sensor system, the structure of greatest color di↵erence included a phaser.

Not only the phaser thickness t

phaser

a↵ects the structural coloration, however. The
existence of structures with large color change for high t

abs

and low t

phaser

hints that
the two layers may work together to produce some interference. While we might have
expected vertical color modes in Figs. 2.7 and 2.9 corresponding with specific phaser
structures, we instead see that the combination of the phaser and absorber layers is
what produces this structural color. Recognizing this, we should make sure to include
the absorer layer in our analysis of interference-based structural coloration. What’s
more, in the silicon substrate, the high absorption of silicon can actually serve to ex-
tend the Fabry-Perot cavity into the substrate. We may see this in Figure 2.11, where
the structure of greatest color change has a relatively thin phaser layer, but with the
Silicon substrate, the opportunity for resonance within the substrate itself. This further
complicates the origin of structural coloration in the material.

To deepen our understanding of resonance’s role in structurally enhanced color dif-
ference, it is helpful to look at the Color Di↵erence Amplification (Figs. 2.8b and
2.10b). These figures directly compare the color di↵erence of a structure with a phaser
to that same structure without, eliminating the absorber thickness in determining the
e↵ect of a phaser. It is evident from these figures that a phaser may be of great utility
when it comes to producing a large color change in a colorimetric sensing material.
Amplification of color di↵erence peaks at +11.38dB (t

phaser

= 85nm) for a silicon sub-
strate structure and +12.21dB (t

phaser

= 70nm) for an aluminum substrate structure.
Both of these peaks occur when t

abs

= 5nm. This seems to roughly correspond with
our expectations for a Fabry-Perot optical resonator structure. If the maximum color
change occurs in the blue wavelengths, then suppression of higher wavelengths through
destructive interference is desired for observable color-change amplification. If we at-
tempt to reduce the spectral reflectance at 500nm, then we want a resonating cavity (the
phaser layer) of 84nm (quarter wave thickness with refractive index of SiO2 n = 1.48 at
500nm). Needless to say, the 5nm absorber layer thickness itself is significant in both
maximizing response speed and detection sensivity—an original intent that motivated
this exploration.

Regardless of the sources of the amplification (sources which became convolved with
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the optimization of human perception of color-change), the simulations show that there
is a clear benefit in the addition of a phaser, especially at lower t

abs

. While some
thicknesses t

abs

are benefited greatly by the addition of a phaser, others are negatively
a↵ected. For example, in Figure 2.8b, we can see that potential for amplification is
high for t

abs

less than 50nm, between 150 and 250nm, and between 350 and 450nm. In
contrast, the structure performs better without a phaser layer for t

abs

roughly between
50 and 150nm, and between 250 and 350nm. A similar e↵ect is visible for the aluminum
substrate structure. The complexities of the structure and all of its optical properties
can obscure the delineation of contributing factors such as the complex-valued sub-
strate optical properties, but fortunately, the TMM simulations can account for their
existence and predict their holistic e↵ect for us. In this way, the TMM proves to be
a powerful tool in identifying non-trivial structures with high color di↵erence and/or
color di↵erence amplification.

A thin absorber layer is ideal for a number of reasons, and we have shown that in
the case of these two material structures, a thin absorber layer (t

abs

 50nm) with a
phaser layer has great potential for amplification. If such a property is exhibited in other
material structures, it may prove valuable to the development of colorimetric sensing
technology. A thin absorber layer can facilitate mass transport from the environment
into the absorber layer. This makes the optical response to chemical stimuli faster,
reducing reaction times. With that, the sensitivity of the material can also increase,
leading to lower detection limits. However, the balance between optical response of
the sensor and the optimal physical dimensions may both need to inform design of real
sensors. Although amplification is highest when t

abs

= 5nm, color di↵erence d is much
higher with other physical dimensions. For the structure with an aluminum substrate,
dimensions of t

abs

= 15nm, t
phaser

= 70nm may prove to be a better design choice
despite a lower color di↵erence amplification (+9.4dB vs. +12.21dB) because its color
di↵erence is very high (d = 50.30 vs. d = 27.12).

In general, the methods of analysis give flexibility in the design of colorimetric sensing
systems. The gamut of colors produced in Figures 2.7 and 2.9 show that with design,
even the observable colors visible before and after the reaction with PAR can be con-
trolled through structure.

In this test of the TMM for use in optimizing a colorimetric sensing structure, we have
tested a representative model for a colorimetric sensing material. However, the optical
constants that we assumed for the chemically reactive absorber layer (PAR) in this
model were approximated from previous studies of absorption and the physical proper-
ties of sol-gel, and are not presumed to be the exact constants for the material blended
with sol-gel of varying compositions. To truly gain an idea of how we should optimize
this specific colorimetric sensing structure, we would need a more precise knowledge of
these constants. The choice of a color-changing absorber layer can be improved for both
particular applications, and for magnitude of un-enhanced color-change. The absorber
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layer used here was a representative model for such a material which could be deployed,
along with structural coloration enhancement, for a variety of uses. Therefore, it is the
methods of simulation and analysis discussed here that are relevant and useful—their
direct application to the PAR-SiO2-Substrate structure has been hypothetical, and its
results, only approximate.

Nevertheless, the exact change in complex refractive index for a reaction is not neces-
sary to gain a more full understanding of the e↵ect of structure—substrate type, phaser
thickness, absorber thickness—on the color-change of a colorimetric sensing material,
and the usefulness of the TMM in determining that change. Our optimization of the
structure of a representative, model colorimetric sensing material gives us insights into
the physics of interference-based structural coloration, and the color di↵erence amplifi-
cation it can induce.

Topics that remain to be explored include the use of structural coloration in improving
spectroscopic colorimetry. While we have focused here on the reproduction of observ-
able colors and visual colorimetry, the most precise colorimetric measurements come
from spectroscopy. The merits of each method di↵er, but structural coloration may be
able to improve spectroscopic colorimetry methods the same way it appears to improve
visual colorimetry methods.

The use of alternative structures is another topic to be explored. While we based
our assumptions of visible color change enhancement on a Fabry-Perot optical cavity
model with absorber, phaser, and substrate layers, the use of di↵erent materials or
di↵erent structures may further enhance observable color change. For example, the use
of an additional wavelength selective absorber layer such as titanium may improve the
performance of the Fabry-Perot optical cavity in producing structural color. Perhaps
an alternative to the F-P structure in production of structural color would also improve
visual color di↵erences. For each alternative structure, however, the Transfer Matrix
Method color simulation approach, and analysis methods used here could establish its
utility.

2.4 Conclusion

In colorimetric sensing materials, an amplification in color-change is highly desirable.
In order to understand the e↵ectiveness of a color-change enhancement, it is essential to
be able to quantify color and color-change. The CIELab color space o↵ers perceptual
uniformity for the quantification of color. Here, we have introduced a way to quantify
color-changes via the introduction of “color-distance” and “color change amplification”
in the CIELab space. With such quantifiable metrics, we can carry out designs for
maximizing color-changes by physical means on top of what is achievable in chemical
reactions. With physical or structural amplification of color-change, a smaller amount
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of stimulus agent is needed to react with a thinner chemically-sensitive absorber layer,
thereby maximizing both response speed and sensitivity (while still being always-on
and zero-power).

The fundamental distinction that is emphasized throughout the methods presented
here is the di↵erence between spectroscopic colorimetry and visual colorimetry, but in
fact, it is these two approaches that are bridged by the CIE-based methods for trans-
lating reflection spectra changes into visual color di↵erences, or color-distances. The
connection between reflection spectra, easily calculated using the TMM or similar com-
putational methods, and perception of visual color opens doors to more computational
approaches to visual colorimetry. With both colorimetric approaches in mind, mate-
rials can be designed for increased versatility, utility, and practicality in a number of
scenarios. Sensor materials that have been extensively studied for their utility through
the lens of decompositional spectroscopy can be reexamined in a new light: their utility
through the lens of physiology and the human’s own ability to detect spectral shifts as
color-changes.

Results from reflection spectrum and observable color simulations of a representative,
model colorimetric sensing material using the Transfer Matrix Method show that opti-
mization of visual color-change is possible with the implementation of specific physical
structures. The TMM is shown to be an e↵ective method of calculating reflections of
light o↵ a multi-layered dielectric structure, and its utility is recognized through the
study of reflection spectra and visual color in absorber-phaser-substrate structures.

In turn, such Fabry-Perot optical cavity structures are shown to be able to enhance the
color change that would be seen at a simple absorber-substrate structure. Structural
coloration, achieved with the introduction of the F-P cavity, can be used to increase the
magnitude of an observable color-change by shaping the spectrum of available light for
absorption in a chemically reactive absorber layer. In this way, structural coloration, a
common natural phenomenon, is leveraged to increase color-changes made possible by
chemical coloration e↵ects.

In the F-P cavity structure explored here, altering the thickness of an absorber layer
alone is enough to improve color di↵erence, but in some cases, further improvements
can be made with the addition of a dielectric, optically transparent phaser layer. Even
the use of a specific substrate can increase the color-change at surface through re-
flection, and in some cases, the extension of an e↵ective resonating cavity into the
substrate layer. With the introduction of structural optimization and amplification in
colorimetric sensing materials, previously identified limitations for colorimetric sensing
materials—response time and detection limits, most notably—are called into question.
With further exploration, many existing colorimetric sensors stand to gain from the
development of structural amplification.
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Ultimately, although the sources of structural and chemical sources of coloration are
complex and virtually unpredictable with the use of traditional ray-optic approaches
to reflection, the Transfer Matrix Method elegantly encapsulates the entire structure’s
photonic features in a single calculation, allowing for easy optimization of colorimetric
sensing structures. Both spectroscopic and visual colorimetry stand to gain from the
use of the TMM for optimization, as human physiology can be harnessed for the expan-
sion of their uses. The increased flexibility in colorimetric material design made possible
by the introduction of structurally tunable color-change amplification can lead to the
expansion of the field, and improvements in current colorimetric sensing applications.
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Appendix A

PAR Optical Constants

We chose our absorbing, chemically reactive sensing layer to be a physical entrapment of
4-(2-pyridylazo)resorcinol (PAR) in sol-gel thin films through a base-catalyzed process.
This process was studied previously, and the absorbance A was determined for the
material before and after a reaction with Cu(II) ions took place. We used the following
formula to calculate the extinction coe�cient k from the absorbance A of the material
before and after the reaction, as given in Jerónimo et al., 2004. [14, 21]

k =
c ⇤ A
4⇡f

where f is the frequency, and c is the speed of light in a vacuum. The calculated
extinction coe�cient k, the complex portion of the refractive index used as the optical
constant for PAR, before and after reaction is displayed in the graph below. In this
graph, the extinction coe�cient for wavelengths � = 700 � 800 nm was extrapolated
from the coe�cient at 700 nm.
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Figure A.1: Extinction Coe�cient k Response. This graph shows the com-
plex portion of the refractive index before and after reaction with Cu(II)
ions. This extinction coe�cient change manifests as a chemical coloration
change in the absorber layer (Fig. 2.2).

Additionally, with no data given for the real part of the refractive index of the PAR
material, we were forced to approximate this value from literature. It was assumed that
PAR, as a sol-gel entrapment, would behave as SiO2, because of sol-gel’s noted similar-
ity to glass. [24, 25] Thus, without any further information, we approximated this value
as n = 1.53 for both before and after the reaction took place, for all wavelengths, a
high estimate for the refractive index of SiO2 in the optical range. A slightly high esti-
mate for the refractive index would ensure its function as an interface for a Fabry-Perot
optical cavity, the structure which demonstrated to produce structural coloration. The
bounding layers of a Fabry-Perot optical cavity must have a higher refractive index
than the phaser layer, so as to produce a phase shift upon reflection.

In future work, the precise refractive index of PAR will need to be determined through
ellipsometry, but because of a lack of resources and di�culty preparing samples, these
measurements were unavailable at the time of writing. However, the approximation
of the refractive index of PAR does not hinder its ability to serve as a representative
model for a colorimetric sensing, chemically reactive layer. While in simulations, the
PAR optical constants were approximated for the purposes of demonstrating capability
of structural coloration to enhance color-change, in future studies on colorimetric ma-
terials, a measured refractive index will produce results which can be used to optimize
structure.
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Appendix B

Matlab Codes for Transfer Matrix
Method and Color Simulation

The following code was used to simulate reflection spectra of materials through the
use of the Transfer Matrix Method, translate reflection spectra to visual color in the
CIEXYZ color space, and determine color distance between material color before and
after a reaction in the CIELab color space. The code starts with the highest-level
class, runcolortests.m, which specifies the parameters to test, enabling the testing of
many material structures in one click. The next class, color test.m individual tests
are run for a number of t

phaser

thicknesses, and a single t
abs

thickness. It takes CIEXYZ
coordinates from the final class, and translates them to CIELab coordinates. It also
writes all the data from simulations to .csv files, where the data is saved. The final class,
TMMsimulation.m, uses the TMM to calculate reflectance spectra for individual
dielectric stack structures, and translates that reflectance spectra into CIEXYZ color.
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% runcolortests.m 
  
% Script to run many color tests in one command. Just specify the layers, 
% thicknesses, and what the index of the resonator layer is. 
  
  
  
%% SAMPLE TEST 
% seriesname = 'Si_Al_SiO2_Ti_PAR'; 
% layers_beforerxn = {'PAR.csv','Ti.csv','SiO2.csv','Al.csv','Si.csv'}; 
% t = [0,5,0,100,10000]; 
%  
% color_test(seriesname, layers_beforerxn,3,t); 
  
  
%%  TEST 
layers_beforerxn = {'PAR.csv','Ti.csv','Al2O3.csv','Al.csv'}; 
t = [0,10,0,10000]; %nm  
reslayer = 3; %the index of the resonator layer. The PAR layer is assumed to 
be 1. 
  
color_test(105:5:600,0:5:400,layers_beforerxn,reslayer,t,'save');  
%the last paramter specifies whether the figures are saved in the permanent 
%folder (save), or in a temporary folder, keeping files separate so as not to 
overwrite data 
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function [X,Y,Z] = TMM_simulation(t, n ,plotter) 
    % Function to determine reflection spectrum for an arbitrary material 
    % stack. Can create reflection spectrum images (plotter), but otherwise 
    % will just return the RGB values normalized for human vision 
%% set up simulation 
wvl = linspace(390E-9,780E-9,1001); %wavelengths to be tested 
  
L = t*1e-9; % L becomes vector for layer thicknesses, with units meters 
  
% this stuff is carried over from a more general transfer matrix 
% scheme...ignore 
optical = 'length'; %string is 'length' if using units of length for L, else, 
optical units 
incidentangle = 0; %degrees  
polarization = 'tm'; 
  
%% find matrix elements 
N = length(n(1,:))-2; % number of layers 
kz = zeros(N+2,length(wvl)); %initialize k 
a = zeros(1,N+2); %angle of incidence 
  
for j = 1:length(wvl) 
    for i = 1:N+2 % k changes with n, find k for every wavelength for every 
layer 
        if i>1 
            a(j,i) = asin((n(j,i-1)/n(j,i))*sin(a(j,i-1))); %incidence angle 
        else 
            a(j,i) = incidentangle/180*pi();    
        end 
        if strcmp(polarization, 'tm') 
            nT(j,i) = n(j,i)/cos(a(j,i)); 
        elseif strcmp(polarization, 'te') 
            nT(j,i) = n(j,i)*cos(a(j,i)); 
        end 
% kz is the term that goes in the propagation matrix 
        kz(j,i) = 2*pi()/(wvl(j)/n(j,i))*cos(a(j,i));  
  
  
    end 
end 
%% set up variables to be filled w reflection spectrum 
Gamma = zeros(1,length(wvl)); %Gamma will record the spectrum 
gamma = Gamma; 
bound = cell(1,N+2); 
prop = bound; 
  
%% finish finding matrix elements 
for i = 1:length(wvl) 
     
    for j = 1:N+1 
    p = (nT(i,j)-nT(i,j+1))/(nT(i,j)+nT(i,j+1)); 
    tau = 2*nT(i,j)/(nT(i,j)+nT(i,j+1)); 

    if strcmp(optical,'length') 
        optL = L(j); % convert lengths to optical lengths 
    else 
        optL = L(j)*wvl(i)/n(i,j); 
    end 
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    % boundary and propagation matrices for each layer j 
    bound{j} = (1/tau)*[1,p;p,1];  
    prop{j} = [exp(-1i*kz(i,j)*optL),0;0,exp(1i*kz(i,j)*optL)]; 
     
    end 
  
    %% build transfer matrix from individual bound and prop matrices 
    transfer = [1,0;0,1]; 
    for w = 1:N 
        if w == N 
         transfer = transfer * bound{w} * prop{w+1}*bound{w+1}; 
        else 
            transfer = transfer * bound{w} * prop{w+1}; 
        end 
    end 
   
   %% TMM calculation 
   % transfer applied to an arbitrary incidence 
    E1 = transfer*[1;0]; % E1(1) = E1+   E1(2) = E1-= E1- 
    gamma(i) = E1(2)/E1(1); 
    Gamma(i) = abs(E1(2)/E1(1))^2; % reflection intensity is ratio squared 
     
    % phase information, can be ignored 
    theta1 = atan2(imag(E1(1)),real(E1(1))); 
    theta2 = atan2(imag(E1(2)),real(E1(2))); 
    phasedif(i) = (theta2-theta1); 
     
end 
  
%% Turn Reflection Spectrum into color information 
colourfunc = csvread('observationfunctions.csv'); % color matching functions 
xfunc = interp1(colourfunc(:,1)*1E-9,colourfunc(:,2),wvl); 
yfunc = interp1(colourfunc(:,1)*1E-9,colourfunc(:,3),wvl); 
zfunc = interp1(colourfunc(:,1)*1E-9,colourfunc(:,4),wvl); 
  
% integrate reflection spectrum times color matching functions across wvl 
X = 0; 
Y = 0; 
Z = 0; 
k = 0; 
for i = 1:length(wvl) 
    X = X + Gamma(i)*xfunc(i)*0.3896; %multiply by the wvl interval (per CIE 
recommendation) 
    Y = Y + Gamma(i)*yfunc(i)*0.3896; %multiply by the wvl interval (per CIE 
recommendation) 
    Z = Z + Gamma(i)*zfunc(i)*0.3896; %multiply by the wvl interval (per CIE 
recommendation) 
    k = k + yfunc(i)*0.3896; 
end 
k = 100/k; 
  
X = X*k/100; 
Y = Y*k/100; 
Z = Z*k/100; 
  
%% plot figures 
  
if strcmp(plotter,'plot1') % input determines whether to plot or not 
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figure(1) 
subplot(1,2,1) 
plot(wvl,Gamma, 'LineWidth', 2) 
xlabel('wavelength (m)'); 
ylabel('Reflectance (%)'); 
ylim([0,1]); 
title('Colorimetric Device Reflectance (before rxn)'); 
yyaxis right 
hold on; 
plot(wvl,xfunc,'Color','r','LineStyle','--'); 
plot(wvl,zfunc,'Color','b','LineStyle','--'); 
plot(wvl,yfunc,'Color','g','LineStyle','--'); 
hold off; 
ylabel('Color Matching Function (CIE 1931)'); 
ylim([0,2]); 
yyaxis left 

elseif strcmp(plotter,'plot2') 
figure(1) 
subplot(1,2,2) 
plot(wvl,Gamma, 'LineWidth', 2) 
xlabel('wavelength (m)'); 
ylabel('Reflectance (%)'); 
ylim([0,1]); 
title('Colorimetric Device Reflectance (after rxn)'); 
yyaxis right 
hold on; 
plot(wvl,xfunc,'Color','r','LineStyle','--'); 
plot(wvl,zfunc,'Color','b','LineStyle','--'); 
plot(wvl,yfunc,'Color','g','LineStyle','--'); 
hold off; 
ylabel('Color Matching Function (CIE 1931)'); 
ylim([0,2]); 
yyaxis left 

end 
  
end 
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function color_test(PAR_t, res_t, layers_beforerxn, resonator_layer,tin,save) 
% run this script to test a colorimetric sensing structure before/after a 
% chemical reaction takes place. the script will output images to results 
% folder which contain useful information 
  
  
%% specify layers//thicknesses 
resonator_layer= resonator_layer+1; %considering air as the first layer 
  
layers_afterrxn = layers_beforerxn; 
layers_afterrxn{1} = 'PARCu.csv'; %create the second list of layers, with the 
altered PAR 
  
t(2:length(tin)+1) = tin; 
t(1) = 1; 
%% set up chromaticity plot 
  
figure(1) 
close; 
img = imread('../CIExy1931.bmp'); 
minx = 0; 
miny = 0; 
maxx = .74; 
maxy = .84; 
  
  
%% clean up layers information 
for i = 1:length(layers_beforerxn) 
    layers_beforerxn(i) = strcat('../materials/',layers_beforerxn(i)); 
    layers_afterrxn(i) = strcat('../materials/',layers_afterrxn(i)); 
end 
  
%% calculate the refractive indices of the layers  
wvl = linspace(390E-9,780E-9,1001); 
n = zeros(length(wvl(1,:)),length(layers_beforerxn)+1,2); 
  
for j = [1,2] 
     
    if j == 1 
        layers = layers_beforerxn; 
    else 
        layers = layers_afterrxn; 
    end 
     
    % for each layer, the refractive index values need to be read in and 
    % compiled into a matrix which describes the material stack 
    for i = 1:length(layers) 
        layers_nk(:,:) = csvread(layers{i},1,0); 
        layers_nk(:,1) = layers_nk(:,1).*1e-6; %wvl is in microns 
        layers_nk(:,4) = layers_nk(:,2)-(1i)*layers_nk(:,3); 
        layerinfo{i} = layers_nk; 
        clear layers_nk 
    end 
  
    for i = 1:length(layerinfo) 
        layer = layerinfo{i}; 
        n_new = interp1(layer(:,1),layer(:,4),wvl); 
        n(:,i+1,j) = n_new'; 
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    end 
    n(:,1,j) = 1; %air 
     
     
end 
assert(all(all(all(~isnan(n)))),... 
    'Error: complex refractive indices do not cover wavelength range') 
  
  
  
%% run different thicknesses 
for t_PAR = PAR_t %run through PAR thicknesses 
    t(2) = t_PAR; % the second thickness in the thickness vector takes t_PAR 
     
    % set up chromaticity diagram 
    figure(3); 
    subplot(1,2,1) 
    image([minx maxx], [miny maxy], img); 
    subplot(1,2,2) 
    image([minx maxx], [miny maxy], img); 
     
    % run different resonator thicknesses for each PAR thickness 
    resonator_t = res_t;  
    structuredata = zeros(length(resonator_t),length(layers_beforerxn)+13); 
    for i = 1:length(resonator_t) 
        t(resonator_layer) = resonator_t(i); 
         
        % get RGB values (normalized by color matching functions) as XYZ 
        [X1,Y1,Z1]=TMM_simulation(t,n(:,:,1),''); % before rxn 
        [X2,Y2,Z2]=TMM_simulation(t,n(:,:,2),''); % after rxn 
        % translate into CIELab coordinates using Image Processing Toolbox 
        % functions 
        Lab1 = xyz2lab([X1,Y1,Z1]); 
        L1 = Lab1(1); 
        a1 = Lab1(2); 
        b1 = Lab1(3); 
        Lab2 = xyz2lab([X2,Y2,Z2]); 
        L2 = Lab2(1); 
        a2 = Lab2(2); 
        b2 = Lab2(3); 
        RGB1 = xyz2rgb([X1,Y1,Z1]); 
        R1 = RGB1(1); 
        G1 = RGB1(2); 
        B1 = RGB1(3); 
        RGB2 = xyz2rgb([X2,Y2,Z2]); 
        R2 = RGB2(1); 
        G2 = RGB2(2); 
        B2 = RGB2(3); 
         
        % get xy coordinates for plotting on chromaticity diagram 
        x1 = X1/(X1+Y1+Z1); 
        y1 = Y1/(X1+Y1+Z1); 
        x2 = X2/(X2+Y2+Z2); 
        y2 = Y2/(X2+Y2+Z2); 
         
        % plot the points on the chromaticity diagrams for before/after rxn 
        figure(3) 
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        subplot(1,2,1) 
        hold on; 
        scatter(x1,y1,[],'k','*'); 
        subplot(1,2,2) 
        hold on; 
        scatter(x2,y2,[],'k','*'); 
        dist(i) = sqrt((L2-L1)^2+(a2-a1)^2+(b2-b1)^2); %find distance 
        % record coordinates and distance in matrix for later analysis 
        structuredata(i,1:length(t)-1) = t(2:end); 
        structuredata(i,length(t):length(structuredata(1,:))) = 
[L1,a1,b1,L2,a2,b2,R1,G1,B1,R2,G2,B2,dist(i)]; 
    end 
     
    %% make figures, find best distance, record data 
    % determine the best resonator thickness for this specific PAR thickness 
    best_resonator_t=resonator_t(dist==max(dist)); 
    bestdist=max(dist); 
    % create the figure for the reflection spectra 
    figure(1) 
    set(gcf, 'Position', [100, 500, 1000, 500]) 
    if max(best_resonator_t)~=min(best_resonator_t) 
        best_resonator_t = [best_resonator_t(1)]; 
    end 
    t(resonator_layer) = best_resonator_t; 
    %rerun simulation for the best thickness to record reflection spectrum 
    [X1,Y1,Z1]=TMM_simulation(t,n(:,:,1),'plot1'); %this time, plot1 
indicates to plot on the left subplot 
    [X2,Y2,Z2]=TMM_simulation(t,n(:,:,2),'plot2'); %plot2...right subplot 
    %determine x and y coordinates for making a red * for the point of max 
    %color change 
    x1 = X1/(X1+Y1+Z1); 
    y1 = Y1/(X1+Y1+Z1); 
    x2 = X2/(X2+Y2+Z2); 
    y2 = Y2/(X2+Y2+Z2); 
    % go back to the chromaticity figure and add a red point for the best 
    % thickness, along with the coordinates of the best thickness 
    figure(3) 
    set(gcf, 'Position', [200, 700, 1000, 500]) 
    message = sprintf(strcat('PAR thickness = ',num2str(t(2))... 
        ,'nm // res thickness = '... 
        ,num2str(t(resonator_layer)),'nm \n coldist = ',num2str(bestdist))); 
    text(0.5, 0.02, message, ... 
      'VerticalAlignment', 'bottom', ... 
      'HorizontalAlignment', 'center','BackgroundColor','y'); 
    subplot(1,2,1) 
    set(gca,'Ydir','Normal') 
    scatter(.333,.333); 
    scatter(x1,y1,[],'r','*'); 
    title('Before Reaction'); 
    subplot(1,2,2) 
    set(gca,'Ydir','Normal') 
    scatter(.333,.333); 
    scatter(x2,y2,[],'r','*'); 
    title('After Reaction'); 
    % write a csv file which will record all of the information in 
    % structuredata 
    % the outputs will either be placed in the results folder or a 
    % temporary folder if the data can be overwritten by the next run 
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    for i = 1:length(layers_beforerxn) 
    C = strsplit(layers_beforerxn{i},{'s/','.c'},'CollapseDelimiters',true); 
    layername{i} = C{2}; 
    end 
    layername = fliplr(layername); 
    seriesname = strjoin(layername,'_'); 
    layername = fliplr(layername); 
    if strcmp(save,'save') 
        if exist(strcat('../results/',seriesname)) ~= 7 
            mkdir(strcat('../results/',seriesname)); 
        end  
    filename1 =... 
strcat('../results/',seriesname,'/PAR',num2str(t(2)),'res',... 
        num2str(best_resonator_t),'reflectance.jpg'); 
    filename3 = 
strcat('../results/',seriesname,'/PAR',num2str(t(2)),'res',... 
        num2str(best_resonator_t),'chromaticity.jpg'); 
    else 
        if exist(strcat('../temp/',seriesname)) ~= 7 
            mkdir(strcat('../temp/',seriesname)); 
        end 
   
  
    filename1 = strcat('../temp/',seriesname,'/PAR',num2str(t(2)),'res',... 
        num2str(best_resonator_t),'reflectance.jpg'); 
    filename3 = strcat('../temp/',seriesname,'/PAR',num2str(t(2)),'res',... 
        num2str(best_resonator_t),'chromaticity.jpg'); 
    end 
    %save figures 
    saveas(1,filename1); 
    saveas(3,filename3); 
    figure(1) 
    close; 
    figure(3) 
    close; 
    if strcmp(save,'save') 
     datafile = strcat('../results/',seriesname,'/PAR',num2str(t(2)),... 
         'seriesdata.csv'); 
    else 
        datafile = strcat('../temp/',seriesname,'/PAR',num2str(t(2)),... 
         'seriesdata.csv'); 
    end 
    % write csv file recording all data for this layer thickness combination 
     fid = fopen(datafile, 'w') ; 
     c = {'L(before)', 'a(before)', 
'b(before)','L(after)','a(after)','b(after)', 
'R(before)','G(before)','B(before)','R(after)','G(after)','B(after)','colordi
st'}; 
     fprintf(fid, '%s,', layername{1,1:end}) ; 
     fprintf(fid, '%s,', c{1,1:end-1}) ; 
     fprintf(fid, '%s\n',c{1,end}); 
     fclose(fid) ; 
    dlmwrite(datafile,structuredata,'-append'); 
     
end 
  
clearvars 
 


