
Senior Thesis

Brown University
Department of Physics

Cluster Algebra Structures for Scattering
Amplitudes in N = 4 Super Yang-Mills

Author:
Daniel Parker

Advisor:
Prof. Anastasia Volovich

April 2015

Contents

1 Introduction 4

2 Yang-Mills Theory 7
2.1 Motivation and the Lagrangian . 7
2.2 Quantization . 10

3 Kinematics for Scattering Amplitudes 13
3.1 Spinor Helicity . 13
3.2 Twistors and Momentum Twistors . 14
3.3 Configurations . 15
3.4 Grassmannians and Plücker Coordinates . 16

4 Review of Amplitudes in N = 4 SYM 17
4.1 The Parke-Taylor Formula . 18
4.2 Supersymmetry . 18
4.3 The MHV Classification . 19
4.4 Loops and the BDS Ansatz . 19

5 Cluster Algebras 20
5.1 What is a Cluster Algebra? . 21
5.2 The A2 Cluster Algebra . 24
5.3 General Properties of Cluster Algebras . 27
5.4 More Examples of Cluster Algebras . 30
5.5 Cluster X -coordinates . 35
5.6 Grassmannian Cluster Algebras . 36

6 Polylogarithms 38
6.1 Classical Polylogarithms . 38
6.2 Iterated Integrals . 40
6.3 Shuffle Algebras and Lyndon Words . 41
6.4 The Symbol and Chen’s Theorem . 44
6.5 Generalized Polylogarithms . 46
6.6 Examples of Symbols . 48

7 Results on Cluster Functions 52
7.1 The Hopf Algebra of Polylogarithms . 52
7.2 Examples of the Symbol Coproduct . 54
7.3 Cluster Polylogarithms on A2: The A2 Function 59
7.4 A Computationally Efficient Basis for Finding Cluster Functions at Weight 4 61
7.5 Dictionary of Cluster Polylogarithms . 63
7.6 Counting X -coordinates, A2 and A3 Functions 64
7.7 An Algorithm to Factor Products of X -coordinates 65

2

8 Cluster Bases 67
8.1 The Basis Problem . 68
8.2 The Spaces M,P,R and Q . 68
8.3 Brown’s Theorem . 70
8.4 The Hedgehog Theorem . 71

Bibliography 77

3

1 Introduction

Scattering amplitudes are the heart of particle physics. They are a bridge between theory
and experiment. Understanding them is necessary to interpret experimental results from
particle accelerators. On the theoretical side, they provide a bountiful source of mathematical
structures and connections. The study of scattering amplitudes is a well-established subject
— dating back at least to the 1950s — and remains an area of active work, with many
unsolved problems. Indeed, the last decade has seen the rise of “amplitudeology”, a program
for uncovering the hidden structure of scattering amplitudes. This thesis focuses on one
aspect of scattering amplitudes: the structure of MHV remainder functions of 2-loop, n-
particle, planar limit N = 4 Super Yang-Mills amplitudes. (These terms will be defined
precisely.) These have a fascinating mathematical structure, with many connections to the
subjects of cluster algebras and polylogarithms.

What is a scattering amplitude? Imagine a particle collider. The collider accelerates
subatomic particles nearly to light speed and smashes them into other particles. If these
particles are energetic enough, they then break apart and form other particles, which fly off
(“scatter”) in all directions.

The energies and momenta of all these particles can be measured. Therefore a theorist’s
job is to predict and explain such measurements. A typical question is: if 3 particles with
known energies and momenta go in, then what is the probability of getting 7 particles out
with definite energies and momenta? Such probabilities are called scattering amplitudes.

Scattering amplitudes are calculated within the framework of quantum field theory. The
most common technique for calculating them is the method of Feynman diagrams. Very
roughly, the method works as follows. One draws a diagram with incoming particles on the
left, represented by arrows, and the outgoing particles on the right, and then connects them
in all possible ways. For instance, suppose particles a and b are incoming and particles c and
d are outgoing. The three simplest possible diagrams are:

a

b

c

d

a

b

c

d

a

b

c

d

Other more complicated diagrams are also possible, such as this one with a loop.

4

a

b

c

d

In general, there are infinitely many such diagrams that can be drawn.
Feynman rules give the value of each Feynman diagram. The scattering amplitude is

the sum of the values of all possible Feynman diagrams. In perturbation theory, the more
complicated diagrams all have very small values, so the scattering amplitude can be approx-
imated well just by looking at the simplest diagrams — ones with just a few loops. This
is fortunate, because the difficulty of computing the value of a Feynman diagram increases
immensely as loops are added.

Much of amplitudeology focuses on a particular quantum field theory: N = 4 Super Yang-
Mills (SYM) theory. This theory falls in a kind of “Goldilocks zone”; it is complicated enough
to be very interesting, but not so complicated that it can’t be understood. Although N = 4
SYM is not a physically realistic theory, it is very similar to quantum chromodynamics,
which describes the strong nuclear force. The hope is that understanding the scattering
amplitudes of N = 4 SYM will provide general principles that work in any quantum field
theory.

Recent work by Golden, Goncharov, Spradlin, Volovich, et al. follows a single theme:

Particular scattering amplitudes in N = 4 SYM can be written as
sums of polylogarithms in variables with a cluster algebra structure.

(1.1)

Polylogarithms are special functions which generalize the logarithm, and cluster algebras are
a new type of algebraic structure discovered about a decade ago. Both of these mathematical
structures are intriguing in their own right, with deep connections to scattering amplitudes.
Exploring these connections has already been highly productive. As an example, a heroic
calculation by Del Duca, Duhr and Smirnov established an formula for the most complex
part of the 2-loop, 6-particle diagrams [1]. The expression is 17 pages long. Using math-
ematical techniques imported from the study of polylogarithms, Goncharov et al. reduced
this expression to a single line [2]. Using additional cluster algebraic structure, Golden et al.
gave a similar formula for 7 particles that was only slightly more complex [3]. The moral of
this story is that deeply understanding the theme (1.1) will reveal simplifications and new
insights into scattering amplitudes.

This thesis attempts to provide a bridge between quantum field theory, as it might be
taught in a first semester graduate course, and current research in this topic. The topics
discussed are as follows.

• Section 2 introduces Yang-Mills theory. This is fairly standard material which can be
found in quantum field theory textbooks. Unlike the rest of the thesis, no attempt is
made to be self-contained here; a semester course in field theory is probably required
for this section.

5

• Section 3 describes kinematics for scattering amplitudes. Since amplitudes are func-
tions of the energy and momentum of the ingoing and outgoing particles, they are
usually written as equations in the four-vector momenta of those particles. However,
it turns out to be much more convenient to describe amplitudes as functions on Grass-
mannians. (Grassmannians can be thought of as the space of k-dimensional planes
inside n-dimensional space.) This section describes how one gets from four-vectors to
Grassmannians.

• Section 4 is a very brief review of scattering amplitudes in N = 4 SYM. This is an
entire subject unto its own, and books have been written on the subject. The primary
goal here is to introduce terminology and set out which questions are answered.

• Section 5 introduces cluster algebras. Cluster algebras are a very new subject, which is
both a blessing and a curse. On the other hand, there are not yet standard pedagogical
treatments of the subject, partly because the basic definitions are still in flux. This
section attempts a complete explanation of cluster algebras starting “from scratch”
and developing all the necessary concepts for physics. No background is assumed or,
hopefully, required.

• Section 6 introduces polylogarithms. Though one can think of polylogarithms as just
another special function, they have a deep theory. Research in this area — much of
it by Professor Goncharov — tends to be much more mathematically technical than
cluster algebras. The section gives an overview of polylogarithms at the level used in
physics.

• The last two sections describe novel results by the author and current research. Much of
this work was done in collaboration with Adam Scherlis. Section 7 describes “cluster
functions”, sums of polylogarithms with cluster algebraic structure. Section 8 gives
some results towards finding bases for spaces of polylogarithms, a task complicated by
the considerable number of functional identities between polylogarithms.

I would like to thank my thesis advisor Professor Volovich for being a superb mentor and
for introducing me to this beautiful subject. I would also like to thank Professor Spradlin
and Dr. Golden for answering all of my questions, and teaching me so much. I further thank
my all friends and family for their support and help. Lastly, I thank Adam Scherlis for
showing me how wonderful physics is and my father for inspiring me to study science.

6

2 Yang-Mills Theory

Yang-Mills theory, and Gauge theories more generally, describe how the electromagnetic,
weak, and strong forces work in the Standard Model. This is a very large subject, and this
section only describes a small part of it, focusing on motivation for the Lagrangian, how that
Lagrangian is quantized and the associated Feynman rules..

2.1 Motivation and the Lagrangian

This discussion attempts to motivate the Yang-Mills Lagrangian from a mathematical per-
spective. The discussion is conceptual rather than rigorous, and follows treatments in [4, 5, 6].

It’s handy to first consider a special case. Consider a wavefunction on Minkowski space
M that is valued in the vector space V = Cn. Two-component wavefunctions in quantum
mechanics are an example of such wavefunctions, with values in C2. In principle, though,
any vector space can be used. To construct a quantum field theory, a Lagrangian (density)
is needed. This is a real-valued function of the wavefunction, L(ψ). The usual choice is

L(ψ) = ‖dψ‖2 +m ‖ψ‖2 (2.1)

where d is the gradient and ‖·‖ is the Euclidean norm on V . If a basis {ei}ni=1 is chosen for
V , then ψ = ψiei and the Lagrangian becomes

L(ψ) = ∂µψi∂µψ
i
+mψiψ

i
. (2.2)

where µ = 0, . . . , 3 is a space-time index.
One mandates that the Lagrangian should not depend on the choice of basis; the basis

of V is arbitrary, so a different choice should not yield different physics. Again in the case
of spinors, there is no preferred direction for “spin up” and therefore no special basis for the
space of spinors. One can choose any arbitrary direction for “spin up” and construct a basis
from that choice. Regardless of the choice of “up”, the physics is the same. The same is true
in the general case V = Cn.

More precisely, suppose that U ∈ U(V) ∼= U(n), the Lie group of unitary transformations
of Cn. In particular, UU † = I, and ‖Uv‖2 = ‖v‖ for any v ∈ V . Then the wavefunction
transforms under U as

ψ(x) 7→ Uψ(x). (2.3)

Actually, one can take V to be any vector space with a U(n) representation on it. Since the
gradient is a linear function on V , it transforms as

d 7→ UdU †. (2.4)

Therefore the action of U on Λ is

U · L(ψ) =
∥∥(UdU †)(Uψ)

∥∥2
+m ‖(Uψ)‖2

=
∥∥Ud(U †U)ψ

∥∥2
+m ‖ψ‖2

= ‖dψ‖2 +m
∥∥ψ2

∥∥
= L(ψ).

(2.5)

7

Thus L is U(n)-invariant, as stipulated.
Now consider a generalization. Consider Minkowski space with a copy of the vector

space V “glued” to each point to form a vector bundle over Minkowski space. Now the
wavefunction is a map that, for each point x in Minkowski space, gives a vector in the copy
of V glued to x. What can the Lagrangian look like now?

As before, one mandates that the Lagrangian should not depend on the choice of basis.
The difference is that now one makes a choice of basis for V at each point in space. A gauge
transformation is a map

ψ(x) 7→ U(x)ψ(x) (2.6)

where U(x) is a smooth, U(n)-valued function of x. In other words, it is a change of basis
at each point in spacetime. But there’s a problem: there’s no longer a unique directional
derivative. In fact, for any u(n)-valued 1-form Aµ(x)dx† (where u(n) is the Lie Algebra of
U(n)),

DA = d+ igA(x)dx⇐⇒ DA
µ = ∂µ + igAµ(x) (2.7)

is a perfectly fine directional derivative. Here , g is a real-valued coupling constant, and
A is known as a Gauge field. “Perfectly fine” means that it obeys the product rule and
is compatible with the norm on V . This DA is known as a covariant derivative.1 The
superscript on DA is often dropped for clarity.

Covariant derivatives differ from normal derivatives in one important respect: the familiar
fact that “mixed partials” are equal (∂µ∂ν = ∂ν∂µ) does not hold. The degree to which the
mixed partials fail to commute is the curvature

Fµν :=
i

g
[Dµ, Dν]. (2.8)

1More precisely, this is a gauge connection or gauge covariant derivative induced from a principle U(n)-
bundle over M on V . For more on the elegant subject of connections on principle bundles in gauge theory,
see [6] or [7].

8

This can be expressed in terms of the Gauge field:

[Dµ, Dν]ψ

= ((∂µ + igAµ)(∂ν + igAν)− (∂µ + igAµ)(∂ν + igAν))ψ

= (∂µ∂ν − ∂ν∂µ)ψ + ig(∂νAµ − Aµ∂ν − ∂µAν + Aν∂µ)ψ − g2(AµAν − AνAµ)ψ

= ig
(
∂ν(Aµψ) + Aµ(∂νψ)− Aµ(∂νψ)− ∂µ(Aνψ)− Aν(∂µψ) + Aν(∂µψ)

)
− g2[Aµ, Aν]ψ

= ig(∂νAµ − ∂µAν)ψ − g2[Aµ, Aν]

so

F = Fµνdx
µ ∧ dxν = (∂µAν − ∂νAµ)− ig[Aµ, Aν]dx

µ ∧ dxν = dA− ig[A,A] (2.9)

The bracket here is defined by

[R, S] := [Rµdx
µ, Sνdx

ν] = [Rµ, Sν]dx
µ ∧ dxν (2.10)

where the bracket on the right-hand side is the Lie bracket for u(n), i.e. is just the commu-
tator for n by n matrices. Since both the Lie bracket and wedge product are anti-symmetric,
this bracket is actually symmetric and thus [A,A] 6= 0. This satisfies the Jacobi Identity

[Qµ, [Rν , Sρ]] + [Rν , [Sρ, Qµ]] + [Sρ, [Qµ, Rν]] = 0 (2.11)

for any u(n)-valued functions Q,R, S. It follows that,

[Dµ, [Dν , Dρ]] + [Dν , [Dρ, Dµ]] + [Dρ, [Dµ, Dν]] = 0. (2.12)

Translating this into a statement about the curvature,

DµFνρ +DνFρµ +DρFµν = 0, (2.13)

a statement known as the Bianchi Identity. This can be written in a coordinate-independent
fashion as

D?F = 0. (2.14)

in terms of the Hodge Dual ?F µν := εµνρσFρσ.
Like an ordinary derivative, the covariant derivative changes under gauge transformations

according to
D 7→ U(x)DU †(x). (2.15)

Note that the product rule implies

(U∇U †)ψ = UU †∇ψ + U
(
∇U †

)
ψ =

(
∇+ U(∇U †)

)
ψ (2.16)

so

Dψ 7→ (UDU †)ψ

=
(
U(d+ iA)U †

)
ψ

= (UdU †)ψ + iUAU †ψ

= dψ + U(∇U †)ψ + iUAU †ψ

= [d+ iA′]ψ

9

where A′ = U(dU †) + iUAU †. In other words, A transforms like

A 7→ U(dU †) + iUAU †. (2.17)

Putting Equation (2.15) into Equation (2.8) easily shows F 7→ U(x)FU †(x), so ‖F‖2 is gauge-
invariant. To sum up: the field and covariant derivative transform analogously to Equations
(2.3) and (2.4), except now the transformations are functions of position. The curvature
transforms nicely as well. However, A transforms inhomogenously and, in particular, includes
an extra term under gauge transformations.

What Lagrangian could this more complicated theory have? As before, there is an issue.
Which covariant derivative should be used? The solution is actually to sidestep this problem;
if there is no unique derivative, just make it another field variable and let the Euler-Lagrange
equations find the one which minimizes the action. So one can form the trial Lagrangian
(density)

Ltrial(A,ψ) :=
∥∥DAψ

∥∥2
+m ‖ψ‖2 (2.18)

where a superscript A has been added to show that D is actually a function of A. Using the
transformation laws above, one can check that this is gauge invariant and does not depend
on a specific choice of basis. (In the notation used here, this is the same calculation as
Equation (2.5) with d replaced by D and U by U(x).) But there’s something very odd about
this Lagrangian (2.18): there’s no kinetic term for A.

It turns out that there is a unique gauge-invariant term that is second-order in A, namely∥∥FA
∥∥2

:= TrF µνFµν (up to a multiplicative constant). A very sensible Lagrangian (density)
for this Gauge theory is

LGT(A,ψ) := −1

4

∥∥FA
∥∥2

+
∥∥DAψ

∥∥2
+m ‖ψ‖2 . (2.19)

The factor of −1
4

is a convention.
Variations of this Lagrangian are the starting point for almost all gauge theories. As

an example, when the symmetry group is U(1), this becomes the Lagrangian for scalar
electrodynamics. U(1) is an Abelian group, so its Gauge theories are called Abelian gauge
theories. In such theories, the gauge field transforms more simply and is much easier to
work with. Quantum chromodynamics uses this same framework with the symmetry group
SU(3), which is non-abelian.

Yang-Mills theory starts from the Lagrangian

LYM(A) := −1

4

∥∥FA
∥∥2

(2.20)

where the symmetry group is taken to be SU(n). This is a perfectly good classical field
theory.

2.2 Quantization

Equipped with the Lagrangian for Yang-Mills theory, the next task is to quantize it. This
discussion follows Srednicki and Zee[8, 9].

10

A first attempt at writing down a partition function for Yang-Mills theory might looks
like

Z[A, J] ∝
∫
D[A] exp

(
i

∫
M
LYM(A) + AJ

)
(2.21)

where J is a vector-valued source. At this point, it is unfortunately necessary to introduce
coordinates. Let {T a}n(n−1)/2

a=1 be a basis for su(n), normalized by Tr
(
T aT b

)
= δab. In this

basis, the Lie bracket of su(n) has the form

[T a, T b] = fabcT c (2.22)

where fabc are the (real-valued) structure constants of su(n). The Latin indices here run
from 1 to n(n− 1)/2, the dimension of su(n). Then

LYM(A) = −1

4
‖F‖2 = −1

4
‖dA+ [A,A]‖2

= −1

4

(
‖dA‖2 − 2ig 〈dA, [A,A]〉 − g2 ‖[A,A]‖2

)
= L0(A) + L1(A) + L2(A)

where

L0(A) = −1

4
Tr (∂µAν − ∂νAµ)2 , (2.23)

L1(A) = −1

2
g
(
∂µA

a
ν − ∂νAaµ

)
fabcAbµAcν , (2.24)

L2(A) = −1

4
g2fabcfadeAaµA

c
νA

dµAeν . (2.25)

Note that L0,L1,L2 are respectively constant, linear, and quadratic in the coupling. One
thinks of L0 and L1 as a “free field theory” with L2 as a perturbation. To apply perturbation
theory, one must find the propagator, i.e. the operator inverse of L0. Unfortunately, due to
gauge freedom, L0 has a non-trivial kernel and thus no inverse exists. This can be cured by
“fixing” the gauge.

Eliding over a long argument, one does this by introducing a functional determinant,
which is computed by putting in the Faddeev-Popov ghost fields, two complex-scalar fields
denoted c and c† respectively. One should note that these fields are non-physical, and exist
merely to fix the gauge. The fact that they violate spin-statistics can therefore be ignored.
The new, gauge-fixed Lagrangian is

Z[J, ε, ε†] ∝
∫
D[A]D[c]D[c†] exp

(
i

∫
M

LYM + Lgf (A) + Lgh(c, c†) + JA+ c†ε+ cε†
)

(2.26)
where the gauge-fixing term is

Lgf = −1

2
ξ−1∂µAaµ∂

νAaν . (2.27)

Here ξ is a real parameter which specifies the gauge fixing. It is non-physical and should
drop out in any observable. The ghost term is

Lgh = c†Dc = −∂µc†a∂µca + gfabcAcµ∂
µc†acb. (2.28)

11

The particles associated to A are called gluons and the (non-physical) particles associated
to c and c† are called ghosts.

Component Graphical Representation

Gluon propagator

∆̃ab
µν(k) = δab

k2−iε

(
gµν + (ξ − 1)kµkν

k2

)
a, µ b, ν

k

Ghost propagator

∆̃ab(k2) = δab

k2−iε a b
k

Three gluon vertex

iV abc
µνρ(p, q, r)

= gfabc [(q − r)µgνρ + (r − p)νgρµ + (p− q)ρgµν]

a, µb, ν

c, ρ

pq

r

Four gluon vertex

iV abcd
µνρσ = −ig2

[
fabef cde(gµρgνσ − gµσgνρ)

+facefdbe(gµσgρν − gµνgρσ)

+ fadef bce(gµνgσρ − gµρgσν)
] a, µ

b, ν

c, ρ

d, σ

Ghost-ghost-gluon vertex

iV abc
µ (q, r) = gfabcqµ c b

a, µ

r q

The Feynman rules for the theory are given in the table. In principle, one could determine
the value of any scattering amplitude just from these rules. Unfortunately, this is very
impractical. Srednicki points out that just the gg → gg cross section has 12,996 terms just
at tree level [8]! The methods of the next section drastically reduce the complexity of these
calculations.

12

3 Kinematics for Scattering Amplitudes

The notion of scattering amplitude can now be made more mathematically precise. An
n-particle scattering amplitude for gluons in Yang-Mills theory is a complex-valued
function

A(p1, . . . , pn, ε1, . . . , εn) (3.1)

where pi and εi are the four-momentum and polarization of the ith gluon respectively. The
precise form of A can, in principle, be calculated by summing over all Feynman diagrams.
By convention, all n particles are considered to be outgoing.

What space is A defined on? Naively, it is a function of 2n four-vectors, i.e. A : M2n → C.
(This necessarily implies A is Lorentz-invariant.) However, energy-momentum conservation
implies that

n∑
i=1

pi = 0. (3.2)

One often makes the further restriction that the gluons are light-like, i.e.

p2
i = 0, 1 ≤ i ≤ n. (3.3)

These constraints carve out a complicated subset of M2n. The natural question is: what is
the best way to parameterize functions on this subset? Alternatively, what is the domain of
A? A sequence of maps gives better and better answers.

Minkowski space

Spinor-Helicity Parameterization

Momentum Twistors

Grassmannians

Cluster Algebras

(3.4)

The first three steps, Minkowski space to Grassmannians, are briefly reviewed in this section.
The last step is taken up in Section 5.6. An extremely clear explanation of the first two
steps is given by Witten in [10], whose presentation is roughly followed below. Another,
more detailed explanation is given by Elvang and Huang in [11]. All four steps are used by
Golden et al. [12].

3.1 Spinor Helicity

The complexified Lorentz group is locally isomorphic to SL2(C) × SL2(C). Its representa-
tions can therefore be classified by a pair of half-integers (n,m). The representation

(
1
2
, 0
)

acts on negative chirality spinors, written as λa, a = 1, 2. These indices are raised and
lowered by εab, the Levi-Civita symbol. If λ1 and λ2 are both negative chirality spinors, then

13

〈λ1, λ2〉 := εabλ
a
1λ

b
2 is a Lorentz-invariant, anti-symmetric form. The (0, 1/2) representation

acts similarly on positive chirality spinors, which are denoted with dotted indices and a tilde
λ̃ȧ. These have the invariant [λ̃1, λ̃2] = εȧḃλ̃

ȧ
1λ̃

ḃ
2.

The Lorentz group SO(3, 1) is essentially the (1/2, 1/2) representation. A four-vector p
can then therefore be written as a bi-spinor, a two-by-two matrix denoted paȧ which is a
combination of a negative and positive chirality spinor where p2 = det paȧ. One finds that a
light-like vector can be represented as

paȧ = λaλ̃ȧ (3.5)

for some positive and negative chirality spinors λ and λ̃. Unfortunately, this is not a unique
representation, since if a ∈ C∗, then λ 7→ aλ, λ̃ 7→ a−1λ̃ leaves paȧ invariant. There is, in
general, no way to determine λ and λ̃ as functions of p. However, given a pair (λ, λ̃), and the
helicity of the gluon, one can determine the momentum p and polarization ε. (The helicity
of a particle is the dot product of the spatial components of momentum and spin. For a
spin-one particle such as a gluon, the helicity is ±1, usually written as just + or −.) This is
not a unique mapping; to carry this out, two arbitrary spinors µa and µ̃ȧ must be chosen.

The upshot is that the scattering amplitude can be written as

A(λi, λ̃i, hi) (3.6)

where λi and λ̃i are positive and negative chirality spinors, hi = ±1 is the helicity and, of
course, 1 ≤ i ≤ n. Since the above discussion was specialized to light-like vectors, Equation
(3.6) automatically obeys the constraint (3.3). However, the condition of total momentum
conservation must still be enforced “manually”. One can check that this amplitude is Lorentz
invariant [10].

3.2 Twistors and Momentum Twistors

Minkowski space is often very difficult to work with, partially because the Lorentz group is
non-compact. It is sometimes easier to work with a generalization of Minkowski space whose
symmetries form a compact Lie group. One realization of this idea is twistor space, proposed
by Penrose [13]. Very roughly, the idea is that complexified, compactified Minkowski space
can be conformally embedded into CP3, three-dimensional complex projective space. Ele-
ments of twistor space are called twistors. A twistor Z can be written Z = (λ, µ) where λ
and µ are spinors.

In the same way that thinking of the complex numbers as the Riemann sphere yields
a much cleaner picture of Möbius transformations, twistor space simplifies Lorentz trans-
formations. It is customary to use a metric signature + + −−, in which case the Lorentz
transformations are promoted to PSL4(R) [10].(Actually, the Lorentz transformations form
a subgroup, but amplitudes are invariant under all of PSL4(R).)

One can go between the bi-spinors of the last section and twistors easily by means of a
“half-fourier transform” [10]. For an arbitrary function f(λ̃), one makes the transformation

f(λ̃) 7→ f̃(µ) =

∫
d2λ̃

(2π)2
exp(iµȧλ̃ȧ)f(λ̃). (3.7)

14

Lorentz-invariant parts of A(λi, λ̃,hi) are always brackets 〈·, ·〉 or [·, ·], which are func-

tions of either λ or λ̃ alone, so this transformation suffices to express the amplitude as
A(λi, µi, hi) = A(Zi, hi) over twistor space. One can show that A is actually a holomorphic
function of the λi’s and µi’s [10].

A slight variant on this approach, called momentum twistors, automatically enforces mo-
mentum conservation. The method is due to Hodges [14]. Consider, back in Minkowski space,
the momenta pi. Representing these as vectors laid end to end, the condition

∑n
i=0 pi = 0

implies they form a closed polygon with light-like edges.

y1

y2

y3

yn−1

yn−2

pn−2 pn−1

pn

p1

p2p3

One then considers affine coordinates yi so that pi = yi− yi−1. Each of these yi is a point
on affine Minkowski space, i.e. Minkowski space with no distinguished origin. The condition
on momentum conservation is simply

0 =
n∑
i=1

pi =
n∑
i=1

(yi − yi−1) = yn − yn−1 + · · ·+ y2 − y1 + y1 + y0 = yn − y0 (3.8)

or, simply, y0 = yn. The original amplitude can then be cast as A(y1, . . . , yn, ε1, . . . , εn),
where the y’s are completely unconstrained. Using the same machinery outlined above, the
x’s can be carried over to twistor space, where they enjoy the additional dual conformal
symmetry [12].

3.3 Configurations

In light of this discussion, scattering amplitudes can now be considered functions

A(Z1, . . . , Zn, h1, . . . , hn) (3.9)

where the Zi’s are (momentum) twistors in CP3 and hi = ±1 are helicities. The Z’s are
automatically light-like and obey momentum conservation; they are unconstrained. Lorentz
symmetry is still present, in the form of an overall action of PSL4(C) acting on all of the
Zi’s simultaneously. The space of n-tuples of points in CP3 modulo the action of PGL4(C)
is the configuration space Confn(CP3) [12]. Thus scattering amplitudes are functions

A : Confn(CP3)× Zn2 → C (3.10)

with no constraints.

15

3.4 Grassmannians and Plücker Coordinates

How can one actually work with the space Confn(CP3) in practice? What sort of coordinates
does it have? It turns out that Confn(CP3) is essentially the Grassmannian G(4, n)/ (C∗)n−1.
Grassmannians are a source of many examples in algebraic geometry, and are quite well-
understood by mathematicians. They are described by many books, e.g. Gekhtman et al
[15].

The complex Grassmannian G(k, n) is the space of complex k-dimensional vector
subspaces of Cn. This can be formulated more concretely in terms of matrices. Consider a
subspace V ⊂ Cn, with dimV = k. One can choose a basis {b1, . . . , bn} for Cn such that
the span of the first k vectors is V . V can thus be specified by the matrix

b1

b2
...
bk

 =

b11 b12 · · · b1n

b21 b12 · · · b2n
...

...
. . .

...
bk1 bk2 · · · bkn

 (3.11)

Of course, any change of basis of the first k vectors spans the subspace, multiplying by a
k by k invertible matrix on the left specifies the same subspace. This k × n matrix only
specifies V up to a left action of GLk(C). The Grassmannian can therefore be identified with
the quotient

G(k, n) ∼= Mk×n(C)/GLk(C). (3.12)

One important property of the Grassmannian is that G(k, n) ∼= G(n− k, n). This is because
there is a bijection between k-planes and (n − k)-planes in n dimensions. Just as a plane
in R3 can be specified by it’s normal vector, a k-plane in Cn is uniquely determined by the
subspace orthogonal to it.

A common choice of coordinates on the Grassmannian are Plücker coordinates. The
Plücker Embbedding is a map of the Grassmannian into projective space. Define a map

ι : G(k, n)→ P(ΛkCn)

where, if V = span {b1, . . . , bk} ∈ G(k, n) and the bi’s are a basis for V , then

ι(V) := b1 ∧ b2 ∧ · · · ∧ bk.

This is well-defined, because if the cj’s are another basis for V , with cj = Aijbi for some
change-of-basis matrix A, then

c1 ∧ c2 ∧ · · · ∧ ck = A1
j1
b1 ∧ A2

j2
b2 ∧ · · · ∧ Akjkbk = (detA)b1 ∧ b2 ∧ · · · ∧ bk

which is equal to b1∧ b2∧ · · · ∧ bk in projective space. The second equality is just the normal
change of basis formula for the wedge product. See, e.g. Lemma 9.11 of [16] for a proof.
This map is injective, but not surjective.

Plücker Coordinates are formed as follows. Consider V ∈ G(k, n) as a k×n matrix as in
Equation (3.11). Define I := (i1, . . . , ik) to be some multi-index of length k with 1 ≤ ij ≤ n.

16

Then (bi1bi2 · · · bik) is a k × k matrix. This is known as the minor of V indexed by I. Since
this is a square matrix, it has a well defined determinant. The Plücker coordinates for I is

〈I〉 = 〈i1i2 · · · ik〉 = det (bi1bi2 · · · bik) (3.13)

If A is a change-of-basis matrix of V ,i.e. a k × k non-degenerate matrix, then 〈I〉 (AV) =
detA 〈I〉 (V). Plücker coordinates are therefore well-defined homogenous homogenous coor-
dinates on the projective space P(ΛkCn). As mentioned above, the embedding is not surjec-
tive. Indeed, the Plücker coordinates satisfy functional relations. These Plücker relations
have the form

〈ijI〉 〈pqI〉 = 〈pjI〉 〈iqI〉+ 〈qjI〉 〈piI〉 (3.14)

where I is a multi-index of length k − 2 and i, j, p, q are single indeces. The homogenous
coordinate ring on the Grassmannian is the ring of polynomials in the Plúcker coordinates
modulo the ideal generated by all the Plücker relations.

Golden et al connect this to the physics[12]. Suppose Zi are twistors. They are repre-
sented as points in C4 with Zi ∼ aZi for any a ∈ C∗. A configuration of n twistors is a 4×n
matrix

Z1

Z2
...
Zn

 . (3.15)

Four-brackets
〈ijk`〉 := det(ZiZjZkZ`) (3.16)

are invariant under the symmetry PGL4(C), and thus good coordinates on the moduli space.
But these are exactly the Plücker coordinates for G(4, n)! Because of the overall C∗ scaling on
each of the coordinates, it is necessary to further mod out by (C∗)n. However, multiplying by
exactly the same factor for each twistor does nothing, so one really want (C∗)n−1. Precisely,
in the language of algebraic geometry, there is a birational isomorphism [12]

G(k, n)/ (C∗)n−1 ∼= Confn(CP3). (3.17)

Thus scattering amplitudes can be considered as complex-valued maps on the Grassmannian.
This may seem an unnecessarily complicated approach, but using the Grassmannian actually
makes many “hidden” properties of scattering amplitudes much easier to see.

the last step in this procession of mappings — from Grassmannians to cluster algebras
— is postponed to Section 5.6.

4 Review of Amplitudes in N = 4 SYM

This section is a very brief review of amplitudes in N = 4 SYM and should be treated as
heuristic rather than authoritative. The focus is on “taxonomy”: what classes of functions
exist, which are known, and which are not. A comprehensive treatment of this material is
given in Elvang and Huang[11]. The presentation here follows the thesis defense of Dr. John
Golden.

17

4.1 The Parke-Taylor Formula

With the Feynman rules for Yang-Mills theory developed in Section 2 , one can in principle
calculate any amplitude. In practice, this is an infinite sum over diagrams. It is typical to
split up the n-particle amplitude An as

An = A(0)
n + A(1)

n + A(2)
n + · · · (4.1)

where A
(L)
n is contribution from diagrams with exactly L loops. The contribution of diagrams

with no loops, A
(0)
n is called tree level.

Even tree level results are difficult. In 1985 Parke and Taylor decided to calculate the
process gg → gggg at tree level in the planar limit [17]. Even this “simple” calculation
involves a sum over 220 diagrams! After adding up the contributions from all the diagrams,
the final result turned out to be extremely simple! In spinor-helicity formalism, with the
abbreviated notation (λi, λ̃i, h = ±)↔ i±,

A
(0)
4 (1+, 2+, 3−, 4−) =

〈12〉4

〈12〉 〈23〉 〈34〉 〈41〉
(4.2)

where 〈ij〉 = 〈λiλj〉. The number of Feynman diagrams grown very quickly with n. For
gg → 8g, there are more than a million [11]. But something remarkable happens. The
general form of Equation (4.2) actually works for any number of particles! Precisely,

A(0)
n (1+, 2+, 3−, 4−, . . . , n−) =

〈12〉4

〈12〉 〈23〉 · · · 〈n1〉
. (4.3)

(This is actually only the most complex part of the answer. The full answer is found by
summing over non-cyclic permutations of {1, . . . , n} with a multiplicative term proportional
to the trace of a product of generators of su(n).) This unexpectedly simple answer is taken to
be evidence for a larger trend: Yang-Mills theory amplitudes are actually fairly well-behaved,
but calculating them is ugly. The hope is that studying the structure of the amplitudes will
give shortcuts that render the diagrams unnecessary.

Elegant Lagrangian

Lots of Feynman Diagrams

Lots of complicated terms

Simple answer

?
(4.4)

4.2 Supersymmetry

For amplitudes above tree level, Yang-Mills theory quickly becomes very difficult. To make
calculations tractable, it is standard to work in N = 4 Super Yang-Mills theory, which offers

18

many additional symmetries that can be used to “tame” the amplitudes that appear. Here
N refers to the number of supersymmetry generators in the theory. The Lagrangian for this
theory is[11]

L = Tr

(
−1

4
‖F‖2 − 1

2
‖DΦI‖2 +

i

2
Ψ /DΨ +

g

2
ΨΓI [ΦI ,Ψ] +

g2

4
[ΦI ,ΦJ]2

)
(4.5)

where D is the same covariant derivative as in regular Yang-Mills for SU(N); ΦI , I = 1, . . . , 6
are real scalar fields with a global SO(6) R-symmetry; Ψ are 10-dimensional Majorana-
Weyl fermions; and ΓI are gamma-matrices of the 10-dimensional Clifford algebra. All
commutators are associated with the su(n) Lie algbera. This gives a superconformal group
with 32 fermionic and 30 bosonic generators total generators [11]. In short, N = 4 has a
large number of symmetries.

Working in this framework, amplitudes are promoted to superamplitudes, which also
include the new fermionic fields. The discussion of the kinematics remains largely similar.
Further details of supersymmetry are beyond the scope of this thesis.

4.3 The MHV Classification

The Parke-Taylor formula holds in the case where two of the gluons have positive helicity, and
the rest negative. This roughly corresponds to two incoming gluons and the rest outgoing.
What about all the other possibilities? It turns out that in N = 4 SYM, the amplitudes
with zero or one helicity different from all the rest vanish:

A(L)
n (1−, 2−, . . . , n−) = 0 = A(L)

n (1+, 2−, . . . , n−). (4.6)

So at least two gluons must have opposite helicity from the rest. The case when exactly
two gluons have positive helicity, with the rest negative is called the Maximally Helicity
Violating (MHV) case. The case with exactly three positive is called the Next-to MHV
(NMHV) case. In general, the amplitude

A(L)
n (1+, 2+, . . . , (K + 2)+, (K + 3)−, . . . , n−) (4.7)

is called the NKMHV term. MHV terms tend to be the simplest, and grow more complicated
with K. However, the difference is usually not too great. If the MHV term is known, the
NKMHV terms can be computed by the formula

ANKMHV
n;(L) (ε) = AMHV

n;(0)

(
PNKMHV
n;(0) + λPNKMHV

n;(1) (ε) + . . .
)

(4.8)

where λ ∼ g2N is the gauge coupling times the size of the gauge group SU(N) and ε is a
regulator [11].

4.4 Loops and the BDS Ansatz

Using the technique of generalized unitarity, Bern, Dixon, Dunbar and Kosower were able to
determine a general formula for A

(1)
n , the one-loop, n-particle MHV amplitude [18]. As with

the Parke-Taylor formula, the final result is fairly simple.

19

The next step was two-loops. It was shown by Anastasiou, Bern, Dixon, and Kosower
(ABDK) [19] that the 2-loop, 4-particle, planar amplitude can be expressed in terms of the
one-loop amplitude by [11]

PMHV
4;2 (ε) =

1

2

[
PMHV

4;1 (ε)
]2

+ PMHV
4;1 (2ε)f (2)(ε)C(2) +O(ε) (4.9)

where f (2)(ε) = −ζ(2) − ζ(3)ε − ζ(4)ε2 and C(2) = −ζ(2)2/2. The appearance of ζ, the
Riemann-Zeta function is not entirely a coincidence and will be “explained” in Section 6.

This continues at three loops. Bern, Dixon, and Smirnov (BDS) found that the 3-loop,
4-particle, planar MHV amplitude can also be expressed in terms of the one-loop result [20]!
Specifically,[11]

PMHV
4;3 (ε) = −1

3

[
PMHV

4;1 (ε)
]3

+ PMHV
4;1 (ε)PMHV

4;2 (ε) + f (3)(ε)PMHV
4;1 (3ε) + C(3) +O(ε) (4.10)

where f (3)(ε) = 11
2
ζ(4) + O(ε) and C(3) is a constant. The coefficients that appear look

very similar to the power series of ex. This motivated the BDS Ansatz for the full MHV
amplitude at all loops:

PMHV(BDS)
n (ε) = exp

[
∞∑
L=1

λL
(
f (L)(ε)PMHV

n;1 (Lε) + C(L) +O(ε)
)]
. (4.11)

This is thought to be almost correct. At two loops are five particles it gives the correct
amplitude. However, it begins to fail “gently” at two loops and six particles. Though
the ansatz correctly predicts the infrared divergence structure of the amplitude, it does
not fully produce the correct finite part. The difference between the BDS Ansatz and
the actual amplitude is called the remainder function R(L)

n . It is in calculating these
remainder function that cluster algebras and polylogarithms are effectively applied. The
next two sections will develop cluster algebras and review the necessary information about
polylogarithms.

5 Cluster Algebras

Cluster algebras are a new area of mathematics, introduced in 2002 by Fomin and Zelevin-
sky [21]. They have already been applied to many areas in mathematics. Indeed, many old
and well-understood mathematical objects carry cluster algebra structure, including homo-
geneous coordinates of Grassmannians, polygon triangulations, Schubert varieties, and more
[22, 23]. Because of this, cluster algebras are the subject of considerable current research
and mathematicians are searching for them — successfully — across mathematics.

Although applications of cluster algebras can be very technical, the definition and prop-
erties of cluster algebras require only simple algebra and graph theory [22]. One can almost
ignore the algebraic definitions and simply follow the algorithm set out by the examples.

For a more in-depth introduction to cluster algebras, the textbook [24], by Gehktman,
Shapiro and Vainstein is probably the most complete and detailed introductory work on
cluster algebras at this time. This section follows the expository treatments in [22, 23, 25, 24].

20

5.1 What is a Cluster Algebra?

Cluster algebras are defined on collections of “seeds” linked by an operation known as “mu-
tation”. Seeds have two ingredients: “quivers” and “cluster variables”.

Definition 1. A quiver Q is a directed graph, possible with multiple arrow between vertices
and/or loops. A quiver is represented by a square, skew-symmetric, integer-valued matrix
Qij of size n× n. The entry Qij is the number of arrows from vertex i to vertex j.

As an example, the graph [25]

1 2 3

4 5

6

(5.1)

has data

Q =

0 1 0 −1 0 0
−1 0 1 −1 0 0
0 −1 0 −2 1 0
1 1 2 0 1 −1
0 0 −1 −1 0 1
0 0 0 1 −1 0

 . (5.2)

Definition 2. If Q is a quiver, then mutation on vertex k is a map defined by µk(Q) = Q′

made by applying the following rules:

1. reverse all arrows going into or out of vertex k;

2. for each path i → k → j, add in a new “shortcut” arrow i → j (“complete the
triangle”);

3. remove any two-cycles that have formed.

Equivalently, one replaces Qij with a new matrix Q′ij = µkQij with entries given by

Q′ij =

−Qij if k ∈ {i, j}

Qij +
|Qik|Qkj +Qij |Qkj|

2
otherwise

=

−Qij if k ∈ {i, j}
Qij +Bik |Qkj| if sgnQik = sgnQkj

Qik otherwise.

(5.3)

21

As an example, mutating on vertex 2 of the above graph (5.1) gives

1 2′ 3

4 5

6

where the differences are highlighted in red. Or, expressed as matrix,

Q′ =

0 −1 1 −1 0 0
1 0 −1 1 0 0
−1 1 0 −3 1 0
1 −1 3 0 1 −1
0 0 −1 −1 0 1
0 0 0 1 −1 0

 . (5.4)

Now for the second ingredient. Instead of using the vertices of the quiver as mere labels,
we promote them to variables.

Definition 3. Let {a1, . . . , an} be transcendental over Q (independent variables with no
relations). The tuple

a = (a1, . . . , an) (5.5)

is called a cluster and the ai’s are called cluster variables.
A seed is a pair S = (a, Q) of a cluster and a quiver where the elements of the cluster

label the vertices of the quiver. Two seeds are considered equal if their labelled quivers are
the same up to graph isomorphism.

Going back to the same example, if the cluster variables are a = {a1, x2, . . . , a6}, then
the seed S = (a, Q) is represented as follows.

a1 a2 a3

a4 a5

a6

22

The operation of mutation changes the variables as well as the quiver.

Definition 4. Let S = (a, Q) be a seed. Then the operation of seed mutation in the
direction k is a map from seeds to seeds by µk(a, Q) = (a′, Q′) where

µk(a`) =

a` if k 6= `

1

ak

[∏
i→k

ai +
∏
k→j

aj

]
if ` = k.

(5.6)

The notation i → k or k → j means the product should be taken over all the arrows that
are incoming to k or outgoing from k respectively. Multiple arrows should, of course, be
counted multiple times. It follows from the definition that mutation on a particular vertex is
an involution: µ2

k = Id.

Taking the example of our favorite quiver, mutating on a2 gives

a1 a′2 a3

a4 a5

a6

where a′2 = 1
a2

(a1a4 + a3).
Now that all the ingredients have been assembled, cluster algebras can be defined. A

sequence of mutations is simply the composition of multiple mutations, such as µ1◦µ3◦µ2.

Definition 5. Suppose S = (x, Q) is a seed with n. Define A, the set cluster A-coordinates
to be the union of all cluster variables appear under arbitrary sequences of mutations starting
from S. More formally,

A := {x ∈ µi1µi2 · · ·µir(x, Q) : 1 ≤ i1, . . . , ir ≤ n, r ∈ N} . (5.7)

The cluster algebra generated by S, C(S) is defined as algebraic extension of Z generated
by A, i.e. Z[A]. The size of each quiver, n, is called the rank of the cluster algebra, and the
number of seeds is the order of the algebra.

It is important to note that the defnition of a cluster algebra varies somewhat, depending
on the source. This follows [23]. However, [22] defines them as a subring of Q(x1, . . . , xn).

Since the definition is not yet solid, it is better to think of the cluster algebra as the collec-
tion of seeds obtained from mutating the initial seed. Different applications will erect various

23

algebraic structures on top of the seeds. But the essential features — seeds, mutations, and
cluster variables — are the same in any case.

There are also various generalizations of cluster algebras built out of more general ma-
trices Q that need not be skew-symmetric, but perhaps only skew-symmetrizable, or totally
sign-skew-symmetric [24]. So far, these generalizations play no part in the physics of scat-
tering amplitudes, and will not be discussed here. In this larger context, the cluster algebras
defined here are skew-symmetric cluster algebras of geometric type.

One generalization that will be used, however, is the idea of frozen variables. Concep-
tually, one chooses certain vertices that may not be mutated. These are carried along,
unchanged, in every quiver. See [26] for more details.

5.2 The A2 Cluster Algebra

The definition of cluster algebras is best understood through examples. The simplest non-
trivial cluster algebra is called A2 and starts from the seed

S1 = (a1, Q1) =

(
(a1, a2),

(
0 1
−1 0

))
(5.8)

or, as a quiver,

S1 : a1 a2

There are two mutable variables, a1 and a2, and no frozen variables. Applying µ1, mutation
on the first vertex, gives a new seed

S2 : a3 a2

or

S2 := µ1(S1) = (a2, Q2) =

(
(a3, a2),

(
0 −1
1 0

))
(5.9)

where a3 is given by Equation (5.6):

a3 := a′1 =
1

a1

[∏
i→1

ai +
∏
1→j

aj

]
=

1

a1

[
a0

1a
0
2 + a0

1a
1
2

]
=

1 + a2

a1

. (5.10)

Applying µ1 to S2 just generates S1 again, which gives nothing new. Applying µ2 to S2

gives the seed

S3 : a3 a4

or

S3 := µ2µ1(S1) = (a3, Q3) =

(
(a3, a4) ,

(
0 1
−1 0

))
(5.11)

24

where

a4 := a′2 =
1

a2

[∏
i→2

a2 +
∏
2→j

a2

]
=

1

a2

(1 + a3) =
1 + a1 + a2

a1a2

. (5.12)

After this, the cluster variables start getting simpler again. Applying µ1 to S3 gives

S4 : a5 a4

or

S4 := µ1(S3) = (a4, Q4) =

(
(a5, a4),

(
0 −1
1 0

))
(5.13)

where

a5 := a′3 =
1

a1

[∏
i→3

ai +
∏
3→j

aj

]
=

1

a3

(1 + a4) =
a1a2 + 1 + a1 + a2

a1a2

a1

1 + a2

=
1 + a1

a2

. (5.14)

Applying µ2 gives

S5 : a5 a6

or

S5 := µ2(S4) = (a5, Q5) =

(
(a5, a6) ,

(
0 1
−1 0

))
(5.15)

where

a6 := a′4 =
1

a2

[∏
i→4

ai +
∏
4→j

a2

]
=

1

a4

(a5 + 1) =
1 + a1 + a2

a2

a1a2

1 + a1 + a2

= a1. (5.16)

Something very strange has happened here! The sixth cluster variable is the first one again!
So really S5 has the quiver

S5 : a5 a1

Applying µ1 one more time gives

S6 : a7 a1

or

S6 := µ1(S5) = (a6, Q6) =

(
(a7, a1),

(
0 −1
1 0

))
(5.17)

where

a7 := a′5 =
1

a5

[∏
i→5

ai +
∏
5→j

aj

]
=

1 + a1

a5

=
1 + a1

1

a2

1 + a1

= a2. (5.18)

So this seed is really

25

S1 : a2 a1

which is just S1 again!
The best way to visualize this is with an exchange graph.

Definition 6. If {Si} is the set of seeds of a cluster algebra, then the exchange graph is
the graph whose vertices are the seeds and where undirected edges are drawn between pairs
of seeds linked by a single mutation. The edges are undirected because they can always be
traversed back by applying the same mutation again.

The exchange graph of A2 is a pentagon.

S1

S2

S3

S4

S5

There are several properties of A2 that are worth pointing out.

• The cluster variables that appear are all rational functions in {a1, a2} with positive
integer coefficients.

• The denominators of all the cluster variables are monomials in {a1, a2}.

• The complete set of cluster variables of A2 is

A(A2) =

{
a1, a2,

1 + a1

a2

,
1 + a1 + a2

a1a2

,
1 + a2

a1

}
. (5.19)

No matter what sequence of mutations is performed on the initial seed, the variables
that appear will be in this set.

• Labelling the variables as above, they satisfy a recurrence relation

ak =
1 + ak−1

ak−2

(5.20)

and ak+5 = ak for all k ∈ [0, . . . 5].

All the properties except the last one are actually true in more general contexts.

26

5.3 General Properties of Cluster Algebras

This section will discuss some general properties of the cluster algebras. The following section
will return to concrete examples to elucidate them.

One of the most remarkable properties of clusters is the Laurant Phenomenon.

Definition 7. A Laurant Polynomial over a field F is a polynomial of the form

f(X) =
∑
k∈Z

ckX
k = c0 + c1X + a−1

1

X
+ c2X

2 + c−2
1

X2
+ · · · (5.21)

where X is a formal variable and ck ∈ F are constants. In other words, a Laurant polynomial
is an element of the ring f ∈ F[X,X−1].

Theorem 8 (The Laurant Phenomenon, [21, 24]). In a cluster algebra of geometric type,
any cluster variable may be expressed as a Laurant polynomial in the cluster variables of the
initial seed. Thus if a is any cluster variable,

a =
P (a1, . . . , an)

ad11 · · · adnn
(5.22)

where {a1, . . . , an} are the cluster variables of the initial quiver, di ∈ N, and P is a polyno-
mial.

Indeed, an even stronger result is expected to be true: the so-called Positivity Conjecture.

Conjecture 9 (Positivity Conjecture). The Laurant polynomial expansion of any cluster
variable has positive integer coefficients.

This was recently proved in the case of skew-symmetric cluster algebras in [26]. Together,
these serve to “tame” the mutation operation. No matter how much you mutate, the cluster
variables that appear can be expressed in terms of the initial cluster variables.

Thinking back to the A2 cluster algebra in Section 5.2, another surprising property was
that the cluster algebra is actually finite. Why did only five distinct quivers? Why not
ten, twenty, or infinitely many? The natural question to ask is: which initial seeds generate
cluster algebras with finitely many seeds? Cluster algebras with a finite number of seeds are
called finite type.

The answer is surprisingly beautiful. The classification of finite-type cluster algebras
is in fact almost the same as the Cartan-Killing classification of semisimple Lie algberas.
This is a subject quite beyond the scope of this thesis, so only a few summary remarks will
be made. Semisimple Lie algebras are classified by putting them into correspondance with
Dynkin diagrams, a type of root system represented by a graph. Some examples are given
below.

27

An

Dn

E6

E7

E8

(5.23)

Finite semisimple Lie algebras have Dynkin diagrams of one of the four infinite type —
An, Bn, Cn, and Dn —or one of the 5 sporadic types — E6, E7, E8, F4, and G2. For cluster
algebras, Fomin and Zelevkinsky have the following classification[27].

Theorem 10. For a cluster algebra C with cluster variables A whose quivers have a single
connected component, the following are equivalent:

1. C is of finite type

2. A is a finite set,

3. For every seed S = (a, Q) of C, the entries of the matrix satisfy |QijQji| ≤ 3 for all
i, j,

4. One of the seeds of C has a quiver which, viewed as an undirected graph, is a simply-
laced Dynkin diagram, i.e. a Dynkin diagram of A,D or E-type shown in (5.23).

The finite cluster algebras are therefore as follows: An and Dn for any n ∈ N, and
E6, E7, E8. The rank and order of each of these are known and can be expressed in terms of
Catalan numbers. The nth Catalan number is [28]

C(n) =
1

n+ 1

(
2n

n

)
. (5.24)

Cluster Algebra An Dn E6 E7 E8

Rank n n 6 7 8
Order C(n+ 1) (3n− 2)C(n− 1) 833 4160 25080

Up through rank 11, the order and rank of a cluster algebra is enough to uniquely identify
it. Table 1 lists finite-type cluster algebras (of geometric type) through rank six.

28

Algebra Rank Order

A1 1 2
A1 ×A1 2 4
A2 2 5
A1 ×A1 ×A1 3 8
A1 ×A2 3 10
A3 3 14
A1 ×A1 ×A1 ×A1 4 16
A1 ×A1 ×A2 4 20
A2 ×A2 4 25
A1 ×A3 4 28
A1 ×A1 ×A1 ×A1 ×A1 5 32
A1 ×A1 ×A1 ×A2 5 40
A4 4 42
A1 ×A2 ×A2 5 50
D4 4 50
A1 ×A1 ×A3 5 56
A1 ×A1 ×A1 ×A1 ×A1 ×A1 6 64
A2 ×A3 5 70
A1 ×A1 ×A1 ×A1 ×A2 6 80
A1 ×A4 5 84
A1 ×A1 ×A2 ×A2 6 100
A1 ×D4 5 100
A1 ×A1 ×A1 ×A3 6 112
A2 ×A2 ×A2 6 125
A5 5 132
A1 ×A2 ×A3 6 140
A1 ×A1 ×A4 6 168
D5 5 182
A3 ×A3 6 196
A1 ×A1 ×D4 6 200
A2 ×A4 6 210
A2 ×D4 6 250
A1 ×A5 6 264
A1 ×D5 6 364
A6 6 429
D6 6 672
E6 6 833

Table 1: All ADE-type (i.e. skew-symmetric) cluster algebras with rank one to six.

29

Theorem 11 (Properties of the Exchange Graph). The following are theorems in the case
of finite-type cluster algebras and conjectured to be true generally [24].

1. The exchange graph of a cluster algebra depends only on the initial quiver Q.

2. Every seed is uniquely defined by it’s cluster. The vertices of the exchange graph can
therefore be labelled by clusters, up to a permutation of cluster variables within clusters.

3. In a cluster algebra of rank n, each cluster contains n cluster variables. Two clusters
are adjacent in the exchange graph if, and only if, they have exactly n− 1 variables in
common.

4. This implies that: for any cluster variables x, the seeds whose clusters contain x form
a connected subgraph of the exchange graph.

This last fact can be leveraged to efficiently find subalgebras of a finite cluster algebra.
The corank-1 subalgebras are exactly the connected components of the exchange graph
whose vertices all contain a particular cluster variable. In general, a corank-k subalgebra
is a subgraph where the same k cluster variables appear. Such subgraphs are necessarily
connected. This implies there is a bijection between subsets of the set of cluster variables
and subalgebras.

5.4 More Examples of Cluster Algebras

This section presents some of the common cluster algebras that turn up in connection with
scattering amplitudes. In practice, the number of seeds and cluster variables quickly becomes
unmangable to work with by hand. It is therefore necessary to use computer programs to
generate the seeds, perform mutation, and collect the cluster variables. As part of this thesis,
a Mathematica library to do this was developed by the author and Adam Scherlis to do these
computations.

The A3 cluster algebra starts from the initial seed

a1 a2 a3

It has C(3) = 14 seeds.

a1
a2

a3 a2
a4a3 a1

a3

a5

30

a1
a2

a6 a4a3
a7

a2
a4a6

a3a5
a7

a1a5
a8

a1a6
a8

a4a9
a7

a4

a6

a9

a5a9
a7

a5a9
a8

a6a9
a8

where the cluster variables are

a4 =
1 + a2

a1

a5 =
a1 + a3

a2

a6 =
1 + a2

a3

a7 =
a1 + a3 + a2a3

a1a2

a8 =
a1 + a1a2 + a3

a2a3

a9 =
(1 + a2)(a1 + a3)

a1a2a3

.

The exchange graph can be seen in Figure 1. The exchange graph actually has a ge-
ometric interpretation as the Stasheff polytope, a three-dimensional polytope [29]. In fact,
the exchange graph of a finite-type cluster algebra of rank n can be viewed as a polytope in
n-dimensions. A general feature is that these polytopes have faces which are either squares
or pentagons. The pentagonal faces correspond to A2 subalgebras while the square faces
correspond to A1 × A1 subalgebras. There are 6 pentagonal faces and 3 square faces. The
seeds S3 and S11, each at the intersection of 3 pentagons, are known as the “poles” of the
polytope.

31

C6

C2 C4

C1

C3

C8

C13

C14

C9

C11

C12

C10

C5

C7

Figure 1: The exchange graph for A3.

The D4 cluster algebra has 50 seeds and 16 cluster variables. It’s initial quiver is a
directed version of the D4 Dynkin Diagram.

a1 a2 a3

a4

The exchange graph for D4 is displayed in Figure 2. Since this is a four-dimensional
polytope, it is very difficult to visualize one two-dimensional paper. In some sense, it is
“built” out of 3 A3’s stuck together. Table 2 lists its subalgebras.

The E6 cluster algebra is even more complex, with 833 seeds and 42 cluster variables.
The exchange graph for E6 is displayed in Figure 3. The 7-fold and 14-fold symmetry visible
in the graph is not a coincidence; this will be discussed in a few sections in connection with
Grassmannians. The subalgebras of E6 — of which there are 4844 — are tabulated in Table
3.

Subalgebra Shape Number

A1 edge 100
A1 × A1 square 30
A2 pentagon 36
A1 × A1 × A1 cube 4
A3 Stasheff polytope 12

Table 2: Subalgebras of D4.

32

S1

S2

S3

S4

S5

S6

S7

S8

S9

S10

S11

S12

S13

S14

S15

S16

S17

S18

S19

S20

S21

S22

S23

S24

S25

S26

S27

S28
S29

S30

S31

S32

S33

S34

S35

S36

S37

S38

S39

S40

S41

S42

S43

S44

S45

S46

S47

S48

S49

S50

Figure 2: The exchange graph for D4.

Subalgebra Number

A1 × A1 1785
A2 1071
A1 × A1 × A1 357
A1 × A2 714
A3 476
A1 × A1 × A2 119
A2 × A2 21
A1 × A3 112
A4 112
D4 35
A1 × A2 × A2 7
A1 × A4 14
A5 7
D5 14

Table 3: Subalgebras of E6.

33

Figure 3: The exchange graph for E6.

34

5.5 Cluster X -coordinates

Cluster algebras enjoy a parallel and more geometric structure along side the cluster variables.
This variously called the cluster poisson variety or pre-sympletic structure of the
cluster algebra, in the terminology of Goncharov [30] or Gekhtman et al. respectively [24].
In either case, the structure is defined as follows.

Definition 12. Suppose Q is a quiver with n mutable vertices. Label the vertices of Q with
cluster X -coordinates X = {x1, . . . , xn}. The cluster X -coordinates mutate according to

x′i =

x
−1
k i = k

xi

(
1 + xsgnQik

k

)Qik
i 6= k.

(5.25)

where Qij are the coefficients of the matrix corresponding to Q. In the language of Gekhtman
et al., these are called τ -coordinates. The set of all X -coordinates on a cluster algebra is
denoted by X . Seeds for X -coordinates are tuples S = (X, Q).

There are two special features of the X -coordinates. First, they reproduce the same
exchange graph as the cluster variables. Second, there is a Poisson bracket {·, ·} defined on
the X -coordinates by

{xi, xj} = Qijxixj. (5.26)

Proposition 13. This Poisson bracket is invariant under mutation of X -coordinates. If
xi, xj and Q mutate to x′i, x

′
j and Q′, then{

x′i, x
′
j

}
= Q′ijx

′
ix
′
j. (5.27)

The X -coordinates are related to the cluster variables by a map p : A → X given by

xi =
∏
i→j

aj =
∏
j

a
Qij
j (5.28)

where xi and aj are cluster X -coordinates and cluster variables associated with the same
quiver Q. There is a natural relation between the exchange graph of the cluster algebra and
the Poisson bracket described here [12]. If xi and xj appear together in a A1×A1 subalgebra,
then {xi, xj} = 0. If they appear in adjacent quivers in an A2 subalgebra, then {xi, xj} = ±1
depending on the ordering of xi and xj.

Unfortunately, the cluster X -coordinates are not functionally independent. In many
simple cases, products or quotients of two X -coordinates is a third X -coordinate. To choose
a “functionally independent basis”, one has to choose coordinates such that the corresponding
rows of Q are linearly independent. The maximal number of functionally independent X -
coordinates is the corank of Q [12].

Another caveat is that X -coordinate interact strangely with frozen vertices. If one starts
with a initial quiver, finds all the A-coordinates, and then uses Equation (5.28) to compute
the X -coordinates, then in some cases not all the X -coordinates will be found. Empirically,
there are two ways to cure this. First, one can add in a sufficiently large number of frozen
vertices so that all the X -coordinates can be disambiguated. Second, one can start from an
initial quiver of X -coordinates and use the X -coordinate mutation formula instead. This
confusing point will probably be eliminated in the future when the relationship between the
A- and X -coordinates is better understood in the mathematics literature.

35

5.6 Grassmannian Cluster Algebras

Grassmannians have a natural cluster algebra structure. Recall Equation (3.13), the Plücker
Relation,

〈i, j, I〉 =
1

〈k, `, I〉

[
〈i, k, I〉 〈j, `, I〉+ 〈i, `, I〉 〈j, k, I〉

]
(5.29)

where i, j, k, ` are indices of minors and I is a multi-index. This bears a great superficial
similarity to the mutation rule for cluster variables, Equation (5.6). Indeed, one can construct
a cluster algebra corresponding to Gr(k, n) starting with an initial cluster whose variables
are Plücker coordinates. More precisely, for a Grassmannian G(k, n), the ring of homogenous
coordinates C[G(k, n)] is a cluster algebra of geometric type, a result due to Scott [31].

The initial quiver for G(k, n) is[12]

f0

f1` · · · f13 f12 f11

f2` · · · f23 f22 f21

...
. . .

...
...

...

fk` · · · fk3 fk2 fk1

where blue vertices are mutable, white vertices are frozen, and the cluster variables are
written in terms of Plücker coordinates as

f0 := 〈1, . . . , k〉 (5.30)

and

fij :=

{
〈i+ 1, . . . , k, k + j, . . . , i+ j + k − 1〉 i ≤ `− j + 1

〈1, . . . , i+ j − `− 1, i+ 1, . . . , k, k + j, . . . , n〉 i > `− j + 1.
(5.31)

The correspondence between Grassmannian cluster algebras and cluster algebras of finite
type is displayed in Figure 4. Grassmannian cluster algebras with physical significance for
our purposes are G(4, n).

36

A1 A2 A3 A4 A5 A6

D4 E6 E8 E8
(1,1)

E7
(1,1)

1 2 3 4 5 6 7 8
1

2

3

4

5

6

7

8

k

n
-
k

Gr(k, n)

Figure 4: Grassmannian cluster algebras of finite type. Since G(k, n) = G(n − k, n), the
graph is symmetric about y = x. The pink region, above the curve (x−1)(y−1) = 4, contains
Grassmannian cluster algebras of infinite type. The cluster algebras corresponding to G(4, 8)
and G(3, 9) lie on the line and are “semi-infinite”: though they have an infinite number of

seeds, only a finite number of graphs appear as quivers. For instance, E
(1,1)
7 has 504 distinct

quivers. E
(1,1)
7 and E

(1,1)
8 are so-called extended Dynkin diagrams that do not correspond to

a finite semisimple Lie algebra nor a finite-type cluster algebra. This classification is due to
Scott [31]. Credit for this figure goes to Adam Scherlis.

37

6 Polylogarithms

Scattering amplitudes in N = 4 SYM are often expressed in terms of a class of special
functions called polylogarithms. Several classes of polylogarithms are reviewed here, along
with their properties and some tools to work with them.

6.1 Classical Polylogarithms

This section largely follows Brown [32].
The logarithm function can be expressed as a Taylor series about z = 1:

ln(z) =
∞∑
n=1

(−1)n(z − 1)n

n
(6.1)

for z ∈ C, with a radius of convergence of 1. Modifying this slightly gives a much prettier
series

− ln(1− z) =
∞∑
n=1

zn

n
(6.2)

which converges for |z| < 1. This suggests a natural generalization. Define the kth poly-
logarithm Lin by the series

Lik(z) :=
∞∑
n=1

zn

nk
(6.3)

for any positive integer k. Of course, this also converges for |z| < 1. The polylogarithm can
also by defined recursively, by

Li1(z) := − ln(1− z) =
∫ z

0
dw

1−w

Lik(z) :=

∫ z

0

Lik−1(w)
dw

w

(6.4)

where the integral is taken over any path from 0 to z in the complex plane. If a particular
branch of the complex logarithm is chosen, then this definition forms an analytic continuation
of the power series definition.

It is easy to check that these two definitions are equivalent on |z| < 1 by differentiating:

d

dz
Lik(z) =

d

dz

∞∑
n=1

zn

nk
=
∞∑
n=1

zn−1

nk−1
= Lik−1(z)

where the derivative can be pulled inside the infinite sum because the series converges ab-
solutely on this domain. Integrating both sides of this equation yields (6.4), so the integral
definition really is an analytic continuation.

Note that the differential form dw/w that appears in Equation (6.4) is “scale-invariant”
in the sense that if u = λw for some λ ∈ C, then

du

u
=
d(λw)

λw
=
dw

w
.

38

Polylogarithms obey a vast number of identities, of which it is suspected that only a
small fraction are known. For instance, for any n ∈ N,

Lik(z) + Lik(−z) = 21−k Lik(z
2). (6.5)

The dilogarithm, Li2 obeys an inversion formula

Li2(z) + Li2(1/z) = −1

2
log(−z)2 − Li2(1). (6.6)

This is the starting point of a connection between polylogarithms and the Riemann-Zeta
function. The Riemann-Zeta function is defined by the power series

ζ(s) =
∞∑
n=1

1

ns
, Re(s) > 1 (6.7)

which is very similar to Equation (6.3). Indeed, Lik(1) = ζ(k) for all k. So

Li2(1) = ζ(2) =
π2

6
(6.8)

and the inversion formula can be rewritten as

Li2(z) + Li2(1/z) = −1

2
log(−z)2 − π2

6
. (6.9)

The Zeta values ζ(k) turn up often in scattering amplitudes of many theories, including
N = 4 SYM.

Perhaps the most interesting polylogarithm identity is the Abel Identity:

Li2(−x) + log x log y

+ Li2(−y) + log y log

(
1 + y

x

)
+ Li2

(
−1 + y

x

)
+ log

(
1 + y

x

)
log

(
1 + x+ y

xy

)
+ Li2

(
−1 + x+ y

xy

)
+ log

(
1 + x+ y

xy

)
log

(
1 + x

y

)
+ Li2

(
−1 + x

y

)
+ log

(
1 + x

y

)
log x

= −π
2

2

(6.10)

over the appropriate domain. This is actually the first instance of a connection between
polylogarithms and cluster algebras. Recall from Section 5.2 that the cluster variables for
the A2 cluster algebra are

A(A2) = {a1, . . . , a5} =

{
a1, a2,

1 + a1

a2

,
1 + a1 + a2

a1a2

,
1 + a2

a1

}
. (6.11)

39

In terms of these, the Abel Identity can be recast as

5∑
i=1

[
Li2(−ai) + log(ai) log(ai+1)

]
= −ζ(2) (6.12)

where indices on ai are taken mod 5. This connection between cluster algebras and poly-
logarithms is explored by Goncharov in [33]. (There are several ways of writing the Abel
Identity. This presentation was chosen to make cluster algebra structure clear.)

6.2 Iterated Integrals

By collapsing the recursion in Equation (6.4), the classical polylogarithm can be written as
an iterated integral:

Lin(z) =

∫ z

0

Lin−1(wn)
dwn
wn

=

∫ z

0

∫ wn

0

Lin−2(wn−1)
dwn−1

wn−1

dwn
wn

=

∫ z

0

∫ wn

0

· · ·
∫ w2

0

dw1

1− w1

dw2

w2

· · · dwn
wn

=

∫ z

0

∫ wn

0

· · ·
∫ w2

0

d log(1− ω1)d logω2 · · · d logωn.

This is an example of an iterated integral. Iterated integrals were first studied system-
atically by K. T. Chen [34]. Modern reviews are [35, 32, 36]. The last two have a particular
emphasis on physical applications. Here is the basic definition:

Definition 14. Suppose M is a smooth real or complex manifold and let γ : [0, 1] → M be
a piecewise smooth curve. Let ω1, . . . , ωn ∈ Λ1(M) be smooth 1-forms. Write the pullback of
ωi by γ as γ∗(ωi) = fi(t) dt ∈ Λ1(R). Then the iterated integral of ω1, . . . , ωn is defined by∫

γ

ωn ◦ · · · ◦ ω1 :=

∫
0≤t1≤···≤tn≤1

fn(tn)dtn · · · f1(t1)dt1. (6.13)

Classical polylogarithms can therefore be thought of as iterated integrals

Lik(z) =

∫
γz

ω1 ◦ ω0 ◦ · · · ◦ ω0︸ ︷︷ ︸
n−1

(6.14)

where γz : [0, 1]→ C \ {0, 1} is a curve from 0 to z, i.e. γ(0) = 0 and γ(1) = z, and

γ∗(ω1) = d log(1− t), γ∗(ω0) = d log t. (6.15)

Usually, no notational distinction is made between the forms and their pullbacks.
Unfortunately, there is an ambiguity here. There are many paths γz from 0 to z, which

one should be used? Chen found that there is actually a connection between the homotopy
type of the path and the value of the integral. The case of a singularly-iterated integral is

40

familiar from multivariable calculus. If ω is a one-form, and γ1 and γ2 are such that γ1 and
γ2 are homotopic then ∫

γ1

ω =

∫
γ2

ω (6.16)

if and only if ω is closed. The situation for general iterated integrals is more complicated
and will be the subject of Section 6.4.

Proposition 15. Iterated integrals enjoy the following properties.

1. The iterated integral
∫
γ
ω1 ◦ · · · ◦ ωn does not depend on the choice of parameterization

of γ.

2. If γ−1(t) := γ(1− t) is the reverse path, then∫
γ−1

ω1 ◦ · · · ◦ ωn = (−1)n
∫
γ

ωn ◦ · · · ◦ ω1. (6.17)

3. If α, β : [0, 1]→M are paths so that α ends where β begins , then the iterated integral
over their composite path αβ is given by∫

αβ

ω1 ◦ · · · ◦ ωn =
n∑
i=0

∫
α

ω1 ◦ · · · ◦ ωi
∫
β

ωi+1 ◦ · · · ◦ ωn. (6.18)

Furthermore, the space of iterated integrals is equipped with shuffle product. Intuitively,
a shuffle is a permutation that interleaves two sets as if they were stacks of cards being riffle
shuffled.

Definition 16. A (n,m)-shuffle is a permutation σ ∈ Sn+m (the group of permutation of
size n+m) such that

σ(1) < σ(2) < · · · < σ(n) and σ(n+ 1) < σ(n+ 2) < · · · < σ(m) (6.19)

The set of (n,m)-shuffles is denoted Sn,m.

Proposition 17. Two iterated integrals over the same path γ may be multiplied by(∫
γ

ω1 ◦ · · · ◦ ωn
)(∫

γ

ωn+1 ◦ · · · ◦ ωn+m

)
=

∑
σ∈Sn,m

∫
γ

ωσ(1) ◦ · · · ◦ ωσ(n+m) (6.20)

6.3 Shuffle Algebras and Lyndon Words

Property (6.20) above is perhaps the most important. It allows iterated integrals to be
thought of as part of a shuffle algebra. An overview of shuffle algebras is given in Chapter
12 of [37]. A much more relevant reference is by Radford [38]

41

Definition 18. Let X be a set with a total ordering ≤. The pair (X,≤) is known as the
alphabet. Let VX be a vector space with a basis B = {vα : α ∈ X} over a field k. One
thinks of the basis vectors as “letters” in this alphabet. The free shuffle algebra for X is
total tensor space

sh(X) :=
∞⊕
n=0

T nVX (6.21)

equipped with the shuffle product X : T nVX ⊗ TmVX → T n+mVX given by

(v1 ⊗ v2 ⊗ · · · ⊗ vn) X (vn+1 ⊗ · · · ⊗ vm) :=
∑

σ∈Sn,m

vσ(1) ⊗ vσ(2) ⊗ · · · ⊗ vσ(n+m). (6.22)

An element that can be written as a sum of k-tensor products w =
∑

iw1i⊗ · · · ⊗wki is said
to be weight k.

Since T 0VX ∼= k, sh(X) has a unit element 1. Because of the shuffle product, many
elements of sh(X) can be written in terms of products of elements of lower weight.

Definition 19. A element w ∈ sh(X) is said to be irreducible if it cannot be written as
the shuffle product of other elements. Precisely, for all v, u ∈ sh(X), vXu 6= w whenever
u 6= 1 6= v. For k ∈ N, define the set of elements of pure weight as

shk(X) :=
{
w ∈ T kVX : w is irreducible

}
. (6.23)

This forms an N-grading for sh(X).

The space shk(V) is a graded commutative Hopf algebra, equipped with a coproduct,
counit, and antipode map. Some of these additional properties will be discussed in Section
7.

The next task is to find bases for sh(X) and shk(X). The first is easy.

Proposition 20. The set

β(X) := {vα1 ⊗ · · · ⊗ vαk : αi ∈ X, k ∈ N} (6.24)

is a basis for sh(X) as a vector space.

This is the usual basis for a tensor product space. However, since there is a shuffle
product, what is really needed is an algebraic basis. Roughly, a minimal set of elements such
that products and linear combinations generate the whole space. Finding an algebraic basis
for shk(X) is a challenge, in which the combinatorics of Lyndon words play a role.

Definition 21. Suppose (X,≤) is an alphabet as above. A word is an element

x = x1x2 · · ·xk ∈ Xk, (6.25)

written as a product instead of a tuple. The total ordering extends to Xk by lexicographical
(alphabetical) ordering. A Lyndon word is a word whose ordering is strictly less than all
of its cyclic permutations. Let Lynk(X) denote the set of all Lyndon words of length n.

42

For example, if X = {a, b} is a two letter alphabet with ordering a ≤ b, then the Lyndon
words of length 4 are

aaab aabb and abbb.

Proposition 22. The number of Lyndon words of length n in an alphabet of length k is[39]

Nk(n) =
1

n

∑
d|n

µ(d)kn/d (6.26)

where µ is the Möbius function defined on N by

µ(n) =

1 if n = 1

(−1)k if n = p1 · · · pk are distinct primes

0 if n is not square free, i.e. d2 | p for some d ∈ N.

(6.27)

Computationally, Lyndon words may be efficiently generated using Duval’s Algorithm
[40, 41]. It is linear in the number of Lyndon words generated, which is the best that could
be expected. The algorithm works as follows. Suppose X = {a ≤ b ≤ · · · ≤ z} is an alphabet
with n letters. The algorithm will generate all words up to length k. Given a Lyndon word
w, define it’s successor word S(w) as follows:

1. Let v be the word formed by repeating w until it is longer than length n, then cutting
off whatever is longer than n, so the length of v is n.

2. Remove any z’s from the end of v.

3. Replace the last letter of v with the next letter: a→ b, b→ c, etc. Since the last letter
is never z, no replacement is needed for z.

4. Let this word be S(w).

The algorithm is then as follows:

1. Start with the word a.

2. Generate successor words.

3. Terminate upon reaching the one-letter word z.

4. Return all words generated.

The further combinatorics of Lyndon words are interesting in their own right, and in
particular are used in the Poicaré-Birkhoff-Witt theorem in Lie theory. However, nothing
further is needed to understand shuffle algebras.

Theorem 23 (Radford’s Theorem). Let sh(X) be a shuffle algebra as above. Then

βk(X) :=
{
vα1 ⊗ · · · ⊗ vαk : α1α2 · · ·αk ∈ Lynk(X)

}
(6.28)

is a basis for the space of irreducible, weight k elements of sh(X). This is a paraphrase of
Theorem 3.1.1 of [38] in terms of Lyndon words.

While a proof is beyond the scope of this thesis, it is not too complicated. The main
difficulty is deciding exactly what “prime factorization” means in the context of words.

43

6.4 The Symbol and Chen’s Theorem

This section will answer the following question: under what conditions is an iterated integral∫
γ
ω1 ◦ · · · ◦ωn independent of the choice of path γ? The answer will provide one of the most

useful tools for working with special functions in scattering amplitudes, The Symbol. The
Symbol was introduced by Goncharov, Spradlin, Vergu, and Volovich in [2]. This section
partially follows the presentation in [36, 32].

Definition 24. Suppose that Ω ⊂ Λ1M is a set (often finite) of one-forms where M is a
smooth real or complex manifold. Suppose that ω1, · · · , ωn ∈ Ω. Define the integration
map from 1-forms to iterated integrals by

Iγ(ω1 ⊗ · · · ⊗ ωn) =

∫
γ

ω1 ◦ · · · ◦ ωn. (6.29)

One can check that this is an homomorphism of algebras, i.e. Iγ commutes with the
shuffle product X.

Definition 25. Further define a linear “derivative” D : T nΩ→ T n+1Ω⊕ T n−2Ω⊗ Λ2M by

D (ω1 ⊗ · · · ⊗ ωn) :=
n∑
k=1

ω1⊗· · ·⊗dωi⊗· · ·⊗ωn+
n−1∑
k=1

ω1⊗· · ·⊗ωi−1⊗ωi∧ωi+1⊗ωi+2⊗· · ·⊗ωn.

(6.30)
Any element ξ =

∑
i ωi1 ⊗ · · · ⊗ ωin ∈ T nΩ such that Dξ = 0 is said to be integrable. The

kernel of D is called the set of integrable words on M and is denoted by B(M) := kerD.

Theorem 26 (Chen’s Theorem [34]). Under appropriate conditions on Ω,

Iγ : B(M)→ {homotopy invariant iterated integrals} . (6.31)

is an isomorphism.

The upshot is that iterated integrals are independent of path (up to homotopy) if they
are integrals of integrable words. Iterated integrals are then well-defined as functions of the
endpoint of the path. But, more importantly, one can go the other way; the value of any
homotopy-invariant iterated integral is determined entirely by its corresponding integrable
word.

This is a tremendously useful tool for scattering amplitudes. Finding the numerous
identities between polylogarithms make them difficult to work with, because one can never be
certain if a given expression is unique. However, if one works instead with the corresponding
integrable words, then equality is a matter of linear algebra; many functional relations are
“automatically” taken into account.

In the physics literature, a map called The Symbol is used to go between iterated integrals
and integrable words.

Definition 27. Suppose F is a space of one-variable functions of the form

f(z) =

∫
γz

ωα1 ◦ · · · ◦ ωαn (6.32)

44

where γz is a path from 0 to z ∈ C. Suppose that the differential forms ωα are drawn from

Ω = {ωα = d log gα : gα is a complex-valued rational function} . (6.33)

One further mandates that the one-forms are an integrable word, i.e. ξ = ωα1 ◦ · · · ◦ ωαn ∈
B(C), so that the functions f(z) are well-defined.

The Symbol is a map from iterated integrals into a shuffle algebra of rational functions

S(f(z)) := S
(∫

γz

ωα1 ◦ · · · ◦ ωαn
)

= log gα1 ⊗ · · · ⊗ log gαn . (6.34)

It is standard notation to drop the log’s on the right hand side. An alternative definition
is given in [2] that extends The Symbol to functions of many variables.

Definition 28. If Fk(x1, . . . , xn) is a transcendental function of weight k in x1, . . . xx, its
differential may be written as

dFk =
∑
i

Fi,k−1d logRi (6.35)

where Fi,k−1 are transcendental functions of weight k− 1 and the Ri’s are rational functions
in {x1, . . . , xn}. The Symbol is then defined recursively by

S (Fk) =
∑
i

S (Fi,k−1)⊗Ri, (6.36)

where the log’s were dropped on the right hand side as is customary.

In both of these definitions, a precise set of functions is not specified. In any specific
application, some class of polylogarithms is usually used. This lack of precision rarely results
in any confusion.

At this point, an example is badly needed. From Equation (6.14),

Lik(z) =

∫
γz

−d log(1− w) ◦ d logw ◦ · · · ◦ d logw. (6.37)

From Equation (6.34), it is immediate that

S (Lik(z)) = − log(1− z)⊗ log z ⊗ · · · ⊗ log z︸ ︷︷ ︸
k−1

= −(1− z ⊗ z ⊗ · · · ⊗ z︸ ︷︷ ︸
k−1

). (6.38)

This reveals a shortcoming of the notation of dropping the log’s — constant factors at the
front must be kept track of separately, and do not distribute:

− (1− z ⊗ z ⊗ · · · ⊗ z︸ ︷︷ ︸
k−1

) 6= (−1 + z)⊗ z ⊗ · · · ⊗ z︸ ︷︷ ︸
k−1

. (6.39)

This can also be done from the other definition, (6.36). Equation (6.4) implies

Lik(z) =

∫ z

0

dw

1− w
=

∫ z

0

−d log(1− w) k = 1∫ z

0

Lik−1(w) d logw k > 1

(6.40)

45

so

dLik =

{
−d log(1− z) k = 1

Lik−1(z) d log z k > 1.
(6.41)

Therefore

S(Lik(z)) =

{
−(1− z) k = 1

S (Lik−1(z))⊗ z k > 1
= −(1− z)⊗ z ⊗ · · · ⊗ z︸ ︷︷ ︸

k−1

, (6.42)

which of course matches the result using the other definition. Many further examples of
symbols will follow in latter sections. Reviews on the properties of symbols and their math-
ematical properties have been made by Duhr et al. in [42, 43].

Proposition 29. The symbol satisfies the following properties.

1. Symbols are additive with respect to multiplication:

a1⊗· · · an⊗XY ⊗b1⊗· · ·⊗bn = a1⊗· · · an⊗X⊗b1⊗· · ·⊗bn+a1⊗· · · an⊗Y ⊗b1⊗· · ·⊗bn.
(6.43)

This is immediate from the multilinearity of tensor products if the implicit logs are put
back in.

2. This also implies

a1 ⊗ · · · an ⊗Xn ⊗ b1 ⊗ · · · ⊗ bn = n (a1 ⊗ · · · an ⊗X ⊗ b1 ⊗ · · · ⊗ bn) (6.44)

3. The Symbol commutes with shuffle products:

S (F X G) = S(F) X S(G). (6.45)

This follows from the fact that the integration map is an algebra homomorphism.

Section 6.6 will give more examples of symbols. It is first necessary to define some broader
classes of polylogarithms.

6.5 Generalized Polylogarithms

The classical polylogarithms of Section 6.1 are the simplest special functions that arise in
this subject. This section introduces the full “cast” of polylogarithms. Reviews for physicists
are given in [42, 43, 44] and are studied more fully by Goncharov in [45].

Definition 30. Define a generalized polylogarithm I : Ck+2 → C as an iterated integral
by

I(a0; a1, . . . , an; an+1) =

∫ ak+1

a0

dt

t− a1

◦ dt

t− a2

◦ · · · ◦ dt

t− ak
. (6.46)

Proposition 31. The generalized polylogarithm is invariant under affine transformation
ai 7→ αai + β for all 0 ≤ i ≤ k + 1 with 0 6= α, β ∈ C.

46

In particular, this means that the first index isn’t really necessary:

I(a0; a1 . . . , ak; ak+1) = I(0; a1 − a0, . . . , ak − a0; ak+1 − a0). (6.47)

This motivates the following definition.

Definition 32. The Goncharov polylogarithm G : Ck+1 → C is defined by

G(a1, . . . , ak; ak+1) =

∫ ak+1

0

dt

t− a
if k = 1∫ ak+1

0

G(a2, . . . , ak; t)
dt

t− a1

if k > 1

(6.48)

=

∫ ak+1

0

dt

t− a1

◦ dt

t− a2

◦ · · · ◦ dt

t− ak
. (6.49)

As a notational shorthand, it is common to use G(a;x) = G(a1, . . . , ak;x). The weight of
G(a;x) is defined as k = |a|.

Generalized polylogarithms and Goncharov polylogarithms contains equivalent informa-
tion, but with one fewer argument. The Goncharov polylogarithms have a very rich structure,
with many beautiful properties and relations. However, it is sometime more symmetrical
and convenient to use the I notation instead of the G notation. As a caveat, there is some
notational variation between papers for these functions. The order of the arguments of G is
sometimes reversed from what is shown here.

Proposition 33. Here are a few of the identities the Goncharov polylogarithm satisfies.

1. Closed form expressions in special cases.

G(0k;x) =
1

k!
[log(x)]k

G(ak;x) =
1

k!
logk

(
1− x

a

)
G(0k−1, a;x) = −Lik

(x
a

)

where 0k = (0, . . . , 0︸ ︷︷ ︸
k

) and ak = (a, . . . , a︸ ︷︷ ︸
k

).

2. Scale invariance. If k ∈ C∗ and a = (a1, . . . , ak) then

G(ka; kx) = G(a;x) (6.50)

whenever ak 6= 0.

47

3. Hölder Convolution. Whenever a1 6= 1 and ak 6= 0, for all p ∈ C∗,

G(a1, . . . , ak; 1) =
k∑
i=0

(−1)iG

(
1− ai, . . . , 1− a1; 1− 1

p

)
G

(
ai+1, . . . , ak;

1

p

)
. (6.51)

In particular, in the limiting case p→∞,

G(a1, . . . , ak; 1) = (−1)nG(1− ak, . . . , 1− a1; 1). (6.52)

4. Shuffle product:
G(a;x)G(b;x) = G (a X b;x) . (6.53)

Equation (6.53) implies that for a fixed last argument x, not everything of the form
G(−;x) is functionally independent, but that there are polynomial relations between them.
This will be revisited in Section 8.

Another common class of polylogarithms are the multiple polylogarithms.

Definition 34. As a power series, a multiple polylogarithm is a function

Lin1,...,n` : Ck → C

defined by

Lin1,...,n`(z1, . . . , z`) :=
∑

1≤k1≤···<k`

zk11

kn1
1

· · · z
k`
`

kn``
(6.54)

for ni ∈ Z.

It turns out that these are actually provide the same class of functions as the Goncharov
polylogarithms, due to the following identity:[44]

Lin1,...,n`(z1, . . . , z`) = (−1)`G

(
0n`−1,

1

z`
, . . . ,

1

z2 · · · z`
,0n1−1,

1

z1z2 · · · z`
; 1

)
. (6.55)

6.6 Examples of Symbols

Thus equipped with many more functions defined by iterated integrals, the next thing to do
is compute their symbols. The following theorem of Goncharov is useful.

Theorem 35 (Goncharov [45]). The differential of the generalized polylogarithms is given
by

dI(a0; a1, . . . , ak; an+1)

=
k∑
i=1

I(a0; a1, . . . , âi, . . . , ak; an+1) [d log (ai+1 − ai)− d log (ai−1 − ai)] .
(6.56)

48

The proof is just a computation. Applying Equation (6.36) shows the symbol of the
generalized polylogarithms is (logs added for clarity)

S
(
I(a0; a1, . . . , ak; ak+1

)
=

log(a1 − a2)− log(a1 − a0) if k = 1

k∑
i=1

S (I(a0; a1, . . . , âi, . . . ak; ak+1)⊗ [log(ai − ai−1)− log (ai + ai+1)] if k > 1.

(6.57)

As an example, the symbol of Lin,m can be computed from fundamental definitions. By
definition,

Lin,m(x, y) :=
∞∑
i=1

∞∑
j=1

xiyj

injm
; |x| < 1, |y| < 1. (6.58)

One method to compute the symbol of an arbitrary function f(x) is to note

f(x) =

∫ x

0

df

dt
dt =

∫ x

0

t
df

dt

dt

t
=

∫ x

0

t
df

dt
d log t

so its symbol is recursively

S(f(x)) = S
(
x
df

dx

)
⊗ x, (6.59)

so long the right-hand side is well-defined. This doesn’t always work, and in fact fails
spectacularly for f(x) = x, but works for polylogarithms. For functions of multiple variables
this generalizes to

S(f(x1, . . . , xn)) =
∑
i

S
(
xi
df

dxi

)
⊗ xi. (6.60)

To apply this to Li2,2(x, y), we need to compute its differential:

dLi2,2(x, y) =
∞∑
i=1

∞∑
j=1

xi−1yj

in+1jm
dx+

∞∑
i=1

∞∑
j=1

xiyj−1

injm+1
dy = Lin−1,m(x, y)

dx

x
+ Lin,m−1(x, y)

dy

y
.

Therefore this symbol is

S(Lin,m(x, y)) = S(Lin−1,m(x, y))⊗ x+ S(Lin,m−1(x, y))⊗ y. (6.61)

To apply this recursively, some edge cases need to be understood. If m = 0, then using
the partial sum of the geometric series

∑n
k=r a

n = an+1−ar
a−1

,

Lin,0(x, y) =
∞∑
i=1

i−1∑
j=1

xiyj

in
=
∞∑
i=1

xi

in
yi+1 − y
y − 1

=
∞∑
i=1

(
(xy)i

in(y − 1)
− y

y − 1

xi

in

)
=
y Lin(x)− Lin(xy)

1− y

and similarly for n = 0,

Li0,m(x, y) =
∞∑
i=1

xi
i−1∑
j=1

yj

jm
=
∞∑
j=1

∞∑
i=j+1

xiyi

jm
=
∞∑
j=1

yj

jm
xj+1

1− x
=

x

1− x

∞∑
j=1

(xy)j

jm
=

x

1− x
Lim(xy).

49

Applying (6.61) with n = m = 1,

dL1,1(x, y) = Li0,1
dx

x
+ Li1,0

dy

y

=
x

1− x
Li1(xy)

dx

x
+
y Li1(x)− Li1(xy)

1− y
dy

y

= −Li1(xy)d ln(1− x)− Li1(x)d ln(1− y)− Li1(xy)
dy

y(1− y)
.

Using the fact that d log y
1−y = dy

y(1−y)
, the symbol becomes

S(Li1,1(x, y)) = −S(Li1(xy))⊗ (1− x)− S(Li1(x))⊗ (1− y)− S(Li1(xy))⊗ y

1− y
.

For convenience, define Sn,m := S (Lin,m(x, y)). So

S1,1 = (1− xy)⊗ (1− x) + (1− x)⊗ (1− y) + (1− xy)⊗ y

1− y
.

Similar calculations give

Sn,1 = Sn−1,1 ⊗ x− S(Lin(x))⊗ (1− y)− S(Lin(xy))⊗ y

1− y

and
S1,m = −S(Lim(xy))⊗ (1− x) + S1,m−1 ⊗ y.

For further convenience, define Ŝk(z) := S (Lik(z)). This is enough to write a concise recur-
sive definition for Sn,m. Combining the above formulae,

Sn,m =

(1− xy)⊗ (1− x) + (1− x)⊗ (1− y) + (1− xy)⊗ y

1−y n = m = 1

Sn−1,1 ⊗ x+ Ŝn(x)⊗ (1− y) + Ŝn(xy)⊗ y
1−y m = 1, n > 1

S1,m−1 ⊗ y + Ŝm(xy)⊗ (1− x) n = 1,m > 1

Sn−1,m ⊗ x+ Sn,m−1 ⊗ y n > 1,m > 1.

(6.62)

It’s actually possible to put this into a closed form. For the n = 1 or m = 1 cases, it
turns into just a sum from 1 to n+m. For larger n and m’s, it turns into a sum over paths
from the chosen (n,m) to “edge” points on the lattice (i.e. where n = 1 or m = 1), such
that the paths are monotonically decreasing in both n and m. It’s probably easier just to
use the recursive version in practice.

As another example, Abel’s identity can be proven with symbols. It is easier to use a
slightly different form that was used above:

Li2
x

1− y
+ Li2

y

1− x
− Li2

xy

(1− x)(1− y)
= Li2 x+ Li2 y + ln(1− x) ln(1− y). (6.63)

If the symbols of the right and left hand side are the same, then the identity holds, possibly
up to additive constants.

50

The first task is to find the symbol for all the summands. By Equation (6.38),

S
(

Li2
x

1− y

)
= −

(
1− x

1− y

)
⊗ x

1− y
= −

(
1− x− y

1− y

)
⊗ x

1− y

S
(

Li2
y

1− x

)
= −

(
1− y

1− x

)
⊗ y

1− x
= −

(
1− y − x

1− x

)
⊗ y

1− x

S
(
−Li2

xy

(1− x)(1− y)

)
=

(
1− xy

(1− x)(1− y)

)
⊗ xy

(1− x)(1− y)

=

(
1− x− y + xy − xy

(1− x)(1− y)

)
⊗ xy

(1− x)(1− y)
.

The first three terms all have a suspiciously similar factor of 1− x− y, which suggests some
cancellations will occur. Using the commutativity and power properties from Proposition
29, the third term can be expanded as(

1− x− y
(1− x)(1− y)

)
⊗ xy

(1− x)(1− y)

=

(
1− x− y

(1− x)(1− y)

)
⊗ y

1− x
+

(
1− x− y

(1− x)(1− y)

)
⊗ x

1− y

=
1

1− y
⊗ y

1− x
+

(
1− x− y

1− x

)
⊗ y

1− x
+

1− x− y
1− y

⊗ x

1− y
+

1

1− x
⊗ x

1− y

=
1− x− y

1− x
⊗ y

1− x
+

1− x− y
1− y

⊗ x

1− y
− (1− y)⊗ y

1− x
− (1− x)⊗ x

1− y

=
1− x− y

1− x
⊗ y

1− x
+

1− x− y
1− y

⊗ x

1− y
− (1− y)⊗ y + (1− y)(1− x)− (1− x)⊗ x+ (1− x)(1− y).

The first two terms exactly cancel out S Li2
x

1−y + S Li2
y

1−x , so the left-hand side of (6.63)
reduces to

−(1− y)⊗ y + (1− y)(1− x)− (1− x)⊗ x+ (1− x)(1− y).

Meanwhile, the right hand side is given by

S Li2(x) + S Li2(y) + S (ln(1− x) ln(1− y))

= −(1− x)⊗ x− (1− y)⊗ y + S(ln(1− x))XS(ln(1− y))

= −(1− x)⊗ x− (1− y)⊗ y + (1− x)X(1− y)

= −(1− x)⊗ x− (1− y)⊗ y + (1− x)⊗ (1− y) + (1− x)⊗ (1− y),

which is exactly what the left-hand side reduced to. This proves Abel’s identity, up to a
constant.

51

7 Results on Cluster Functions

Now that all the background has been assembled, the theme (1.1) can be stated more pre-
cisely

Remainder functions R(L)
n of MHV scattering amplitudes in the

planar limit of N = 4 SYM tend to be linear combinations of gen-
eralized polylogarithms of weight 2L whose symbols are composed
of X -coordinates of the the cluster algebra G(4, n).

(7.1)

This has been shown explicitly to be true for the n-particle remainder function at 2
loops, for n = 6, 7 at 3 loops, and is generally expected to be true in a much wider range of
cases. Moreover, there is a cluster algebra structure that informs which linear combinations
of polylogarithms can appear in the amplitudes. Such combinations are called cluster poly-
logarithms. The full amplitude, at least in specific cases, can be written as a sum of these
cluster polylogarithms.

This section will review some of the main definitions of cluster polylogarithms, show the
results of a few novel computations, and present some new facts about their structure on
finite cluster algebras.

7.1 The Hopf Algebra of Polylogarithms

The space of polylogarithms has the structure of a graded, commutative Hopf algebra. A
Hopf algebra, very roughly, is an algebra equipped with a product, coproduct, and antipode
map. A coproduct can be thought of as “dismantling” an element of the algebra into simpler
pieces. For a full treatment of Hopf algebras see [37]. A treatment suitable for physicists is
given in [44]. For Hopf algebras and polylogarithms, a technical treatment is given in [45]
and some of the physically relevent results are given in Appendix A of [46].

Definition 36. Define the space of generalized polylogarithms of weight k to be

Ak =
{
I(a0; a1, . . . , ak; ak+1) : Ck+2 → C

}
. (7.2)

Further define

A• :=
∞⊕
k=0

Ak. (7.3)

A inherits the shuffle product from (6.22). In this notation, X : Ak ⊗A` → Ak+` by

I(a; a1, . . . , ak; b)I(a; ak+1, . . . , ak+`; b) =
∑
σ∈Sk,`

I(a; aσ(1), . . . , aσ(k+`); b) (7.4)

= I
(
a; (a1, . . . , ak)X(ak+1, . . . , ak+`); b

)
. (7.5)

52

A• is also equipped with a coproduct ∆ : An →
n⊕
k=1

Ak ⊗An−k by

∆ (I(a0; a1, . . . , an; an+1)) =
∑

0<i1<···<ik=n

I(a0; ai1 , . . . , aik ; an+1)⊗

[
k∏
q=0

I(aiq ; aiq+1, . . . , aiq+1−1; aiq+1

]
.

(7.6)
These are compatible in the sense that:

∆(I1 X I2) = ∆(I1)∆(I2). (7.7)

Furthermore, the coproduct is coassociative: (id ⊗ ∆)∆ = (∆ ⊗ id)∆, which implies that
applying ∆ multiple times gives a unique result. Therefore ∆ ◦ · · ·∆ = ∆n : An →

⊗n
i=1A1

is well-defined. This coproduct provides a third definition of The Symbol on An as

S = ∆n (mod πZ). (7.8)

It is often useful to work with polylogarithms of pure weight that cannot be written as
products of terms of lower weight.

Definition 37. Analogously to (6.23), define the space of polylogarithms of pure
weight to be

Lk = {I ∈ Ak : I 6= RS for any R, S ∈ A•} . (7.9)

Again, set L• :=
⊕

k Lk.

On the level of symbols, several related spaces are used frequently. First, define AS• and
LS• as the images of A• and L• under the Symbol map, respectively. Further define BSk as the
quotient of LSk by the ideal generated by functional equations for the classical polylogarithms
Lik. A very useful fact is that for[12]

LSk = BSk , k < 4. (7.10)

Meaning that all polylogarithms of weight three or less can be written as linear combinations
of classical polylogarithms. This does not hold at weight four or above.

The spaces AS• and LS• are also commutative graded Hopf algebras. However, a completely
different coproduct is used on them. (This is called δ instead of ∆ to distinguish the two.)
See [3] for details.

Definition 38. Define the Symbol coproduct δ : LS• → Λ2LS• by

δ(a1 ⊗ · · · ⊗ ak) =
k−1∑
n=1

(a1 ⊗ · · · ⊗ an)
∧

(an+1 ⊗ · · · ⊗ ak) . (7.11)

One should note that the large wedge is in a different space and is not the wedge associated
with the tensor product ⊗. The coproduct satisfies δ2 = 0 and gives LSK the structure of a
Lie coalgebra.

One often wants to restrict an arbitrary symbol to one of pure weight. This can be done
by the following projection map.

53

Definition 39. Define the projection ρ : ASk → LSk by ρ(a1) = a1 and

ρ (a1 ⊗ · · · ⊗ ak) =
k − 1

k
[ρ(a1 ⊗ · · · ⊗ ak−1)⊗ ak − ρ (a2 ⊗ · · · ⊗ ak)⊗ a1] . (7.12)

One can check that ρ2 = ρ, so it is indeed a projection.

7.2 Examples of the Symbol Coproduct

In this section, the action of the Symbol coproduct δ on Li2,2 will be computed as an example.
The calculation is long, though not hard. Notation from Golden et al. [3] is used freely in this
section; consult it for definitions of Λ2B2 and B3⊗C∗, as well as a more in-depth discussion
of δ and how it can be applied to polylogarithms of low weight. As a shortcut notation, let
{x}k := S(Lik(x)). By Equation (6.62), the symbol of Li2,2(x, y) is

S(Li2,2(x, y)) = (1− y)⊗ (1− x)⊗ x⊗ y
+ (1− y)⊗ (1− x)⊗ y ⊗ x
+ (1− y)⊗ y ⊗ (1− x)⊗ x
− ((1− xy)⊗ (1− x)⊗ x⊗ y)

− ((1− xy)⊗ (1− x)⊗ y ⊗ x)

− ((1− xy)⊗ x⊗ (1− x)⊗ x)

+ (1− xy)⊗ x⊗ x⊗ x
+ (1− xy)⊗ x⊗ x⊗ y
+ (1− xy)⊗ x⊗ (1− y)⊗ y
+ (1− xy)⊗ x⊗ y ⊗ x
+ (1− xy)⊗ (1− y)⊗ x⊗ y
+ (1− xy)⊗ (1− y)⊗ y ⊗ x
− ((1− xy)⊗ y ⊗ (1− x)⊗ x)

+ (1− xy)⊗ y ⊗ x⊗ x
+ (1− xy)⊗ y ⊗ (1− y)⊗ y.y.

(7.13)

At weight 4, the Symbol coproduct is a map

δ : L4 → Λ2L2 ⊕ (L3 ∧ L1) ∼= Λ2B2 ⊕ (B3 ⊗ C∗). (7.14)

The wedge product in the second term can be dropped because elements of B3 and B1 are
in different spaces and cannot be anti-symmetrized. The action of δ is given by

δ (a⊗ b⊗ c⊗ d)|Λ2B2
= ρ (a⊗ b)

∧
ρ(c⊗ d) (7.15)

δ (a⊗ b⊗ c⊗ d)|B3⊗C∗ = ρ (a⊗ b⊗ c)
⊗

d− ρ(b⊗ c⊗ d)
⊗

a (7.16)

The outsized
∧

and
⊗

symbols denote formal tensor products between different spaces;
these are not the same as the ⊗ tensor products from the symbol.

54

Applying Equation (7.15) to (7.13) and re-writing in terms of the notation {z}k from [3],
gives

δ(S(Li2,2(x, y))|Λ2B2
= −(1− xy) ∧ y

∧
{x}2 (7.17)

+ (1− xy) ∧ y
∧
{x}2 (7.18)

− (1− xy) ∧ x
∧
{x}2 (7.19)

+ (1− xy) ∧ x
∧

x ∧ x (7.20)

+ (1− xy) ∧ x
∧

x ∧ y (7.21)

+ (1− xy) ∧ x
∧
{y}2 (7.22)

+ (1− xy) ∧ x
∧

y ∧ x (7.23)

− (1− xy) ∧ x
∧
{y}2 (7.24)

+ (1− xy) ∧ x
∧
{y}2 (7.25)

− (1− xy) ∧ y
∧
{x}2 (7.26)

+ (1− xy) ∧ y
∧

x ∧ x (7.27)

+ (1− xy) ∧ y
∧
{y}2 (7.28)

+ {y}2

∧
{x}2 (7.29)

− {y}2

∧
{x}2 (7.30)

+ {y}2

∧
{x}2 . (7.31)

There are many cancellations and combinations here. The combinations

(7.17) + (7.18) = 0, (7.24) + (7.25) = 0, and (7.30) + (7.31) = 0

all vanish. Since a∧a = 0, Equations (7.20), (7.21), (7.23), and (7.27) all vanish individually.
Lastly, we can combine two pairs

(7.19) + (7.26) = −(1− xy) ∧ x ∧ {x}2 − (1− xy) ∧ y ∧ {x}2 = −(1− xy) ∧ xy ∧ {x}2

= −{xy}2 ∧ {x}2

(7.22) + (7.28) = (1− xy) ∧ x ∧ {y}2 + (1− xy) ∧ y ∧ {y}2 = (1− xy) ∧ xy ∧ {y}2

= {xy}2 ∧ {y}2 .

Altogether, then, this gives

δ(S(Lin,m(x, y))|Λ2B2
= −{xy}2 ∧ {x}2 + {xy}2 ∧ {y}2 + {y}2 ∧ {x}2 .

Now for the B3 ⊗ C∗ component. Applying Equation (7.16) to the symbol of Li2,2(x, y)
gives 15× 2× 2 = 60 terms, These can be grouped by their last factor: everything is of the
form X

⊗
z for z ∈ {x, y, 1− y, 1− xy}. Collecting terms like this gives:

55

δ(S(Li2,2(x, y)))|B3⊗C∗ = A
⊗

(1− y) +B
⊗

(1− xy) + C
⊗

y +D
⊗

x (7.32)

=
[
(1− x) ∧ (y ⊗ x)− x ∧ (y ⊗ (1− x))

+ y ∧ ((1− x)⊗ x)− y ∧ (x⊗ (1− x))
]⊗

(1− y)

+
[
− ((1− x) ∧ (x⊗ x))− (1− x) ∧ (y ⊗ x) + x ∧ ((1− x)⊗ x) + x ∧ ((1− y)⊗ y)

+ x ∧ (y ⊗ (1− x))− x ∧ (y ⊗ (1− y)) + (1− y) ∧ (x⊗ y) + (1− y) ∧ (y ⊗ y)

− y ∧ ((1− x)⊗ x) + y ∧ (x⊗ (1− x))− y ∧ (x⊗ (1− y))− y ∧ ((1− y)⊗ y)
]⊗

(1− xy)

+
[
− ((1− x) ∧ (x⊗ (1− y))) + (1− x) ∧ (x⊗ (1− xy))− x ∧ (x⊗ (1− xy))

− x ∧ ((1− y)⊗ (1− xy)) + (1− y) ∧ ((1− x)⊗ x)− (1− y) ∧ (x⊗ (1− xy))

− y ∧ ((1− y)⊗ (1− xy))− (1− xy) ∧ ((1− x)⊗ x) + (1− xy) ∧ (x⊗ x)

+ (1− xy) ∧ (x⊗ (1− y)) + (1− xy) ∧ ((1− y)⊗ x) + (1− xy) ∧ (y ⊗ (1− y))
]⊗

y

+
[
− ((1− x) ∧ (y ⊗ (1− y))) + (1− x) ∧ (y ⊗ (1− xy)) + x ∧ ((1− x)⊗ (1− xy))

− x ∧ (x⊗ (1− xy))− x ∧ (y ⊗ (1− xy)) + (1− y) ∧ ((1− x)⊗ y)

+ (1− y) ∧ (y ⊗ (1− x))− (1− y) ∧ (y ⊗ (1− xy))− y ∧ ((1− x)⊗ (1− y))

+ y ∧ ((1− x)⊗ (1− xy))− y ∧ (x⊗ (1− xy))− (1− xy) ∧ ((1− x)⊗ y)

− (1− xy) ∧ (x⊗ (1− x)) + (1− xy) ∧ (x⊗ x) + (1− xy) ∧ (x⊗ y)

+ (1− xy) ∧ ((1− y)⊗ y)− (1− xy) ∧ (y ⊗ (1− x)) + (1− xy) ∧ (y ⊗ x)
]⊗

x.

(7.33)

The symbol-wedge is supposed to be associative with the symbol, so the placement of
parentheses doesn’t actually matter here.

Equation (7.32) simplifies considerably. Using the fact that a∧ b = −b∧a, all four terms
for A

⊗
(1− y) vanish. For B

⊗
(1− xy), there are 12 terms. Terms 1 and 3 are both equal

to −{x}3 and terms 8 and 12 both equal {y}3. Furthermore, the following pairs cancel: 2
and 9; 4 and 7; 5 and 10; 6 and 11. This leaves

B
⊗

(1− xy) = (2 {y}3 − 2 {x}3)
⊗

(1− xy). (7.34)

Next consider the 12 terms C
⊗

y. Using the a ∧ b = −b ∧ a shows two of them cancel
immediately. Using {z}2 = 1−z∧z and {z}3 = (1−z)∧z⊗z, we can rewrite the remaining
terms as:

C = {xy}2 ⊗ (1− y)− {x}2 ⊗ (1− y)

+ {x}2 ⊗ (1− xy) + {y}2 ⊗ (1− xy)

+ (1− xy) ∧ x⊗ x+ (1− y) ∧ (1− x)⊗ x
−(1− xy) ∧ (1− x)⊗ x+ (1− xy) ∧ (1− y)⊗ x

56

Now apply the five term Abel identity

0 = {x}2 + {y}2 − {xy}2 +

{
1− x
1− xy

}
2

+

{
1− y
1 + xy

}
2

. (7.35)

twice: once multiplied by ⊗(1− y) and again with ⊗(1− xy) at the end. Hence

C = {y}2 ⊗ (1− y) +

{
1− x
1− xy

}
2

⊗ (1− y) +

{
1− y

1− xy

}
2

⊗ (1− y)

+ {xy}2 ⊗ (1− xy)−
{

1− x
1− xy

}
2

⊗ (1− xy)−
{

1− y
1− xy

}
2

⊗ (1− xy)

+ (1− xy) ∧ x⊗ x+ (1− y) ∧ (1− x)⊗ x− (1− xy) ∧ (1− x)⊗ x+ (1− xy) ∧ (1− y)⊗ x.

Then note that

{y}2 ⊗ (1− y) = −{(1− y)}3

{xy}2 ⊗ (1− xy) = −{1− xy}3{
1− y

1− xy

}
2

⊗ (1− y)−
{

1− y
1− xy

}
2

⊗ (1− xy) =

{
y − 1

xy − 1

}
3

.

Also using {z}2 = −{1− z}2,{
1− x
1− xy

}
2

⊗ (1− y)−
{

1− x
1− xy

}
2

⊗ (1− xy)

= −
{
x(1− y)

1− xy

}
2

⊗ (1− y) +

{
x(1− y)

1− xy

}
⊗ (1− xy)

= −
{
x(1− y)

1− xy

}
2

⊗ 1− y
1− xy

= −
{
x(y − 1)

xy − 1

}
3

+

{
x(y − 1)

xy − 1

}
2

⊗ x.

Recombining everything we have so far, C has been reduced to

C =− {1− y}3 − {1− xy}3 +

{
y − 1

xy − 1

}
3

−
{
x(y − 1)

xy − 1

}
3

+

{
x(y − 1)

xy − 1

}
2

⊗ x

+ (1− xy) ∧ x⊗ x+ (1− y) ∧ (1− x)⊗ x− (1− xy) ∧ (1− x)⊗ x+ (1− xy) ∧ (1− y)⊗ x
(7.36)

However,{
x(y − 1)

xy − 1

}
2

⊗ x =
x− 1

xy − 1
∧ y − 1

xy − 1
⊗ x+

x− 1

xy − 1
∧ x⊗ x

= (x− 1) ∧ (y − 1)⊗ x− (x− 1) ∧ (xy − 1)⊗ x
− (xy − 1) ∧ (y − 1)⊗ x+ 0 + {x}3 − (xy − 1) ∧ x⊗ x.

57

The terms aside from {x}3 exactly cancel terms in (7.36). Combining everything, C becomes
simply

C = −{1− y}3 − {1− xy}3 +

{
y − 1

xy − 1

}
3

−
{
x(y − 1)

xy − 1

}
3

+ {x}3 .

It remains only to simplify the term D in (7.32).Cancelling the things that are clearly
zero and combining terms gives

D =− {x}2 ⊗ (1− xy) + (1− y) ∧ (1− x)⊗ y
+ {y}2 ⊗ (1− x)− {y}2 ⊗ (1− xy)

− (1− xy) ∧ (1− x)⊗ y + (1− xy) ∧ x⊗ xy
+ (1− xy) ∧ (1− y)⊗ y − {xy}2 ⊗ (1− x)

+ (1− xy) ∧ y ⊗ x.

Using the 2-term identity twice turns this into:{
1− x
1− xy

}
2

⊗ (1− xy) +

{
1− y

1− xy

}
2

⊗ (1− xy)− {xy}2 ⊗ (1− xy)− {x} ⊗ (1− x)

−
{

1− x
1− xy

}
2

⊗ (1− x)−
{

1− y
1− xy

}
2

⊗ (1− x) + (1− y) ∧ (1− x)⊗ y − (1− xy) ∧ (1− x)⊗ y

+ (1− xy) ∧ x⊗ x+ (1− xy) ∧ x⊗ y − (1− xy) ∧ (1− y)⊗ y + (1− xy) ∧ y ⊗ x
=

−
{

1− x
1− xy

}
3

+ {x− 1}3 +

{
(1− x)y

1− xy

}
3

+

{
1− y

1− xy

}
2

⊗ y

− (1− xy) ∧ xy ⊗ (1− xy) + (1− y) ∧ (1− x)⊗ y − (1− xy) ∧ (1− x)⊗ y
+ (1− xy) ∧ x⊗ x+ (1− xy) ∧ x⊗ y
− (1− xy) ∧ (1− y)⊗ y + (1− xy) ∧ y ⊗ x.

Expanding gives{
1− y

1− xy

}
2

⊗ y =− (1− y) ∧ y ⊗ y − (1− y) ∧ (1− x)⊗ y

+ (1− y) ∧ (1− xy)⊗ y + (1− xy) ∧ (1− x)⊗ y + (1− xy) ∧ y ⊗ y.

These exactly cancel out several of the terms above, leaving

D =−
{

1− x
1− xy

}
3

+ {x− 1}3 +

{
(1− x)y

1− xy

}
3

+ {y}3 − (1− xy) ∧ xy ⊗ (1− xy)

+ (1− xy) ∧ y ⊗ y + (1− xy) ∧ x⊗ y + (1− xy) ∧ y ⊗ x+ (1− xy) ∧ x⊗ x

= −
{

1− x
1− xy

}
3

+ {x− 1}3 +

{
(1− x)y

1− xy

}
3

+ {y}3 + (1− xy) ∧ xy ⊗ xy

1− xy

= −
{

1− x
1− xy

}
3

+ {x− 1}3 +

{
(1− x)y

1− xy

}
3

− {y}3 + (1− xy) ∧ xy

1− xy
⊗ xy

1− xy

= −
{

1− x
1− xy

}
3

+ {x− 1}3 +

{
(1− x)y

1− xy

}
3

− {y}3 +

{
xy

1− xy

}
3

.

58

Putting all of the parts together, the coproduct is

δ(S(Li2,2(x, y))|B3⊗C∗

=
(

2 {y}3 − 2 {x}3

)⊗
(1− xy)

+

(
−
{

1− x
1− xy

}
3

+ {x− 1}3 +

{
(1− x)y

1− xy

}
3

− {y}3 +

{
xy

1− xy

}
3

)⊗
x

+

(
−{1− y}3 − {1− xy}3 +

{
y − 1

xy − 1

}
3

−
{
x(y − 1)

xy − 1

}
3

+ {x}3

)⊗
y.

It is advisable to automate such calculations in Mathematica instead of doing them by
hand.

7.3 Cluster Polylogarithms on A2: The A2 Function

Cluster polylogarithms are defined in Golden et al. [3], whose notation will be employed in
this section.

The A2 function is the unique function in L4 whose Symbol an element of sh4(XA2) that
satisfies the integrability condition

0 = δ2f = δ(δ2,2f) + δ(δ3,1f). (7.37)

The goal of this section is to find an explicit formula for f . That is to say, to explicitly write
the coproduct of the symbol of f , from which f can be deduced.

The action of δ on Λ2B2 and B3 ⊗ C∗ is given by

δ
(
{xi}2

∧
{xj}2

)
= {xi}2

⊗
(1 + xj)

∧
xj − {xj}2

⊗
(1 + xi))

∧
xi (7.38)

δ
(
{xi}3

∧
xj

)
= {xi}2

⊗
xi
∧

xj. (7.39)

(7.40)

Additionally, due to Abel’s identity and the properties of A2,

0 =
5∑
i=1

{xi}2 (7.41)

(1 + xi) = xi−1xi+1 (7.42)

where in the last Equation, indices are understood mod 5. Since xi, {xi}2, and {xi}3 where
xi, i = 1, . . . , 5 the X -coordinates of A2, are bases for C∗, B2 andB3 respectively, δ2,2f ∈ Λ2B2

can be written as

δ2,2f =
5∑
i<j

aij
(
{xi}2 ∧ {xj}2

)
(7.43)

and

δ3,1f =
5∑
i 6=j

dij ({xi}3 ∧ xj) (7.44)

59

for some coefficients aij and dij.
Applying the Abel Identity to eliminate {x5}2, and then Equation (7.38) to δ2,2f :

δ(δ2,2f) =
4∑
i<j

cij
(
{xi}2 ⊗ 1 + xj ∧ xj − {xj}2 ⊗ 1 + xi ∧ xi

)
=

4∑
i<j

cij
(
{xi}2 ⊗ (xj+1 ∧ xj + xj−1 ∧ xj)− {xj}2 ⊗ (xi+1 ∧ xi + xi−1 ∧ xi)

)
=

4∑
i<j

cij (−w(i, j, j + 1) + w(i, j − 1, j) + w(j, i, i+ 1)− w(j, i− 1, i))

where w(i, j, k) := {xi}2 ⊗ xj ∧ xk. The cij’s are linear combinations of the aij’s that come
about from applying the Abel Identity. Note that w(i, j, k) = −w(i, k, j). By convention,
the preferred notation is j < k. The w’s are linearly independent and in fact form a basis
for a much larger space than B2

⊗
Λ2C∗. With this notation, the Abel identity becomes

w(5, i, j) =
4∑

k=1

−w(k, i, j).

Written out in full, the 2, 2 component is

δδ2,2f = c12e12 + c13e13 + c14e14 + c23e23 + c24e24 + c34e34

= c12 (−w(1, 2, 3) + w(1, 1, 2) + w(2, 1, 2) + w(2, 1, 5))

+ c13 (−w(1, 3, 4) + w(1, 2, 3) + w(3, 1, 2) + w(3, 1, 5))

+ c14 (−w(1, 4, 5) + w(1, 3, 4) + w(4, 1, 2) + w(4, 1, 5))

+ c23 (−w(2, 3, 4) + w(2, 2, 3) + w(3, 2, 3)− w(3, 1, 2))

+ c24 (−w(2, 4, 5) + w(2, 3, 4) + w(4, 2, 3)− w(4, 1, 2))

+ c34 (−w(3, 4, 5) + w(3, 3, 4) + w(4, 3, 4)− w(4, 2, 3))

Now consider δ3,1f . To eliminate the {x5}3 components, it makes sense to let Eij :=
w(i, i, j). Then

E5j = w(5, 5, j) =
4∑
i=1

−w(i, 5, j) =
4∑
i=1

w(i, j, 5).

Hence

δ(δ3,1)f =
5∑
i 6=j

dijEij.

The condition (7.37) that δ2 = 0 now can be written in this explicit w-basis as

0 = δ (δ2,2f) + δ (δ3,1f) (7.45)

=
4∑
i<j

cij [−w(i, j, j + 1) + w(i, j − 1, j) + w(j, i, i+ 1)− w(j, i− 1, i)] +
5∑
i 6=j

dijw(i, i, j).

(7.46)

60

By Equation (7.37) and the linear-independence of the w’s, the coefficient for each
w(i, j, k) must be zero separately. This is now just a linear algebra problem. Moreover,
some groups of terms are also independent. Only terms of the form w(i, i, j) or w(i, j, 5)
can cancel between the 2, 2 and the 3, 1 components. Everything else must sum to zero
separately.

Because the coefficients of w(1, 23), w(1, 3, 4), w(3, 1, 2), w(4, 1, 2), w(2, 3, 4) and w(4, 2, 3)
must sum to zero separately,

c12 = c13 = c14 = c23 = c24 = c34.

By matching coefficient on the terms left without any 5’s present,

c12 = d21 = −d12 = d32 = −d23 = d43 = −d34.

Furthermore,

w(2, 1, 5)+w(3, 1, 5)+w(4, 1, 5) = E51−E15 and −w(1, 4, 5)−w(2, 4, 5)−w(3, 4, 5) = −(E54−E45),

which further sets a12 = d54 = −d45 = d15 = −d51. So to summarize,

c12 = b(i+1)i = −bi(i+1) i = 1, . . . , 5.

This means all the coefficients cij are equal to c12 and

dij=̇c12

0 −1 0 0 1
1 0 −1 0 0
0 1 0 −1 0
0 0 1 0 −1
−1 0 0 1 0

 .

Because the A2 function should be non-trivial, c12 6= 0. Therefore, up to a multiplicative
constant cij, there is a unique function f whose coproduct has these coefficients. These
results match Equation 3.3 of [3] up to a minus sign on the 2, 2 component with c12 = 5.

7.4 A Computationally Efficient Basis for Finding Cluster Func-
tions at Weight 4

The material in this section is joint work with Adam Scherlis.
Suppose C is a cluster algebra with A-coordinates A and X -coordinates X . Let β1, β2

and β3 be (multiplicative) bases for B1 = X , B2 and B3 respectively.
Any X -coordinate can, of course, be written as a product of elements of β1. It follows

from the rule for X -coordinate mutation that in any finite-type cluster algebra, 1+xi can be
written as a product of X -coordinates for any xi ∈ X . Therefore define two “factorization
functions”

P : X → sh1(β1) by P (xi) = y
p1i
1 · · · y

pki
k where yi ∈ β1 and pji ∈ Z (7.47)

61

and
R : X → sh1(β1) by R(1 + xi) = y

r1i
1 · · · y

rki
k where yi ∈ β1 and rji ∈ Z. (7.48)

In terms of these, there is an isomorphism id⊗R∧P : B2⊗Λ2C∗ → sh2(β1)⊗Λ2 sh1(β1).
The latter space has a basis

{w(xi, xj, xk) := {xi}2 ⊗ xj ∧ xk : {xi}2 ∈ β2, xj, xk ∈ β1, j < k} .

To find the cluster functions satisfying δ2f4 = 0, the goal is to express δ2 as a linear map
T : Λ2B2 ⊕ B3 ⊗ C∗ → B2 ⊗ Λ2X explicitly in coordinates. The cluster functions should
correspond to elements of kerT .

Let’s look at Λ2B2 first. By definition of the β’s above,

Λ2B2 = span
{
{xi}2 ∧ {xj}2 : i < j; xi, xj ∈ β2

}
.

By 2.9 of [3], with the corrected sign,

δ({x}2 ∧ {y}2) = {y}2 ⊗ (1 + x) ∧ x− {x}2 ⊗ (1 + y) ∧ y.

Therefore

δ({xi}2 ∧ {xj}2) = {xj}2 ⊗ 1 + xi ∧ xi − {xi}2 ⊗ 1 + xj ∧ xj

So

v2,2
ij := (id⊗R ∧ P)δ({xi}2 ∧ {xj}2)

= {xj}2 ⊗R(1 + xi) ∧ P (xi)− {xi}2 ⊗R(1 + xj) ∧ P (xj)

= {xj}2 ⊗
∑
xk∈β1

rki xk ∧
∑
x`∈β1

p`ix` − {xi}2 ⊗
∑
xm∈β1

rmj xm ∧
∑
xn∈β1

pnj xn

=

(∑
xk,x`∈β1

rki p
`
iw(xj, xk, x`)−

∑
xm,xnβ1

rmj p
n
jw(xi, xm, xn)

)
∈ B2 ⊗ Λ2X .

The situation is largely similar for B3 ⊗ C∗. The space can be written as

B3 ⊗ C∗ = span {{xi}3 ∧ xj : xi ∈ β3, xj ∈ β1} .

The action of δ on this is
δ({x}3 ∧ y) = {x}2 ⊗ x ∧ y,

so

v3,1
ij := (id⊗R ∧ P)δ({xi}3 ∧ xj) = {xi}2 ⊗R(xi) ∧ P (xj)

=
∑
xk∈β2

cki {xk}2 ⊗
∑
x`∈β1

r`ia` ∧
∑
xm∈β1

pmj am

=
∑
xk∈β2

x`,xm∈β1

cki r
`
ip
m
j w(xk, x`, xm).

62

We can now explicitly write T by

T ({xi}2 ∧ {xj}2) = v2,2
i,j and T ({xi}3 ∧ xj) = v3,1

i,j

The kernel of T is then the space spanned by vectors of the form∑
i,j

aijv2,2
i,j +

∑
k,`

bk`v3,1
k,` = 0.

Writing this out in terms of the basis of w’s, finding the kernel of T is reduced to a linear
algebra problem which can be solved by explicit row-reduction on a computer for any finite
cluster algebra.

7.5 Dictionary of Cluster Polylogarithms

The last section was implemented in Mathematica. The code was run on several cluster
algebras of Grassmannian type: A2, A3, A4, A5, A6, D4 and E6. Since the outputs are very
large in general, the Table below to summarizes some of the pertinent information. It is
possible to extend this to non-Grassmannian cluster algebras. However, it is much easier to
determine the maps P and R in the Grassmannian case. In the Grassmannian case, this can
be done with the algorithm in Section 7.7. It is also possible to do so by tropicalizing the
Laruant polynomials for the cluster variables. Explicit testing in a few cases suggests that
there is no more information from looking at the direct product of two cluster algebras than
from studying each algebra separately.

Algebra A3 A4 A5 A6 D4 E6

|A − coordinates| 9 14 20 27 16 42
|A − coordinates including frozen| 15 21 28 36 22 49
|X − coordinates| 15 35 70 126 52 385
|Vertices| 14 42 132 429 50 833
|Edges| 21 84 330 1287 100 2499
|SA2| 9 56 300 1485 66 2856
|SA3| 0 14 120 825 16 1547
|SA4| 0 0 20 225 0 399
|SA5| 0 0 0 27 0 42
dimB1 9 14 20 27 16 42
dimB2 10 20 35 56 27 132
dimB3 15 35 70 126 51 363
dimB2 ⊗ Λ2C∗ 360 1820 6650 19656 3240 113652
dimB2,2 ⊕B3,1 180 680 1995 4942 1167 23892
dim kerT 21 56 126 252 86 833

Table 4: Statistics for various cluster algebras. SAk is the number of subalgebras of rank k.
The results for E6 are novel and had not previously been computed by Golden et al.

63

7.6 Counting X -coordinates, A2 and A3 Functions

Table 4 indicates a few patterns in the sizes of the spaces.

Proposition 40. On An,

1. dimB1 =
(
n+2

2

)
− 1

2. dimB2 =
(
n+2

3

)
3. dimB3 =

(
n+3

4

)
Proposition 40 was proven by Adam Scherlis, assuming some reasonable properties of the

Abel identity. Additionally, the following conjecture suggests itself.

Conjecture 41. For any cluster algebra,

dimLS4 = dim {A2 functions}+ dim {Li4 functions} (7.49)

In other words, A2 is the only non-classical cluster polylogarithm at weight four.

This conjecture was verified by explicit computation for An through n = 8, as well as on
D4 and E6.

There is also a relation between the geometry of the exchange graph and the number of
cluster functions that appear. Consider a square inside the exchange graph. where the edges
are labelled by the X -coordinate that changes across that edge.

{x1, x2, . . . } {1/x1, x2, . . . }

{x1, 1/x2, . . . } {1/x1, 1/x2, . . . }

x1

x2x2

x1

The X -coordinates across the square are the same. This suggests an equivalence relation on
edges. If e1 and e2 are edges in the exchange graph, then define

e1 ∼ e2 if and only if e1 and e2 are on opposite sides of a square in the exchange graph.
(7.50)

Colloquially, e1 and e2 are “square separated”. The above diagram shows that e1 ∼ e2

implies that the X -coordinates associated with the edges are the same.

Conjecture 42. There is a bijection between the number of X -coordinates and the equiva-
lence classes of edges.

64

Given this conjecture, it was proven that

X (An) =

(
n+ 3

4

)
(7.51)

on any An-type cluster algebra. This conjecture has been verified on D4 and E6 by explicit
computation.

This has further consequences in terms of A2 and A3 functions. If the exchange graph
contains a pentaprism, i.e. a A1 × A2 subalgebra, then by the above reasoning, the two
pentagons have the same X -coordinates in the same order. The A2 function defined on these
pentagons are therefore identical.

Conjecture 43. The dimension of the space of A2 functions on a cluster algebra C is no
more than the number of “square separated” A2 subalgebras. In addition, A2 functions are
linearly dependent if, and only if, all the pentagons are together inside some D4 subalgebra.

This has been tested through n = 6 on An, as well as on D4 and E6 by the author.
On An, assuming that there are no Li2 identities between “far away” parts of the polytope,
Adam Scherlis has proven that

dim {A2 functions} =

(
n+ 3

5

)
. (7.52)

Similarly, A1 × A3 subalgebras give rise to a single A3 function and

dim {A3 functions} =

(
n+ 3

6

)
. (7.53)

7.7 An Algorithm to Factor Products of X -coordinates

Suppose X is an alphabet, and sh (X) is the shuffle algebra of symbols over X. An expression
g(x1, . . . , xk) can be a term in a symbol if, and only if,

g(x1, . . . , xk) = ±xd11 · · ·x
dk
k (7.54)

for some coefficients di ∈ Z. However, when X is, for example, the set of cluster X -
coordinates of some cluster, there are many non-trivial relations between the coordinates,
so it is very difficult to tell when Equation (7.54) is satisfied. For instance, it is known
by explicit calculation that 1 + xi factors as a product of X -coordinates on A2, . . . , A7, D4

and E6. However, finding which coordinates it factors into is quite difficult. This section
presents a novel numerical algorithm to check condition (7.54) and determine the coefficients
ni. A mathematical description is given first to show why it is correct, and then a practical
algorithm.

Suppose C := G(k, n) is some Grassmannian cluster algebra. Let X := β1(C) be a
“multiplicative basis” for XC , as described in Section 7.3 and put N := |β1(C)|. Pick
p1, . . . , pN ∈ G+(k, n), the positive Grassmannian, i.e. the subset of the Grassmannian
where all the Plücker coordinates are positive real numbers. This can be done efficiently
using an algorithm due to Postinikov [47].

65

Define evaluation maps εj : C(X)→ R≥0 by xi 7→ xi(p
j). All X -coordinates are rational

functions in the Plücker coordinates with positive coefficients (mostly monomials, in fact).
Therefore εj(xi) is in fact a positive, real number for all εj and all xi.

Define a matrix A by

A :=
N∑

i,j=1

log εj(xi) ej ⊗ ei (7.55)

where the {ej}’s are the standard basis for RN and the {ei}’s are the dual basis. By the
positivity of the X -coordinates, the log’s are well-defined, and thus A is a real-valued, N×N
matrix. Let g : C[X] → C with g(x1, . . . , xN) = xd11 · · ·x

dN
N . In other words, let it satisfy

Equation (7.55), but with a positive sign. Then define g ∈ RN by

g :=
N∑
j=1

log εj(g) ej (7.56)

and

d :=
N∑
i=1

diei. (7.57)

Then

g =
N∑
j=1

log εj(g)ej

=
N∑
j=1

log
(
εj
(
xd11 · · ·x

dN
N

))
ej

=
N∑
j=1

log
(
εj(x1)d1 · · · εj(xN)dN

)
ej

=
N∑
j=1

N∑
i=1

di log εj(xi) ej

=
N∑

i,j=1

diA
j
i ej

= Ad.

Hence d = A−1g. Therefore the coefficients di can be found simply from the numerical
values of g and A.

In practice, one could implement this as follows. Suppose g1, . . . , gM ∈ C[X] are given
functions with notation as above.

1. Choose εj : C[X]→ C, 1 ≤ j ≤ k by Postnikov’s algorithm.

2. Compute A−1 as above. For almost any choice of the εj’s, A will be invertible. If it is
not, find more εj’s and try again.

66

3. For each g`, 1 ≤ ` ≤M :

(i) Compute εj(g), 1 ≤ j ≤ N . If these are all negative, put g 7→ −g and recompute.
If they are all positive, continue. If they have mixed signs, then g cannot factor.

(ii) Compute g.

(iii) Compute d̃ := A−1g. If Equation (7.54) holds, then d̃ ∈ ZN . In practice, however,
there will be some numerical error, so the real condition should be

N∑
i=1

∣∣∣d̃i − round
(
d̃i

)∣∣∣ < ε (7.58)

for some small ε ≥ 0. If this condition is satisfied, then g =
∏

i x
di
i where

di := round(d̃i).

This is computationally efficient: the εj need only be found once for each cluster algebra
and, for each g`, the most difficult step is merely matrix multiplication.

8 Cluster Bases

The theme (7.1) described in the beginning of Section 7 — that remainder functions are
combination of polylogarithms whose symbols are cluster X -coordinates — greatly restricts
the space of possible functions. Indeed, even without the cluster algebra structure, this idea
is enough to uniquely determine R

(3)
6 [48]. Recent work by Drummond et al., using this full

strength of this theme, gives powerful constraints on 7-particle remainder functions at 2 and
3 loops [46].

The general strategy of these works is to consider the space of (symbols of) polylog-
arithms that could possible be in the symbol, then apply linear constraints based on the
properties the amplitude must obey. Unfortunately, when this strategy is successful, it does
not produce a simple result. The formula for R

(2)
6 from [46] is a 17-page linear combination

of generalized polylogarithms. By using a judicious choice of variables and using the func-
tional identities of polylogarithms to simplify the expression, Goncharov, Spradlin, Vergu
and Volovich produced an expression for R

(2)
6 that fits on a single line [2]. It was later realized

that this judicious choice of variables is intimately related to the cluster algebra structure of
G(4, 6), and this made it possible to write a similarly compact formula for R

(2)
7 [12, 3].

The moral of this story, if there is one, is that a through understanding of the mathemat-
ical properties of the space of polylogarithms with X -coordinate symbols leads directly to an
understanding of scattering amplitudes. Since this is a vector space, a natural question is:
what is a basis for it? Amazingly, this is unknown. The numerous polylogarithm identities
make it easy to find spanning sets, but very hard to find true bases. This section describes
general strategies for finding bases for such spaces, and gives an explicit basis in the case
where the cluster algebra in question is An.

67

8.1 The Basis Problem

Before presenting the solution, it is useful to make a clear and precise statement of the
problem. Let C be a cluster algebra with a set of X -coordinates XC . Let βC be a multi-
plicative basis for XC . Then, using the notation from Section 6.3, the space of symbols in
the X -coordinate alphabet is the Shuffle algebra sh (XC) = sh(βC).

Definition 44. Suppose X is a set of C-valued functions. Then define

Gn[X] = {G(x1;x2, . . . , xn;xn+1) : xi ∈ X} . (8.1)

The Symbol is then a map S : G[X] → sh(X̃), where X̃ = X ∪ {xi − xj : xi, xj ∈ X},
because the Symbol of a Goncharov polylogarithm, Equation (6.57), contains differences
in the arguments as well as the arguments themselves. Moreover, not all of the symbols in
sh(X̃) actually come from some function in G[X], but only the integrable ones (See Equation
6.30.) There is actually an exact sequence

Gk[X] shk
(
X̃
)

shk+1
(
X̃
)
⊕ Λ2X̃ ⊗ shk−2

(
X̃
)

.
S D

The integrable symbols are elements of B(X̃) = kerD.
With this notation, the basis problem is

Given a set of X -coordinates XC ,

1. What is the set X such that S
(
Gk[X]

)
= B(XC)?

2. What is a basis for Gk[X]?

(8.2)

8.2 The Spaces M,P,R and Q

A vague procedure for finding X for a given X̃ is described by Duhr et al. in [42]. This

section describes a more precise version for the case where X̃ = XC for some cluster algebra
C. Let βC be the multiplicative basis for XC as above.

Definition 45. Define the multiplicative span of XC as

MC := {z = ±xn1
1 x

n2
2 · · ·x

nk
k : xi ∈ β and ni ∈ Z} . (8.3)

This set has the virtue that any symbol in the alphabet MC can be rewritten as a symbol
in the alphabet βC . Moreover, the algorithm described in Section 7.7 is exactly what is
needed to check if a general rational function in the X -coordinates of C is an element of MC .

As a first attempt towards finding X, consider the case of classical polylogarithms. Recall
that

Lik(z) = G(0, . . . , 0︸ ︷︷ ︸
k−1

, 1; z) (8.4)

68

and
S(Lik(z)) = −(1− z)⊗ z ⊗ · · · ⊗ z. (8.5)

So, for this special case, a set of possible arguments of the Goncharov polylogarithm is
X = {0, 1, z} for some z ∈MC such that 1− z ∈MC as well. The last condition is actually
a useful restriction on the element of MC of interest. Define

RC := {z ∈Mc : 1− z ∈Mc} . (8.6)

There is an action of S3, the symmetric group on three letters, on RC , generated by

z 7→ 1

z
and z 7→ 1− z. (8.7)

RC is closed under this action because 1− (1/z) = (z−1)/z ∈MC and 1− (1−z) = z ∈Mc.
In general, RC is infinite, and thus not very useful. However, for any A, D, or E-type cluster
algebra, 1 + x ∈MC where x is an X -coordinate. Therefore define the subset

RC := {−x : x ∈ XC} ⊂ RC . (8.8)

This is a much smaller set — often finite — and thus amenable to explicit computation. So
if z ∈ PC , then X = {0, 1, z} is a set of possible arguments for Goncharov polylogarithms
whose symbols are in XC .

Returning to the general case, one needs elements {zi} of MC such that Lik(zi) make
sense, as well generalized polylogarithms with arguments drawn from the z’s. Therefore, one
should have that zi − zj can be written as a product of X -coordinates, i.e. zi − zj ∈ MC .
The space which fulfills this property is

PC :=
{

(zi, zj) ∈ R2
C : zi − zj ∈Mc

}
. (8.9)

For (z1, z2) ∈ PC , the symbol of anything in

G [{0, 1, z1, z2}] (8.10)

can be written completely in terms of X -coordinates. Again, it is useful to make a restriction
to a finite case:

PC :=
{

(−xi,−xj) ∈ R
2

C : xi − xj ∈Mc; xi, xj ∈ XC
}
. (8.11)

One can interpret this as a graph whose vertices are the X -coordinates of a space, where
edges are drawn whenever xi − xj factors as a product of X ’s.

Of course, this alone is not good enough. Not all generalized polylogarithms can be
written with 4 unique arguments; arbitrarily many are needed. How can larger candidates
for X be assembled? Actually, the graph PC contains all the information necessary. The
following terminology from graph theory is useful.

Definition 46. Suppose G is a graph. A subgraph H of G is called a clique if H is
isomorphic to a complete graph, i.e. there is an edge connecting every vertex of H.

69

Proposition 47. Suppose q = (q1, . . . , qn) are the vertices of a clique of Pc. Put X =
{0, 1} ∪ q. Then S(Gk[X]) ⊆ kerDk (XC).

Proof. Consider G = G(z0; z1, . . . , zk; zk+1) where zi ∈ X. The symbol of G is in shk(XC)
whenever zi − zj ∈MC for all 0 ≤ i, j ≤ k + 1. There are four cases:

1. If zi = 0, then zi − zj = zj ∈MC .

2. If zi = 1, and zj = qj, then zi − zj = 1− qj ∈Mc, since qj ∈ RC .

3. If zi = qi and zj = qj, then zi − zj = qi − qj ∈ MC because q is a clique, and there is
an edge between qi and qj in PC .

It turns out that knowing the cliques of PC is all that is necessary to find X. Later
sections will show when the inclusion in the proposition becomes an equality. Define QC

as the set of cliques q of PC with maximal size, i.e. so that no other clique contains them.
Likewise, defined QC for PC .

8.3 Brown’s Theorem

Extensive work on bases for spaces of polylogarithms has been done by the mathematician
Francis Brown. Reference [49] is a complete reference and [32, 36] are less rigorous and less
complete summaries written for physicists.

Two results will be very useful to us. They are paraphrased below in notation used here.
As usual, P1 denotes the complex projective line, otherwise known as the Riemann sphere.

Theorem 48 (Brown’s Basis Theorem for One-Variable Polylogarithms). For each finite
set

Σ := (0, 1, σ2, σ3, . . . , σn) ⊂ P1,

there are associated one-forms ωi := d log(z−σi) for 0 ≤ i ≤ n. Then the space of integrable
words in ωi is

B
(
P1 \ Σ

)
= sh({ωi}ni=0) (8.12)

where sh is the free shuffle algebra over the letters {ω0, . . . , ωn}.

By Chen’s Theorem, there is an isomorphism from B (P1 \ Σ) to (homotopy invariant)
polylogarithms given by

ωi1 ⊗ ωi2 ⊗ · · · ⊗ ωik 7→
∫
γ(z)

ωi1 ◦ ωi2 ◦ · · · ◦ ωik = G(σi1 , σi2 , . . . , σik ; z) (8.13)

where the equality is from the definition of the Goncharov polylogarithms, Equation (6.49).
Radford’s Theorem says that a free shuffle algebra has a basis of Lyndon words, so

L(P1 \ Σ) = {G(σi1 , σi2 , . . . , σik ; z) : σi1σi2 . . . σik is a Lyndon word} (8.14)

70

is a basis for Goncharov polylogarithms with arguments drawn from Σ, considered as func-
tions of a variable z.

But polylogarithms are not really functions of one variable, but of many variables. Con-
sidering them as many variable functions, the situation as more complicated. Define M0,n+3

to be the space of configurations of n + 3 points in P1, modulo the action of PSL2(C),
the group of Möbius transformations. Let Σ ∈ M0,n+3. Then it can be represented by
Σ = (0, 1, σ2, . . . , σn+1) with σi 6= σj and σi 6= 0, 1. Cross-ratios are PSL2(C) invariant
functions on M0,n given by [ij|k`] : M0,n → P1 with

[ij|k`] :=
(σi − σk) (σj − σ`)
(σi − σ`) (σj − σk)

, 1 ≤ i, j, k, l ≤ n. (8.15)

These are very similar to cross-ratios of Plücker coordinates. Indeed, M0,n+3 is very similar
to the space of X -coordinates of the cluster algebra An, but the exact relation is unclear at
present. Again, define ωi := d log(z − σi).

Theorem 49 (Brown’s Basis Theorem for Multi-variable Polylogarithms). Using notation
as above, let B (M0,n+3) be the space of integrable words in {ω0, . . . , ωn+1}. Then there is a
canonical isomorphism

B (M0,n+3) ∼=
n⊗
i=1

B
(
P1 \ Σi

)
. (8.16)

where Σi = {σ2, σ2, . . . , σn−i+1}. Therefore, employing Chen’s Theorem and Radford’s The-
orem, a basis for Goncharov polylogarithms with arguments drawn from M0,n+3 is of the
form

n⋃
k=1

{G(σi1 , σi2 , . . . , σir ;σn−i+2) : σi1σi2 . . . σik is a Lyndon word over the set Σi} . (8.17)

At first glance, it might look like this answers the “basis problem”, (8.2). However, the
are several crucial differences:

• The arguments of the polylogarithms should be cluster X -coordinates. The precise
relation between the σi’s and X -coordinates is unclear at present.

• The polylogarithms should have Symbols which can be expressed entirely in terms of
X -coordinates. In general, the Symbol of an element of an element of (8.17) in terms
of σi − σj.

One needs a choice of Σ so that σi − σj always factors in terms of X -coordinates. In other
words, one needs a clique. The last section gave an algorithmic method for finding them, but
does not guarantee the existence of cliques of the right size, nor does it provide an analytic
method for finding them.

8.4 The Hedgehog Theorem

It turns out that the cliques of An are intimately related to the An polytope. The proof is
joint work with Adam Scherlis.

71

Definition 50. Suppose A is an An cluster algebra, n ≥ 2, and B is a subalgebra isomorphic
to the An−1 cluster algebra. Define the A-B hedgehog

q(A,B) = {the set of X -coordinate whose edges start in B and end in B \ A}
= {x ∈ XA : x ∈ XB and 1/x 6∈ XB} . (8.18)

Similarly, the inverse Hedgehog is defined as q−1(A,B) =
{

1
x

: x ∈ q(A,B)
}

. In contrast
to the usual convention, the X -coordinates of a hedgehog are oriented; x and 1/x are not
considered the same in this situation.

A-B Hedgehogs are well-defined because each vertex in B has n edges coming out of it.
Exactly n−1 of these connect with vertices in B; the last edge connects to a vertex in B \A.
The hedgehog is exactly the union of all such edges that leave B. An example is shown in
Figure 5.

Figure 5: The hedgehog q(A4, A3) (left) and q−1(A4, A3) (right). The A3 subalgebra is
highlighted in purple and the hedgehogs are red.

Theorem 51 (The Hedgehog Theorem). Suppose q = q(A,B) is a hedgehog for An. Define

βk(q) :=
n−1⋃
i=0

{G(−a1, . . . ,−an;−qi+1) : a1 · · · an ∈ Lynk {0, 1, q1, . . . , qi}} . (8.19)

Then

A. The hedgehog q is a clique and |q| = n.

B. Whenever b ∈ βk(q), S(b) can be written in terms of X -coordinates, i.e. S(βk(q)) ⊂
shk(XA). Moreover,

S(βk(q)) = kerDk(XA) (8.20)

and thus βk(XA) is a basis for Goncharov polylogarithms of pure weight k whose Symbols
can be written entirely in terms of X -coordinates.

72

Proof. Proving A is actually the heart of the proof. The rest follows from the previous
sections and a counting argument.

First consider the case n = 2. The general case can be reduced to the n = 2 case, so it
is worth doing in detail. Let the X -coordinates of A ∼= A2 be {xi−1, xi, xi+1, xi+2, xi+3} and
let B ∼= A1 have X -coordinate {xi}.

xi+2

xi+3

xi−1

xi

xi+1

For A2, the X -coordinates are actually recursive with the same pattern as the A-coordinates:

xi+1 =
1 + xi
xi−1

. (8.21)

So here q(A,B) = q({xi−1, xi, xi+1, xi+2, xi+3} , {xi}) =
{
xi+1,

1
xi−1

}
. Pictorially, the hedge-

hog is the red and blue edges.

1
xi−1

xi

xi+1

This is a clique because

xi+1 −
1

xi−1

=
1 + xi
xi−1

− 1

xi−1

=
xi
xi+1

. (8.22)

Recasting this in terms of polygon triangulation is very useful. In general, the An cluster
algebra can be modelled by triangulations of a regular n+ 3-gon. Briefly, each triangulation
corresponds to a vertex of the exchange graph, with edges drawn between triangulation that
differ by exactly one chord. See [15] for more details.

73

This is the same picture as above in terms of triangulations. The red dashed lines are the
chords that change as the red edge is traversed, and similarly for the blue. What we have
shown then is that the difference between the X -coordinates for the red and blue edges can
be written in terms of products of X -coordinates.

Now for the general case. Consider a regular n + 3-gon. Choose three adjacent vertices
k, k + 1, k + 2 and draw the chord between k ↔ k + 2. Any sub-triangulation of the entire
polygon that includes that chord is an An−1 subalgebra. Said differently, if you chop off
a triangle on the outer edge, then you get a (n − 1) + 3-gon, the triangulations of which
correspond to An−1.

k

k+1

k+2

j

k

k+1

k+2

j

74

For any sub-triangulation of the (n− 1) + 3-gon, there must be some triangle

j ↔ k ↔ (k + 2)↔ j

and thus a quadrilateral with vertices j, k, k+1, k+2. Switching the interior chord k ↔ k+2
of this quadrilateral to k + 1 ↔ j corresponds to one of the edges in the hedgehog. This is
indicated with a green dashed line in the diagram above. Note that this is not dependent on
the sub-triangulation of the grey region. Therefore, any sub-triangulation of the grey region
gives the same X -coordinate in the hedgehog. Since there are exactly (n+3)−3 = n choices
of j, this means there are precisely n distinct X -coordinates of q(A,B).

Take qi, qj to be any two arbitrary elements of the hedgehog. Then qi corresponds to
flipping k ↔ k + 2 to i ↔ k + 1 and qj corresponds to flipping k ↔ k + 2 to j ↔ k + 1.
These are indicated in the diagram below in (C) and (A) respectively.

k

k+1

k+2

j

k

k+1

k+2

j

k

k+1

k+2

j

k

k+1

k+2

i i

i

(A)

(B)

(C)

(D)

Any other sub-triangulation of the gray region preserves the qi, so in particular one can
choose the sub-triangulation with the pentagon {k, k + 1, k + 2, i, j}, shown in (B) of the
diagram. Similarly, one can go from (C) to (D) and qj will still be accessible by the red
chord flip. But now notice that this is exactly the situation from the A2 case! There is an
embedded pentagon with exactly the same triangulations that appeared above. Therefore
qi− qj factors as a product of X -coordinates, i.e qi− qj ∈MAn . Since i and j were arbitrary,
q is a hedgehog. This proves part 1.

75

For part 2, consider βk(q). Each function g ∈ βk(q) has arguments drawn from X =

{0, 1, q1, . . . , qn}. Therefore S(g) has Symbols in the alphabet X̃ = X ∪ {1 + qi, qi − qj}.
But qi is an X -coordinate of a simply-laced Dynkin diagram, so 1 + qi ∈ MAn . And q is a
clique, so qi − qj ∈ MAn . Therefore S(g) ∈ shk (X (An)). Hence S(βk(q)) ⊂ shk(X (An)). In
fact, S(βk(q)) ⊂ kerDk(X (An)), since the Symbol of a function is always integrable.

Lastly, note that βk(q) is of the same form as Equation (8.17) at weight k. Specifically,
they both have size

n−1∑
i=0

Nk(i+ 2) (8.23)

where Nk(i+ 2) is the number of Lyndon words of length k in an alphabet with i+ 2 letters,
defined in Equation (6.26). Therefore, they are bases for spaces of the same size. But
Equation (8.16) is a basis for all Goncharov polylogarithms of weight k, so βk(q) must be as
well. Taking Symbols, this implies S

(
βk(q)

)
= kerDk(X (An)).

There are a few useful corollaries.

Corollary 52. If q and q̃ are two An -An−1 hedgehogs, then span βk(q) = span βk(q̃). Thus
every hedgehog generates the entire space of polylogarithms over an An.

Corollary 53. Suppose xi and xj are both X -coordinates of An. Then xi − xj ∈ MAn if,
and only if, they are both in a An - An−1 hedgehog.

It is also useful to note that finding hedgehogs is computationally simple. Once the
exchange graph is known, it is straightforward to find the An−1 subalgebras, and thence the
hedgehogs.

This is expected to generalize to other cluster algebras besides An. Slight modifications
of this approach have been shown to work on D4 at lower weights by explicit computation.
The hope is that the space M0,n+3 could instead be replaced by the space of configurations
of points on P3 instead of P1, which would permit a similar basis to be written down for all
G(4, n) cluster algebras.

76

References

[1] Vittorio Del Duca, Claude Duhr, and Vladimir A Smirnov. The one-loop one-mass hexagon
integral in D= 6 dimensions. Journal of High Energy Physics, 2011(7):1–11, 2011.

[2] Alexander B. Goncharov, Marcus Spradlin, C. Vergu, and Anastasia Volovich. Classical Poly-
logarithms for Amplitudes and Wilson Loops. Phys.Rev.Lett.105:151605,2010, October 2010.
doi:10.1103/PhysRevLett.105.151605. URL http://arxiv.org/pdf/1006.5703v2.

[3] John Golden, Miguel F Paulos, Marcus Spradlin, and Anastasia Volovich. Cluster Polyloga-
rithms for Scattering Amplitudes. arXiv preprint arXiv:1401.6446, 2014.

[4] Michael Francis Atiyah. Geometry of Yang-Mills Fields. 1979.

[5] David Bleecker. Gauge Theory and Variational Principles. Addison-Wesley Publishing Com-
pany, 1981.

[6] Gregory L. Naber. Topology, Geometry, and Gauge Fields: Interactions, volume 141 of Applied
Mathematical Science. Springer.

[7] Shoshichi Kobayashi and Katsumi Nomizu. Foundations of Differential Geometry, volume 1.
New York, 1963.

[8] Mark Srednicki. Quantum Field Theory. Cambridge University Press, 2007.

[9] Anthony Zee. Quantum Field Theory in a Nutshell. Princeton university press, 2010.

[10] Edward Witten. Perturbative gauge theory as a string theory in twistor space. Commun.
Math. Phys., 252:189–258, 2004. doi:10.1007/s00220-004-1187-3.

[11] Henriette Elvang and Yu-tin Huang. Scattering amplitudes. arXiv preprint arXiv:1308.1697,
2013.

[12] John Golden, Alexander B. Goncharov, Marcus Spradlin, Cristian Vergu, and Anasta-
sia Volovich. Motivic Amplitudes and Cluster Coordinates. August 2013. URL http:

//arxiv.org/pdf/1305.1617v2.

[13] Roger Penrose. Twistor algebra. Journal of Mathematical physics, 8(2):345–366, 1967.

[14] Andrew Hodges. Eliminating spurious poles from gauge-theoretic amplitudes. Journal of High
Energy Physics, 2013(5):1–23, 2013.

[15] M. Gekhtman, M. Shapiro, and A. Vainshtein. Cluster Algebras and Poisson Geometry. Math-
ematical surveys and monographs. American Mathematical Soc., 2010. ISBN 9780821875483.
URL http://books.google.com/books?id=g0HfXaND8zYC.

[16] John Lee. Introduction to Smooth Manifolds, volume 218. Springer, 2012.

[17] Stephen J Parke and TR Taylor. Amplitude for n-gluon scattering. Physical Review Letters,
56(23):2459, 1986.

[18] Zvi Bern, Lance Dixon, David C Dunbar, and David A Kosower. One-loop n-point gauge
theory amplitudes, unitarity and collinear limits. Nuclear Physics B, 425(1):217–260, 1994.

77

http://dx.doi.org/10.1103/PhysRevLett.105.151605
http://arxiv.org/pdf/1006.5703v2
http://dx.doi.org/10.1007/s00220-004-1187-3
http://arxiv.org/pdf/1305.1617v2
http://arxiv.org/pdf/1305.1617v2
http://books.google.com/books?id=g0HfXaND8zYC

[19] C Anastasiou, L Dixon, Z Bern, and DA Kosower. Planar amplitudes in maximally supersym-
metric Yang-Mills theory. Physical review letters, 91(25):251602, 2003.

[20] Zvi Bern, Lance J Dixon, and Vladimir A Smirnov. Iteration of planar amplitudes in maximally
supersymmetric Yang-Mills theory at three loops and beyond. Physical Review D, 72(8):
085001, 2005.

[21] Sergey Fomin and Andrei Zelevinsky. Cluster algebras. I. Foundations. J. Amer. Math. Soc.,
15(2):497–529 (electronic), 2002. ISSN 0894-0347.

[22] Andrei Zelevinsky. What is a cluster algebra. Notices of the AMS, 54(11):1494–1495, 2007.

[23] L. K. Williams. Cluster algebras: an introduction. ArXiv e-prints, December 2012.

[24] Michael Gekhtman, Michael Shapiro, and Alek Vainshtein. Cluster algebras and Poisson
geometry. Number 167. American Mathematical Soc., 2010.

[25] P. DiFrancesco, R. Kedem, and R. Soto Garrido. Physics & Combinations of the Octahedron
Equation: From Cluster Algebras to Arctic Curves. In Michigan State University Mathematics
Department Seminar, April 2014.

[26] Kyungyong Lee and Ralf Schiffler. Positivity for Cluster Algebras. Annals of Mathematics,
2013.

[27] Sergey Fomin and Andrei Zelevinsky. Cluster algebras. II. Finite type classification. Invent.
Math., 154(1):63–121, 2003. ISSN 0020-9910.

[28] Sergey Fomin. Cluster algebras: basic notions and key examples (Slides). In Spring
School “Tropical Geometry and Cluster Algebras”, April 2012. URL http://www.msri.org/

workshops/595/schedules/15561/documents/1438/assets/16934.

[29] Sergey Fomin and Nathan Reading. Root systems and generalized associahedra. arXiv preprint
math/0505518, 2005.

[30] V. V. Fock and A. B. Goncharov. Cluster ensembles, quantization and the dilogarithm. August
2009. URL http://arxiv.org/pdf/math/0311245v7.

[31] Joshua S. Scott. Grassmannians and Cluster Algebras. November 2003. URL http://arxiv.

org/pdf/math/0311148v1.

[32] Francis Brown. Iterated integrals in quantum field theory. page 188. Cambridge University
Press, 2013. URL http://www.ihes.fr/~brown/ColombiaNotes7.pdf.

[33] A. B. Goncharov. A simple construction of Grassmannian polylogarithms. March 2013. URL
http://arxiv.org/pdf/0908.2238v4.

[34] Kuo-tsai Chen. Algebras of iterated path integrals and fundamental groups. Transactions of
the American Mathematical Society, 156:359–379, 1971.

[35] Richard Hain. Iterated integrals and algebraic cycles: examples and prospects. Contemporary
trends in algebraic geometry and algebraic topology (Tianjin, 2000), 5:55–118, 2002. URL
http://arxiv.org/abs/math/0109204.

78

http://www.msri.org/workshops/595/schedules/15561/documents/1438/assets/16934
http://www.msri.org/workshops/595/schedules/15561/documents/1438/assets/16934
http://arxiv.org/pdf/math/0311245v7
http://arxiv.org/pdf/math/0311148v1
http://arxiv.org/pdf/math/0311148v1
http://www.ihes.fr/~brown/ColombiaNotes7.pdf
http://arxiv.org/pdf/0908.2238v4
http://arxiv.org/abs/math/0109204

[36] Christian Bogner and Francis Brown. Symbolic integration and multiple polylogarithms. Loops
and Legs in Quantum Field Theory - 11th DESY Workshop on Elementary Particle Physics,
April 2012.

[37] M.E. Sweedler. Hopf Algebras. Mathematics lecture note series. Benjamin, 1969. ISBN
9780805392555.

[38] David E Radford. A natural ring basis for the shuffle algebra and an application to group
schemes. Journal of Algebra, 58(2):432–454, 1979.

[39] Amy Glen. Combinatorics of Lyndon words. Mini-Conference “Combinatorics, representations,
and structure of Lie type”, February 2012. URL https://amyglen.files.wordpress.com/

2012/03/melbourne_talk_feb2012.pdf.

[40] Jean-Pierre Duval. Génération d’une section des classes de conjugaison et arbre des mots de
Lyndon de longueur bornée. Theoretical Computer Science, 60(3):255–283, 1988. ISSN 0304-
3975. doi:10.1016/0304-3975(88)90113-2. URL http://www.sciencedirect.com/science/

article/pii/0304397588901132.

[41] J. Berstel and M. Pocchiola. Average Cost of Duval’s Algorithm for Generating Lyndon Words.
Theor. Comput. Sci., 132(1-2):415–425, September 1994. ISSN 0304-3975. doi:10.1016/0304-
3975(94)00013-1. URL http://dx.doi.org/10.1016/0304-3975(94)00013-1.

[42] Claude Duhr, Herbert Gangl, and John R. Rhodes. From polygons and symbols to poly-
logarithmic functions. October 2011. URL http://arxiv.org/abs/1110.0458v1;http:

//arxiv.org/pdf/1110.0458v1.

[43] Claude Duhr. Hopf algebras, coproducts and symbols: an application to Higgs boson am-
plitudes. March 2012. URL http://arxiv.org/abs/1203.0454v1;http://arxiv.org/pdf/

1203.0454v1.

[44] Christian Vergu. Polylogarithms and physical applications. Notes for the Summer School
“Polylogarithms as a Bridge between Number Theory and Particle Physics”, July 2013. URL
http://www.maths.dur.ac.uk/lms/2013/PNTPP13/talks/0190vergu.pdf.

[45] Alexander B Goncharov. Multiple polylogarithms and mixed Tate motives. arXiv preprint
math/0103059, 2001.

[46] Lance J. Dixon, James M. Drummond, Matt von Hippel, and Jeffrey Pennington. Hexagon
functions and the three-loop remainder function. December 2013. URL http://arxiv.org/

abs/1308.2276v2;http://arxiv.org/pdf/1308.2276v2.

[47] A. Postnikov. Positive Grassmannian. Technical report. URL http://www.thales.math.

uqam.ca/~ahmorales/18.318lecs/lectures.pdf.

[48] James M. Drummond, Georgios Papathanasiou, and Marcus Spradlin. A Symbol of Unique-
ness: The Cluster Bootstrap for the 3-Loop MHV Heptagon. February 2015. URL http:

//arxiv.org/abs/1412.3763v2;http://arxiv.org/pdf/1412.3763v2.

[49] Francis Brown. Multiple zeta values and periods of moduli spaces M0,n. arXiv preprint
math/0606419, 2006.

79

https://amyglen.files.wordpress.com/2012/03/melbourne_talk_feb2012.pdf
https://amyglen.files.wordpress.com/2012/03/melbourne_talk_feb2012.pdf
http://dx.doi.org/10.1016/0304-3975(88)90113-2
http://www.sciencedirect.com/science/article/pii/0304397588901132
http://www.sciencedirect.com/science/article/pii/0304397588901132
http://dx.doi.org/10.1016/0304-3975(94)00013-1
http://dx.doi.org/10.1016/0304-3975(94)00013-1
http://dx.doi.org/10.1016/0304-3975(94)00013-1
http://arxiv.org/abs/1110.0458v1; http://arxiv.org/pdf/1110.0458v1
http://arxiv.org/abs/1110.0458v1; http://arxiv.org/pdf/1110.0458v1
http://arxiv.org/abs/1203.0454v1; http://arxiv.org/pdf/1203.0454v1
http://arxiv.org/abs/1203.0454v1; http://arxiv.org/pdf/1203.0454v1
http://www.maths.dur.ac.uk/lms/2013/PNTPP13/talks/0190vergu.pdf
http://arxiv.org/abs/1308.2276v2; http://arxiv.org/pdf/1308.2276v2
http://arxiv.org/abs/1308.2276v2; http://arxiv.org/pdf/1308.2276v2
http://www.thales.math.uqam.ca/~ahmorales/18.318lecs/lectures.pdf
http://www.thales.math.uqam.ca/~ahmorales/18.318lecs/lectures.pdf
http://arxiv.org/abs/1412.3763v2; http://arxiv.org/pdf/1412.3763v2
http://arxiv.org/abs/1412.3763v2; http://arxiv.org/pdf/1412.3763v2

	Introduction
	Yang-Mills Theory
	Motivation and the Lagrangian
	Quantization

	Kinematics for Scattering Amplitudes
	Spinor Helicity
	Twistors and Momentum Twistors
	Configurations
	Grassmannians and Plücker Coordinates

	Review of Amplitudes in N=4 SYM
	The Parke-Taylor Formula
	Supersymmetry
	The MHV Classification
	Loops and the BDS Ansatz

	Cluster Algebras
	What is a Cluster Algebra?
	The A2 Cluster Algebra
	General Properties of Cluster Algebras
	More Examples of Cluster Algebras
	Cluster X-coordinates
	Grassmannian Cluster Algebras

	Polylogarithms
	Classical Polylogarithms
	Iterated Integrals
	Shuffle Algebras and Lyndon Words
	The Symbol and Chen's Theorem
	Generalized Polylogarithms
	Examples of Symbols

	Results on Cluster Functions
	The Hopf Algebra of Polylogarithms
	Examples of the Symbol Coproduct
	Cluster Polylogarithms on A2: The A2 Function
	A Computationally Efficient Basis for Finding Cluster Functions at Weight 4
	Dictionary of Cluster Polylogarithms
	Counting X-coordinates, A2 and A3 Functions
	An Algorithm to Factor Products of X-coordinates

	Cluster Bases
	The Basis Problem
	The Spaces M, P, R and Q
	Brown's Theorem
	The Hedgehog Theorem

	Bibliography

