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Searches for new physics at the Large Hadron Collider often require identi-
fying highly boosted hadronic decay products of heavy particles. When deep
neural networks are applied to pixelated images of jets with and without in-
ternal structure, they can out-perform traditional observables used to classify
jet sources. In order to understand how these techniques would perform in
realistic experimental conditions, we applied them to simulated proton col-
lision events with 0, 35, 140, and 200 additional proton-proton interactions.
In this study we have shown that it is possible for deep neural networks ap-
plied to jet images containing extra radiation from additional interactions
to distinguish significant substructure features and maintain classification
performance.



1 Introduction

We can attempt to recreate the microscopic early universe by accelerat-
ing particles to the highest possible energies and colliding them. The key to
understanding particle collisions (and hence the dynamics of the universe)
is measuring the properties of particles emanating from these collisions. As
some particles interact with detector material, they form dense showers of
particles, called jets. Most jets are the result of the fragmentation of stan-
dard model (SM) particles such as quarks and gluons. At collision energies
like those at the Large Hadron Collider (LHC) [1], production of new heavy
particles can result in jets with interesting substructure properties. A com-
plication in these searches is distinguishing between jets of interest and jets
from background processes. Developing novel tools to classify these jets has
become a focused pursuit of particle physicists over the last several years. A
unique approach to accomplishing this task is to take a “picture” of these jets
and then use computer vision and neural network techniques to distinguish
between different types of jets. Based on a study performed at Stanford Lin-
ear Accelerator (SLAC) [11, 16], it has been shown that jet image techniques
show promising performance. Yet, as the LHC moves toward its upcoming
high intensity phase, more studies are needed to understand if these tools
are robust against increasingly dense environments with many simultaneous
collisions.

2 Conventional Jet Substructure Tagging

Jets are formed from clusters of hadrons and other particles that are pro-
duced by the fragmentation of quarks and gluons. These showers are what
we use to infer the presence of quarks and gluons that have color charge in
collision decay products. Particles with color charge are prevented from exist-
ing individually because of Quantum Chromodynamics (QQCD) confinement.
Jets carry the mass and energy of these particles, thus if we reconstruct and
identify them, we can see what happens at the heart of a high energy colli-
sion. A common particle clustering algorithm used in these studies to create
jets is called the anti-k7 algorithm [2] and produces jets that have cone-like
shapes with a characteristic radius, similar to those shown in Fig. 1.

Many models of physics beyond the SM predict new particles with very
large masses (on the order of ~ 100 GeV to ~ 1 TeV). Some examples are



supersymmetric or vector-like top quark partners [3, 4] that could stabilize
the mass of the Higgs boson [5, 6], which is responsible for the mass of
the fundamental particles, e.g. electrons. Another particle predicted by
several models is heavy electroweak boson called the W’ which is used in
this study. Heavy new physics particles often decay into lighter SM particles
(on the order of ~ 1 GeV to ~ 100 GeV) and therefore often carry away
large momenta. These SM particles in turn may decay into light quarks (up,
down, strange, charm, bottom), these quarks become highly Lorentz boosted.
When this occurs, jets become very collimated and begin to overlap. Jets
from boosted particles typically have high transverse momenta (p7) and are
best reconstructed using a large clustering radius that envelopes multiple
small-radius jets. Figure 1 gives an example of how jets from increasingly
boosted particles merge. The two leftmost pictures represent low pr particles
that decay while the two rightmost pictures are roughly 10 to 50 times that
pr. At the LHC, which probes the energy frontier, distinguishing between jets
due to heavy particle production and high momentum light quark jets from
multijet backgrounds is a real challenge. Improving our ability to analyze
the internal particle content of these boosted jets is crucial for unlocking new
discoveries in particle physics.

Hadrons are
clustered
together to
make jets

Figure 1: Examples of jet reconstruction with a typical cone shape (left).
As the momentum of a decaying particle rises, jets from the decay products
become more colinear (right).

To overcome the difficulties posed by the merging of jets, substructure
identification techniques have been developed to differentiate between QCD
background jets and jets from decays of boosted bosons or top quarks. This
can be done with “grooming” techniques (such as soft drop [7], pruning [8], or
trimming [9]) that remove low momentum and wide-angle particles from a jet



to better isolate the high momentum components. This gives a more accurate
measurement of the invariant mass of the jet constituents (mj.;). The clusters
of energy inside a jet can be characterized with observables derived from the
jet constituents (tracks, and topological clusters, or “subjets”), such as the
jet shape variable “N-subjettiness” [10]. This variable, labeled 7y, quantifies
the consistency of a jet with having N subjets. These conventional features
are commonly used to tag jets from different sources. For example, jet from a
W boson decaying into two quarks would be expected to have a mass near 80
GeV and two subjets. Although these methods have proven to be effective,
computer vision and machine learning techniques could give much greater
discriminatory power, in particular at the high intensity LHC.

In the studies presented here, W bosons are used as an example of a jet
with internal structure. Jets from boosted hadronically decaying W bosons
are created by simulating a theoretical heavy electroweak boson, W’ that
decays to a W boson and a Z boson. In this simulation the W boson decays
hadronically, W — ¢q’, and the Z boson decays to neutrinos, Z — vi. This
produces a very clean event topology with one large-radius jet from the W
boson decay and missing energy from the neutrinos. Background jets from
light quarks are taken from QCD multijet simulations.

3 Jet Images and Computer Vision

Josh Cogan et al. at SLAC proposed a novel approach to jet classification
through computer vision inspired techniques [11]. They create a visual rep-
resentation of a jet by displaying its energy in a grid of calorimeter towers
with spacing An x A¢ = 0.1 x 0.1, spanning [-2.5, 2.5] in i (the polar angle
with respect to the beam axis) and [0,2] in ¢ (azithmuthal angle around the
beam). The transverse energy deposited by the jet’s constituents in this grid
of towers are stored as a pixelized intensity image, or “jet-image”. Jet-images
contain useful properties: they can be described by a fixed set of values, they
do not compress information into set of derived variables, such as mj ., and
similarities between jets can be easily computed using standard linear alge-
bra computations. With this visualization, a parallel can be drawn between
jet physics and the facial recognition techniques that are strongly supported
and developed by industries.

In order to classify faces in an image, it is possible to learn features from
the pixel distributions in example images of the type of face that needs to



be recognized. Yet various arbitrary differences between example images,
such as lighting or angle, can act as “noise” that obscures the important
features of the image. These can be mitigated by preprocessing the images to
extract the most important features. This significantly improves a network’s
performance for classifying faces. Using this analogue Cogan’s group applies
a series of preprocessing steps to extract the most important features from
the pixel intensity distribution of a jet.

Noise reduction is done by applying a grooming algorithm to reduce the
number of soft particles in the jet. Point-of-interest finding means locating
the the positions of the leading areas of transverse energy deposition. Align-
ment makes the relative location of the primary feature in the grid always
the same, through three actions: rotation to remove the symmetric nature
of decay angle in the 7 — ¢ by putting the second leading subjet at +m/2,
translation centers the leading energy deposit of jet in the same pixel, and
reflection flips the image so that its maximal transverse energy always ap-
pears on the right side of the images. Examples of these alignment actions
are shown in Figs. 2 and 3.

When constructing discriminants found in facial recognition Cogan et.
al. used Fisher’s Linear Discriminant (FLD) [12]. The FLD uses information
from variations within the same type of image, and is therefore not strongly
influenced by variations that do not distinguish between image types. Us-
ing a training set of preprocessed jet-images from two classes (signal and
background), FLD produces a discriminant, called a “Fisher-jet”, which has
the same dimensionality as the jet-images. Jet-images are then projected
onto the Fisher-jet to identify features of the two classes with positive and
negative values in the projection.

Their case study differentiates between jets produced by boosted hadron-
ically decaying W bosons (the signal class) and jets produced by light quarks
(the background class). Their samples were produced by the Monte Carlo
event generators MADGRAPH [13] and HERWIG++ [14] with proton-proton
collisions at 8 TeV. Generated events are hadronized using the PYTHIAS
program [15]. Their jet-images were made from 25 x 25 calorimeter grids
and they performed the preprocessing steps described previously. Figure 4
shows the “Fisher-jet” discriminant. In Fig. 5 the performance of the Fisher-
Jet discriminant is shown: it performs better than a ratio of N-subjettiness
variables at correctly identifying the W boson jets by a small but noticeable
margin [11]. This demonstrates the potential of this method and the power
of computer vision.
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(a) Jet-image prior to rotation

Figure 2: Example of three image preprocessing steps. [11]
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Figure 3: An example jet-image before (left) and after (right) processing

steps. [11]
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Figure 4: Example of a “Fisher-jet” from the FLD. [11]
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Figure 5: Performance of the FLD compared to 75/7 in identifying W boson
jets and rejecting mulitjet background jets. [11]



4 Extension of Jet Images to Deep Networks

Luke de Oliveira et al., associated with Stanford University and SLAC,
have extended the jet-image technique by applying deep neural networks
(DNN) rather than Fisher discriminants [16]. They used DNNs to classify
the same type of boosted hadronically decaying W jets apart from a multijet
background. These neural networks significantly outperform conventional
classifiers such as N-subjettiness. Their jet-image framework is the starting
point for the studies to be described in this thesis, so more details are given
in later sections. It is first important to describe neural networks in general
and the network architectures of interest for this analysis.

4.1 Deep neural networks

A neural betwork, or more precisely an artificial neural network (ANN),
is a computational model based on studies of animal brains [17]. Dr. Robert
Hecht-Nielsen, a pioneer in the development of neural networks, describes an
ANN as a “...computing system made up of a number of simple, highly inter-
connected processing elements, which process information by their dynamic
state response to external inputs.” [18]. They are constructed using basic
artificial neurons that carry and modify weights and biases as observations
are injected into the system (Fig. 6).

It can be difficult for users to understand how the network is perform-
ing and why they work so well, but the impressive performance of ANNs in
computer vision, speech recognition, and in natural language processing is
undeniable [19]. Key components to an ANN framework are layers and acti-
vation functions. Layers refer to a set of artificial neurons which can either
be input layers, output layers, or hidden layers (layers between the input and
the output layer). At each layer, there are activation functions applied to
inputs. These functions are usually non-linear (such as a logistic function)
and thus are essential to 'learning’ robust features about the data.

Machine learning algorithms such as ANNs can be categorized as super-
vised or unsupervised learning. In supervised learning methods the inputs
have labels that identify the true class (signal or background) before the net-
work is trained, whereas in unsupervised learning methods the labels are not
known prior to learning. Here we will use supervised DNNs where “deep”
signifies that the network has any hidden layers in between the input and
output layers. This allows for more complex learning of the data. Of course



more complexity means more computation time and creates risks of over-
fitting, where the generality of decision boundaries are lost and the results
of the network are too specific to the exact learning sample. The types of
layers used and the depth of the network must be examined when construct-
ing a deep network to achieve optimal performance that is still generalizable
to other datasets. Two DNN architectures have been implemented for jet-
image studies: fully connected layer (“MaxOut”) networks and convolutional
networks.
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Figure 6: Diagrams of ANN architectures, with layers in which an activation
function acts on inputs to create an ouput.

input layer

4.2 MaxOut (Fully Connected Layer) Networks

A fully connected machine learning layer takes all available variables,
or “features”, as inputs and every neuron is connected to every neuron in
the previous layer. At each layer an activation function can be applied to
create non-linear decision boundaries that detect the features of the input.
A MaxOut [20] architecture uses fully connected layers with the MaxOut
function, which is essentially a piecewise linear approximation of a convex
function. The MaxOut function takes an input vector ¥ and computes an
output vector z using k linear weights w and offset terms b:

Zie[h = Zfiwz‘j + b;, (1)

with final output taken as maxjepp (7). A Rectified Linear Unit (ReLu),
a piecewise function that is linear above zero and zero otherwise, can be
considered a special case of a MaxOut activation function with k£ = 2. The
Maxout is highly flexible since it can incorporate any number of piecewise
linear functions.Maxout was orginally developed to maximize the effects of
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“Dropout”. Dropout is a function which reduces overfitting to training data
by randomly turning off a percentage of neurons in a given layer. Dropout
and Maxout pair nicely to reduce overfitting and to optimize learning [20].
The DNN implemented with MaxOut is structured as follows [16]:

e 1st layer (Input Layer): MaxOut fully connected layer with 256 neu-
rons, random initialization of weights, k=5 , and a dropout rate of

30%.

e 2nd Layer: Maxout fully connected layer with 128 neurons, random
initialization of weights, k=5, and a dropout rate of 20%.

e 3rd Layer: ReLu fully connected layer with 64 neurons, and a dropout
rate of 20%.

e 4th Layer: ReLu fully connected layer with 25 neurons, and 30%
dropout rate.

e 5th Layer (Output Layer): Sigmoid fully connected layer with 1 neuron.

An example of the network output can be seen in Fig. 7, showing the
correlation of the network output to pixel activation in the inputs. This
image shows a strong correlation in the location of the secondary energy
deposit, expected to be signficantly more pronounced in W boson jets than
in background jets.

4.3 Convolutional Neural Networks

A Convolutional Neural Network (CNN) [21] applies convolution filters,
or kernels, with sets of weights w that operates on small n x n windows
of an image array. This filter is moved through the input image in n x n
steps and creates a convolved feature map with outputs z = sigmoid(Zw).
The feature map indicates local dependencies in the input image. There
are three components that determine the size of the feature map and the
performance of the CNN: depth, “stride”, and zero padding. Depth refers
to the number of filters used to for the convolution operation, which can be
thought of as stacking 2D matrices. Stride is number of pixels by which the
window moves as it convolves the image, and zero padding adds zeros on
the borders of the image, allowing kernels to be applied on border segments

10
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Figure 7: Example of the type of information contained in the MaxOut
network. [16]

as well as central segments. After the convolution step, a ReLu activation
function is applied to introduce non-linearity and create a “Rectified” feature
map, which is a transformation of the orginal feature map. Then a smaller
filter, called “MaxPooling”, takes non-overlapping windows of the rectified
feature map as inputs to reduce the number of dimensions in each feature
map, while retaining the important information by taking the largest element
of the rectified feature map. The convolution layer, Rel.u activation layer,
and Max Pooling layer work together as convolutional unit, shown in Fig. 8.
To learn the jet-images with a CNN, Oliveira et al. used three convolu-
tional units with window sizes 11 x 11, 3 x 3, and 3 x 3. Each window has
a depth of 32, stride of 1 x 1 (i.e., the window moves up-down and left-right
one pixel at a time), and zero padding is used. The window for Max Pooling
for each convolutional layer is 2 x 2, 3 x 3, and 3 x 3 respectively. All convolu-
tional layers are regularized with the L2 weight matrix normalization. Since
the ReLu can yield arbitually large outputs, Local Response Normalization
is used to rescale the outputs of the three convolutional units. These are
then followed by two fully connected layers to reconnect the output of the
convolutional layers. The outline of their network is as followes [20]:
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Figure 8: Convolutional Filters [16]

e 1. [Convolution — ReLu — MaxPooling] * 3 units

2. Output of 1 — Local Response Normalization

3. Output of 2 — [20% Dropout — fully connected — ReLu]

4. Output of 3 — fully connected layer and 10% Dropout

5. Output of 4 — Sigmoid fully connected layer

Figure 9 shows Receiver Operating Characteristic curves produced by
Oliveira et al., demonstrating the gains possible by using deep networks
to discriminate between heavy particle jets and multijet background jets
compared to a traditional variable 75/77. A combination of computer vision
networks and neural networks can allow for new perspectives in studying jet
substructures.
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5 Jet Images at the High Luminosity LHC

The LHC is expected to generated approximately 50 petabytes of data
in 2017 [22]. This is an enormous volume of data to analyze, so particle
physics employ as many advanced computing tools at their disposal as pos-
sible. Machine learning tools provide robust analysis options and can give
insight not seen with traditional algorithms. Boosted Decision Trees, ANNs,
and Support Vector Machines have already been employed in high energy
physics analysis because of their promising performance [23, 24, 25]. The de-
velopment and the improvement of these tools helps identify physics objects
and look for interesting physical phenomena.

As the LHC moves into its next phase with higher luminosity than ever
before, there will be an increase in the number of simultaneous proton-proton
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collisions, called “pileup”. The number of average collisions per crossing of
the LHC proton beams will increase from the current value of approximately
35 — 50 interaction up to 200! This increases the combinatorial complexity
and rate of mis-reconstructed charged particle trajectories, and adds extra
energy to jets from particles that did not originate in the same collision.
These extra particles can distort the measurements of jets from boosted par-
ticles, such as the mass or subjet directions, decreasing the effectiveness of
traditional search variables. For deep learning jet-images techniques to be
used realistically in the LHC environment the response to the presence of
extra soft particles originating from pileup is critical to study.
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Figure 10: The LHC in 2016 has surpassed expectations and trampled past
runs for integrated luminosity.

5.1 Simulations and Jet Image Creation

We have conducted studies on the performance of the jet imaging DNNs
when a high number of pileup interactions have been incorporated into the
simulation of the collisions. Boosted W signal and QCD background simula-
tions were produced using Pythia 8.170 at /s = 13 TeV. Information about
the generated particles in the W/ — W Z and multijet decays are stored in
the Les Houches Event format [26], a standard format that can be used by
many programs such as Delphes. Delphes [27], a fast multipurpose detector
simulator, is used to simulate various levels of pileup and cluster jets from
calorimeter energy deposits. In Delphes we defined a calorimeter grid rang-
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ing from [-2.4276, 2.4276] in n and [—m, 7| in ¢. Each cell or tower of this
calorimeter has a size n X ¢ = .0714 x .0714. The baseline performance of the
deep networks is tested by running Delphes with zero pileup interactions.

Other pileup configurations (35, 140, and 200 interactions) are also pro-
duced to test the effects of pileup on the performance of the classifier. Jets are
clustered in Delphes using the anti-k; algorithm with a characteristic radius
of 0.8 (guiding the choice of the grid size for the calorimeter). The effects of
pileup are mitigated in the Delphes simulation by applying some established
tools for pileup subtraction: charged particles not originating from the same
collision as the jet are subtracted because they can be tracked to a vertex,
and the effect of neutral pileup particles is reduced by subtracting energy
based on the opening area of the jet [28, 29]. Various grooming algorithms
such as soft drop are applied on the jets and the N-subjettiness variables are
computed.

After producing jets in Delphes the following selection criteria are applied:
200 < pr < 300 and 65 < mje < 95. If there is more than one jet in the event
passing these criteria, the highest pr jet is analyzed. Since the calorimeter
grid has edges at n = +2.4276, jets which are too close to these edges for a
25 x 25 grid of calorimeter cells to be created around their center are rejected.
Calorimeter tower cells with transverse energy deposits from jet constituents
are stored. The angular distance in An and A¢ between the the two leading
subjets is calculated from two types of subjets: the subjets identified by the
soft drop algorithm, and the primary and secondary axes of the jet identified
using the PCA technique, where a covariance maxtix is created from all jet
constituents describing their variation from the mean in n and ¢. If the
soft drop algorithm identifies two subjets, the angle between them is used to
rotate the jet images. Otherwise the rotation angle is calculated from axes
identified with the PCA technique. The ratio of N-subjettiness variables
To1 = T2 /71 is also stored for comparison against the deep network results.

5.2 Image Processing

Python 3.4.8 with the modules Keras 2.0.3 [30], Theano 0.9.0 [31], Scikit-
Learn 0.18.1 [32], and Scikit-Image 0.13.0 [33] were used for pre-processing
and to create DNN architectures. Keras is a deep learning library that pro-
vides simpler user access for the Theano or Tensorflow machine learning
programs, making it straightforward to create different types of deep net-
works. Scikit-Learn is machine learning library which we use to do validate
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network performace and visualize the results of training a deep network, such
as ROC curves. Scikit-Image is an image processing library which we use to
perform the rotations and parity inversion of the jets.

Following the framework developed by Oliveria et. al, images are pro-
cessed according to the steps described in section 2. The jet images are
binned using the calorimeter towers. No normalization the pixel intensity is
preformed because can distort information contained within the jet-images
as the mass represented by the energy in the pixels would not be conserved.
The images are rotated through the angle described previously so that the
secondary subjet is located at —m /2.

Example average jet-images for the W boson jets and background jets at
each pileup level are shown in Figs. 11 — 14, before and after the rotation
procedure. The difference between the images as pileup increases is clear:
with higher pileup there are more low-momentum energy deposits in the
calorimeter. Visually, one can see that the two subjets become less distinct
with higher pileup and that the intensity in pixel far from the hard clusters.
In the W boson jets the second subjet is well separated from the primary
subjet since there are two unique quarks producing subjets. In the back-
ground jets the second subjet is less distinct and blends into the soft energy
deposits at high pileup because the main souce of subjets in these jets is ran-
dom splitting of gluons into two quarks. Therefore on average the secondary
subjet of the QCD background is not as prominent as the secondary subjet
of the boosted W boson.
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Figure 11: Average jet-image of signal jets with 0 (top) and 35 (bottom)
pileup interactions, before (left) and after (right) rotation.
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Figure 12: Average jet-image of signal jets with 140 (top) and 200 (bottom)
pileup interactions, before (left) and after (right) rotation.
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Figure 13: Average jet-image of background jets with 0 (top) and 35 (bottom)
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Figure 14: Average jet-image of background jets with 140 (top) and 200
(bottom) pileup interactions, before (left) and after (right) rotation.
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5.3 DNN Framework

Due to software availability we focused on building and training a Max-
Out network which was shown in Fig. 9 to perform slightly better than a
CNN. To estimate the impact of pileup on the MaxOut network, we trained
the network using 3-fold cross-validation on 180,000 jet-images from the 0-
pileup samples. Inputs are weighted so that the pr distribution of signal jets
matches the distribution of background jets. Cross-validation is performed
by training the network and evaluating its performance in a set number (k)
of “folds”, or iterations: in each iteration a fraction 1/k of the inputs are
saved for testing and the remaining inputs are used for training. At each
fold the training inputs are shuffled and up to 50 iterations of training are
performed, stopping when the area under the ROC no longer increases. In
this way the entire sample is used to evaluate the network in small inde-
pendent segments, reducing the dependence of the network’s performance on
the exact input sample. The cross-validation sample contains 22% signal jets
and 88% background jets.

The network trained on the O0-pileup samples is then also tested on 210,000
jet-images with 35 pileup (17% of which are signal jets), 220,000 jet-images
with 140 pileup (12% of which are signal jets), and 190,000 jet-images with
200 pileup (11% of which are signal jets). Of the three sets of network
outputs from the cross-validation, we chose the most conservative to use in
these evaluations. We also trained three different maxout networks on jet-
images with 35, 140, and 200 pileup. These networks were tested during
the cross-valdiation procedure on input jet-images with the same number of
pileup as was used to train them. In Fig. 15, the distributions for the MaxOut
Networks trained and tested with the sample pileup are shown. The network
exhibits noticeable jumps around .5-.6 for 0 and 35 pileup and around .4-.5
for 140 and 200 pileup. At this middle junction, the MaxOut Network has
trouble in distinguishing between signal and background. This is also seen
in the Oliveria et al. paper [16].
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Figure 15: The network outputs are compared to signals of the same pileup.

Top-left is 0 pileup, top-right is 35 pileup, bottom-left is 140 pileup, and
bottom-right is 200 pileup.
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As pileup increases, the extra radiation in the jets causes signal and back-
ground jet-images to look more similar because there is enough extra energy
deposits to make the images "hazy.” The boosted W signal has a much
"brighter” secondary subjet than the background jet. When the network
learns the features of the 0 pileup images it must have a strong focus on the
secondary subjet which is weak in the QCD case.Fig. 16 shows that the Max-
Out network has a strong linear correlation for the subjets, and arguable more
so for the secondary subjet. It is also important to notice the anti-correlation
around the subjets, especially in-between them. The anti-correlation of the
network output with activity at the fringes of the jets decreases with higher
pileup, thus more pixels loose their significance towards learning the features
of the jets because these pixels are typically filled with radiation from pileup.
Higher detector interactions are also causing the correlation of the secondary
subjet for 140-pileup and 200-pileup to become more spread out. This wider
area of correlation means the resolution of the secondary subjet is decreasing.
The network is considering the energy outside of the subjet as important as
well.

Further evidence for the importance of the subjets is shown with corre-
lation plots of a Maxout network only trained on O-pileup. The difference
is that the correlation of all pixels decreases significantly with more pileup,
though the network continues to favor the secondary subjet. At higher pile-
ups, this second leading jet becomes more hidden by soft radiation and the
network is unable to distinguish signal from background as clearly.
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Figure 16: Correlation between with the intensity of each pixel to the Max-
Out network output.The network outputs are compared to signal and back-
ground of the same pileup. Top-left is 0 pileup, top-right is 35 pileup, bottom-
left is 140 pileup, and bottom-right is 200 pileup.
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Figure 17: Correlation between with the intensity of each pixel to the Max-
Out network output. This MaxOut network was only trained on 0 pileup and
then tested with 35, 140, and 200 pileup (in that order from left to right).

5.4 Signal and Background Distributions

In Fig. 18, ROC curves show the signal effciency versus background re-
jection of the MaxOut networks. Using the network trained with O-pileup
jet-images ato predict the idenity of jets in the higher pileup samples shows
very poor performance. However, when training networks with high pileup
jet-images, performance is recovered to the extent that the network trained
on 140 pileup jet-images nearly reproduces the performance at current LHC
conditions with 35 pileup. Even in the extreme conditions of 200 pileup the
network is able to isolate important features of the jets and provide mean-
ingful discrimination.

’ Signal Effciency \ 0 pileup 35 pileup 140 pileup 200 pileup ‘

25% 2.1% 2.6% 2.7"% 3.0%
50% 6.8% 8.3% 9.5% 10%
75% 19% 23% 27% 30%

Table 1: Background effciencies from the ROC cruve describing MaxOut
networks trained and tested with the same pileup
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Figure 18: ROC curve comparing the 0-pileup trained MaxOut networks
applied on jet-images with 0, 35, 140, and 200 pileup interactions (left).
However, 200 pileup does not show on the graph because the network is un-
able to reject background. ROC curves comparing MaxOut networks trained
and tested with the same pileup (Right)

6 Conclusion

The combination of visual learning and deep learning is an interesting
approach to understanding the physics of jets. It offers new possible perspec-
tives that may not be obvious with current algorithms focused on traditional
physics variables. Thus our examination of its performance on simulated
data representing more realistic detector conditions is important. We can
conclude from this initial study that any algorithms or networks used for jet
identification in high pileup conditions will need to be specially trained for
the pileup conditions, and will likely need training updates if the average
pileup changes over time, or performance will be lost. We see that an in-
crease in pileup diminishes the network’s ability to differentiate signal from
background, however dedicated training shows that the effects of pileup can
mitigated in situ by the network to large extent. One of the goals of per-
foramce for the High Luminosity LHC is replication of current performace
levels and we see that this achieved with the deep network trainings, espe-
cially for the case of 140 pileup. To expand this study in the future, we
would like to increase the magnitude of training samples, investigate diverse
network architectures, and quantify performance of the network compared
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to other variables or other methods of pileup mitigation.
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