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Overview

At Brown I have had the pleasure of working for and learning from two outstanding advisors: Profs.
Meenakshi Narain and Chung-I Tan. When I arrived at Brown, I knew I wanted to study physics,
but had not really thought about what aspect I wanted to specialize in; I had some vague ideas
about maybe pursuing string theory, but on the advice of my high school physics teacher went
into Brown with an open mind. After I took a course with Prof. Narain the first semester of my
freshman year, she generously offered me a chance to work on the LHC, and I took it. After some
work studying various b-tagging algorithms and their efficiencies, I began work on the top mass
measurement that appears as the first half of this document.

In the three years I've worked on this top mass measurement, I have learned an incredible
amount about particle physics and its practice. In the preparation of my publication, I came to
understand the design and operation of detectors, Monte Carlo methods, and other important
topics in the experimental background. Along the way, I also became interested in some of the
theoretical concerns involved in the operation of the LHC, and in particular QCD. This, combined
with my previous interest in string theory, led me to pursue an additional research project under
Prof. Tan, whose research has recently focused on the application of AdS/CFT to experimentally
relevant physics.

Under Prof. Tan, I calculated the inclusive single-particle production cross section in QCD using
AdS/CFT methods; the calculation forms the second half of this document. This is an empirically
important quantity, and, much to my delight, we found that the AdS/CFT prediction for this cross
section agrees with experiment. To me, this represents a beautiful application of some of the most
abstract topics in modern physics, such as supergravity and conformal field theories, to experiment,
and strikes me as the perfect culmination of my research experience at Brown.
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Abstract

We present a measurement of the top quark mass with the full 2012 dataset captured by
CMS at a center-of-mass energy of /s = 8 TeV, corresponding to an integrated luminosity of
19.7+ 0.5 fb~!. Our analysis is performed on fully leptonic t¢ decays, where both W bosons
decay to fv, and uses the Analytical Matrix Weighting Technique (AMWT). We examine only
events with electron and muon states, i.e. events with final lepton states ee,eu, and pp. The
mass of the top quark is measured to be m; = 172.82 + 0.20 (stat.) + 1.22 (syst.) GeV.

I.1 Introduction

The top quark mass is one of the 19 empirical parameters of the Standard Model (SM), and as
such its precise measurement is of profound importance. It is one of the major inputs to global
electroweak fits, and is linked by radiative corrections to observables such as the Higgs mass.
The latest world combination of the top mass, with input from ATLAS, CMS, D0, and CDF, is
my = 173.34 £+ 0.27 (stat) = 0.71 (syst) GeV/c? [1]. In this note we present a measurement of
the top quark mass using the full /s = 8 TeV 2012 CMS dataset, corresponding to an integrated
luminosity of 19.7 4+ 0.5 fb~1.

We search for events with ¢¢ pair production and fully leptonic ¢t decay, in which both the top
and antitop decay by the CKM-favored t — Wb channel and then both W~ and W decay to a
lepton-neutrino pair. From this tt — WbWb — blvblv decay path we obtain a final state with two
charged lepton-neutrino pairs and two b-jets.

The presence of two neutrinos in the dilepton final state prohibits the direct kinematic re-
construction of the parent particle invariant mass, as the kinematic constraints on the neutrino
momenta do not uniquely specify them. Instead, we indirectly reconstruct a top mass estimator
on an event-by-event basis. For each event, we loop over a large number of top mass hypotheses,
and assign to each hypothesis a weight found by solving analytically for all compatible neutrino
momenta configurations; this weight can be thought of as quantifying the likelihood of the top
mass hypothesis to correspond to the observed event kinematics. We call the top mass hypothesis
with the highest weight the reconstructed mass, and measure the physical top mass by comparing
distributions of reconstructed masses in data to simulated data generated at a variety of top mass
points. A similar measurement, performed in 2011, found m; = 172.69 £ 0.40 (stat) £+ 1.54 (syst)
GeV/c? [2,3].

In the following, we describe our samples of collider and simulated data, event selection cuts,
background estimates, event reconstruction, mass fit, and results.

[.2 Datasets and MC Samples

Here we present the data and Monte Carlo (MC) samples used throughout the analysis. All samples
have been processed using the official “B2G” V3 PAT-tuples produced using CMSSW 5.3.8 patch3,
and have been analyzed with CMSSW 5.3.16.

The data used in this analysis were collected by the CMS detector in 2012, and comes from p-p
collisions at center of mass energy /s = 8 TeV. We use the DOUBLEMUON, DOUBLEELECTRON,
and MUEG datasets, each of which is associated with specific HLT paths. The latest reconstruction
is used (22JANRERECO) with the associated “golden” JSON file [4]; all datasets are filtered to
ensure that we only analyze good data.



The list of MC samples used for the analysis is shown in Tables and [3] For all the Monte
Carlo samples, a full CMS detector simulation based on GEANT4 is performed with realistic
detector conditions. To obtain a PU profile which corresponds to the data analyzed, the reweighing
procedure detailed in Ref. [5,/6] is used, accounting further for the pixel luminosity corrections and
using as total inelastic cross section 69.4 nb.

Table 1: Summary of Monte Carlo datasets used. All MC samples processed in the Summer12 _DR53X
campaign with the PU S10 pile-up scenario (Summer12 DR53X-PU_S10_START53 V19-v1).

Dataset Description Primary Dataset Name x-section (pb)
tt /TTJets_MSDecays_central_TuneZ2star_8TeV-madgraph-tauola 245.8
tW /Thar_tW-channel-DR_TuneZ2star_8TeV-powheg-tauola/ 11.1
tW /T_tW-channel-DR_TuneZ2star_8TeV-powheg-tauola/ 11.1
W Jets /W etsToLNu_TuneZ2Star_8TeV-madgraph/ 36703.2
77 /WW _TuneZ2star_8TeV _pythia6_tauola 17
Wz /WZ_TuneZ2star_8TeV _pythia6_tauola 33.6
WwW /ZZ_TuneZ2star_8TeV _pythia6_tauola 56
Z/4*[10-50] — 11 /DY JetsToLL_M-10To50filter_8 TeV-madgraph 860.5
Z/v*[50-inf] — 11 /DY JetsToLL_M-50_TuneZ2Star_8TeV-madgraph-tarball 3532.8

The simulation of tf events is performed using the MADGRAPH 5.1.4.8 matrix element genera-
tor [7] and MADSPIN [8] for the decay of heavy resonances. The generated partons are processed
with PYTHIA 6.426 [9] to provide showering of the generated particles using the Z2x% tune [10]. The
showers are matched using the kp-MLM prescription [11]. For the default sample, a top quark
mass of m; = 172.5 GeV/c? is assumed. Six additional samples with masses between 166.5 GeV/c?
and 178.5 GeV/c? are used (c.f. Table .

Table 2: tf Monte Carlo samples with different masses of the top quark. All
MC samples processed in the Summer12 DR53X campaign with the PU S10 pile-up sce-
nario(Summer12 DR53X-PU_S10_START53_V19-v1).

Top mass my Primary Dataset Name
166.5 /TTJets-MSDecays_mass166_5_TuneZ2star_8TeV-madgraph-tauola
169.5 /TTJets_MSDecays_mass169_5_TuneZ2star_8TeV-madgraph-tauola
171.5 /TTJets_ MSDecays_mass171_5_TuneZ2star_8TeV-madgraph-tauola
173.5 /TTJets-MSDecays_mass173_5_TuneZ2star_8TeV-madgraph-tauola
175.5 /TTJets_MSDecays_mass175_5_TuneZ2star_8TeV-madgraph-tauola
178.5 /TTJets_MSDecays_mass178_5_TuneZ2star_8TeV-madgraph-tauola

The main background processes for this analysis are Drell Yan, single top quarks, W/Z + jets,
WW, WZ, and ZZ. Electroweak production of single top quarks is simulated using POWHEG version
1 [12-14]; MADGRAPH is used to simulate W/Z events with up to four jets. Production of WW,
WZ, and ZZ is simulated with PYTHIA.

The top quark pair production cross section computed at NNLO, o, = 245.8 + 9.7 pb, is
used [15]. The cross section for associated single top quark production (tW) is taken to be oyw =
22.2 + 1.5 pb at NNLO [16]. The inclusive NNLO cross section for the production of W bosons
multiplied by their branching fraction to leptons has been determined to be ow_;, = 36.7+1.3 nb
using FEWZ version 3.1 |17]. Finally, the Drell-Yan (DY) production cross section at NNLO has



been calculated using FEWZ as 0/« (my > 50 GeV) = 35304120 pb, where my; is the invariant
mass of the two leptons and the scales were set using the Zboson mass mz = 91.1876 GeV [18].

Table 3: Additional t¢ Monte Carlo samples used to estimate the systematic uncertainty.

Primary Dataset Name

/TTJets_MSDecays_matchingup_TuneZ2star_8TeV-madgraph-tauola/Summer12_DR53X-PU_S10_.START53_V19-v2/AODSIM
/TTJets_MSDecays_matchingdown_TuneZ2star_8TeV-madgraph-tauola/Summer12_DR53X-PU_S10_START53_V19-v1/AODSIM
/TTJets-MSDecays_matchingdown_TuneZ2star_8TeV-madgraph-tauola/Summer12_DR53X-PU_S10_START53_-V19-v2/AODSIM

/TTJets_MSDecays_scaleup_TuneZ2star_8TeV-madgraph-tauola/Summer12_DR53X-PU_S10_START53_V19-vl/AODSIM
/TTJets_MSDecays_scaledown_TuneZ2star_8TeV-madgraph-tauola/Summer12_DR53X-PU_S10_START53_V19-v1/AODSIM
/TT_CT10-AUET2_8TeV-powheg-herwig/Summer12_DR53X-PU_S10_.START53_-V19-v1/AODSIM
/TT_CT10_TuneZ2star_8TeV-powheg-tauola/Summerl12_DR53X-PU_S10_.START53_V7A-v2/AODSIM
/TTJets_HadronicMGDecays_TuneP11_8TeV-madgraph-tauola/Summer12_DR53X-PU_S10_START53_V19-v1/AODSIM
/TTJets_SemiLeptMGDecays_TuneP11_8TeV-madgraph-tauola/Summer12_DR53X-PU_S10_.START53_-V19-v1/AODSIM
/TTJets_FullLeptMGDecays_TuneP11_8TeV-madgraph-tauola/Summer12_DR53X-PU_S10_START53_.V19-v1/AODSIM

/TTJets_ HadronicMGDecays_TuneP11mpiHi_8TeV-madgraph-tauola/Summer12_DR53X-PU_S10_START53_V19-vl/AODSIM

/TTJets_SemiLeptMGDecays_TuneP11mpiHi_8TeV-madgraph-tauola/Summerl12_DR53X-PU_S10_.START53_-V19-v1/AODSIM

/TTJets_FullLeptMGDecays_TuneP11mpiHi_8TeV-madgraph-tauola/Summer12_DR53X-PU_S10_START53_V19-v1/AODSIM

/TTJets_HadronicMGDecays_TuneP11TeV _8TeV-madgraph-tauola/Summer12_DR53X-PU_S10_.START53_V19-v1/AODSIM
/TTJets_SemiLeptMGDecays_TuneP11TeV_8TeV-madgraph-tauola/Summer12_DR53X-PU_S10_START53_.V19-v1/AODSIM
/TTJets_FullLeptMGDecays_TuneP11TeV_8TeV-madgraph-tauola/Summer12_DR53X-PU_S10_.START53.V19-v1/AODSIM

/TTJets_HadronicMGDecays_TuneP11noCR _8TeV-madgraph-tauola/Summer12_DR53X-PU_S10_.START53_V19-v1/AODSIM

/TTJets_SemiLeptMGDecays_TuneP11noCR_8TeV-madgraph-tauola/Summer12_DR53X-PU_S10_START53_.V19-v1/AODSIM

/TTJets_FullLeptMGDecays_TuneP11noCR_8TeV-madgraph-tauola/Summer12_DR53X-PU_S10_.START53_V19-v1/AODSIM

1.3 Event Selection

In events of interest to this analysis, both the W~ and W bosons produced in the decay of
the ¢t and ¢t quarks, respectively, will decay to leptons. We are thus interested in signal events
with two opppositely charged high pr leptons, two b-jets, and large missing transverse momentum.
These give our major selection cuts for both data and MC events: we require two isolated, well
constructed, opposite-charge leptons along with two energetic jets and missing transverse energy.
We reconstruct physics objets using the Particle-Flow (PF) algorithm [19].

1.3.1 Event Cleaning

The following procedures were employed to “clean” the event:

e No scraping: the event is rejected if the fraction of high purity tracks is < 25% in events with
at least 10 tracks.

e Require at least one good primary vertex (PV); the PV must have more than 4 degrees of
freedom and must be less than 24 cm away from the nominal interaction point in z and less
than 2 cm away radially.

e HBHE event-level noise filtering.

e CSC Beam Halo Filter.



HCAL Laser Jets filter.

ECAL dead cell filter.

Tracking failure filter.

Bad EE Super cluster filter.

e HCAL laser event filter

1.3.2 Trigger Selection

Since we choose the two leptons with the highest transverse momentum satisfying all selection
criteria (described below), the events are characterized by the flavor of the these leptons, and we
can classify our events as ee, eu, or puu. For each dilepton configuration, only events collected
by the relevant primary dataset and the relevant HLT trigger are considered for the analysis.
This facilitates the construction mutually exclusive channels and helps confirm that the dilepton
candidates have fired the trigger. The triggers used are listed in Table The efficiencies of the
listed triggers were measured in [20]; from these measured efficiencies, channel-dependent scale
factors (SFs), calculated by comparing efficiencies for CMS and simulated data, were found to be
0.958+0.010 in the pu channel, 0.996+0.011 in the ee channel, and 0.9534+0.010 in the ey channel.

e | HLT _Mul7_Ele8 CCTT_v4, 5, 6, 7, 8, 9 or HLT _Mu8_Elel7_.CCTT_v4, 5, 6, 7, 8, 9
pp | HLT Mul7_Mu8_v16, 17, 18, 19, 21, 22 or HLT _Mul7_TkMu8_v9, 10, 11, 12, 13, 14
ee HLT _Elel7_.CCTT_Ele8_ CCTT_v15, 16, 17, 18, 19

Table  4: List of triggers wused in the analysis. CCTT stands for
CaloldT_CalolsoVL_TrkIdVL_TrkIsoVL.

1.3.3 Lepton Reconstruction and Selection

We require two well identified and isolated leptons. Separate algorithms are used to reconstruct
muons and electrons, and are discussed below. Lepton isolation cuts are given in terms of the
Relative Lepton Isolation (RLI). Data-to-MC scale factors are applied to reproduce data selection
efficiency in the MC events.

We demand that all events have dilepton pair mass mg > 20 GeV/c? to reduce contamination
from Drell-Yan events and heavy flavor resonances. Additionally, in the ee and uu channels, we
remove events with 76 GeV /c? < my, < 106 GeV /c? to limit the influence of events from Z decays.

1.3.3.1 Muon Reconstruction and Selection

The muon reconstruction algorithm, described in [21], reconstructs global muons by linking tracks
from the track system with those reconstructed from hits in the muon chambers; final reconstruction
comes from combining these categories of tracks. We use the PF muon selection cuts from [22],
which corresponds to baseline selection for loose ID muons with loose isolation requirement:

e is either a GlobalMuon or aTrackerMuon



e pr > 20 GeV/c
o || <24,

e RLI < 0.20, evaluated in a cone of R = 0.4 around the lepton’s vector momentum, and using
the DeltaBeta correction.

We apply n- and pr-dependent scale factors to correct selection efficiency in simulation to data
levels [23].

1.3.3.2 Electron Reconstruction and Selection

The electron reconstruction algorithm, described in 24|, searches for tracker hits compatible with
readings from the ECAL superclusters; the effect of bremsstrahlung in the tracker is accounted for
in the reconstruction of electron tracks. We use the PF electron selection cuts from [22]:

e pr > 20 GeV/e

In| < 2.5,

e RLI < 0.15, evaluated in a cone of R = 0.3 around the lepton’s vector momentum, using the
rho-correction [25]

e transverse impact parameter of the electron gsfTrack with respect to the beam spot < 0.04
cm,

e AR > 0.1 (R = \/An? 4+ Ap?) between the electron candidate and any global or tracker
muon in the event whose number of hits in the inner tracker is greater than 10;

e Photon conversion rejection
e MVA > 0.5

We apply n- and pp-dependent scale factors to correct selection efficiency in simulation to data
levels [26].

1.3.4 Jet Selection and Missing Transverse Momentum

We reconstruct jets from PF candidates with the anti-k7 algorithm (using AR = 0.5). As above, we
use the selection cuts from [22], applying the L1FastJet, L2, and L3 corrections to all events; data
events also have the L2L3Residual correction. A charged hadron subtraction technique identifies
and removes jet constituents originating from charged hadrons associated with pileup vertices. We
use a Loose Jet Identification, where the fraction of charged hadronic energy is required to be > 0,
the fraction of charged electromagnetic energy < 0.99, the fraction of neutral hadronic energy <
0.99, and the fraction of neutral electromagnetic fraction < 0.99. Kinematical cuts require pr > 30
GeV and |n| < 2.5 for all jets, both b-tagged and not.

We use the latest Winter14 jet energy corrections [27]. In Monte Carlo, the jet energy is smeared
according to the procedure outlined in [2§].

The missing transverse momentum () is directly reconstructed as the vector sum of all PF
candidates, projected onto the transverse plane. We use a Type 1 jet energy correction in calculating
the £r. For ee and pp events, we demand Fr > 40 GeV to further reduce DY event yields.



1.3.5 Jet Selection Using b-tagging

We demand that all events have at least two jets tagged as b-jets by the Combined Secondary
Vertex algorithm, evaluated at the Loose working point (CSVL). In events with more than two
b-tags, we select the two leading-pr b-tagged jets. To reproduce the performance of the b-tagging
algorithm measured in the data in the simulation, data to-Monte Carlo scale factor are applied,
using the so-called EPS13 prescription |29).

I.4 Estimate of the Background Contamination

As described above, our primary backgrounds are Drell-Yan, single top, and W+Jets production.
Of these, DY and single top events contain two real leptons, whereas the W+Jets events that pass
cuts have fake leptons; because the lepton fake rate is low, we expect relatively few W+Jets events.

Single top, diboson, and W +Jets backgrounds are normalized directly to luminosity times cross
section; no scale factors are applied. For the DY background, however, a data-driven normalization
is employed; scale-factors are measured from data on a channel-by-channel basis, for a total of six
calculated DY scale factors, one each for three b-tag categories times two lepton channels. For ee
and pu events, the R,/ method, laid out in [2,30L[31] is used. In this method, the ratio Rout fin
of simulation events inside and outside the Z peak in the dilepton invariant spectrum is used to
estimate the number of data events with dilepton invariant mass outside the Z peak. In the eu
channel, we apply no scale factor. The measured DY scale factors and their statistical uncertainties
are shown in Table [5} We consider an uncertainty of £30% on the overall Drell-Yan normalization
as a systematic uncertainty.

Channel | DY SF: ee | DY SF: uu
0B 0.99+0.30 | 1.05+0.31
1B 1.17+£0.35 | 1.20 £ 0.36
2B 1.07+0.32 | 1.22£0.37

Table 5: Rout/in DY scale factors by b-tags and lepton content.

I.5 Event Yields and Data-MC Comparisons

The above selection criteria, applied to data and MC, result in event yields shown in Tables [6] 7?7
and ?77?; although events with 0 b-tags are not used in their analysis, the yields of such events are
shown for completeness.

In Figures through we plot data/MC comparisons of event characteristic variables
after all event cuts. In these figures, it can be seen that the top quark transverse momentum
distributions are softer in data than in simulation; this has been seen in other analyses as well. A
top quark momentum reweighting procedure has been developed to counteract this; it is treated
here as a systematic uncertainty (Appendix A).

10



Table 6: Number of events with 0 b-tags after all cuts.

Sample I el ee Sum
TThar 980.38 | 2771.51 | 827.28 | 4579.17
Wlets 9.46 81.91 22.25 113.63

Diboson 153.09 | 356.86 | 128.39 638.33
SingleTop | 73.75 229.66 75.73 379.14
DrellYan | 2830.74 | 1134.52 | 2387.21 | 6352.47
Total MC | 4047.42 | 4574.47 | 3440.85 | 12062.75
Data 4479.69 | 4546.71 | 3644.09 | 12670.50
Data/MC 1.11 0.99 1.06 1.05

Table 7: Number of events with 1 b-tag after all cuts

Sample j el ee Sum
TTbar 5373.80 | 15519.38 | 4585.48 | 25478.67
Wlets 14.81 67.41 10.03 92.25

Diboson 84.71 170.87 65.99 321.57
SingleTop | 346.17 952.75 274.60 | 1573.52
DrellYan | 1543.96 | 539.76 | 1284.67 | 3368.39
Total MC | 7363.46 | 17250.17 | 6220.76 | 30834.38
Data 7280.71 | 16238.87 | 6018.20 | 29537.77
Data/MC 0.99 0.94 0.97 0.96

Table 8: Number of events with > 2 b-tags after all cuts

Sample L el ee Sum
TThar 8159.86 | 23827.72 | 6905.88 | 38893.46
Wlets 0.00 18.01 21.00 39.01

Diboson 19.52 35.76 15.78 71.06
SingleTop | 261.04 749.83 230.78 | 1241.65
DrellYan | 293.53 119.58 249.57 662.69
Total MC | 8733.95 | 24750.91 | 7423.01 | 40907.88
Data 8704.78 | 24658.39 | 7499.36 | 40862.53
Data/MC 1.00 1.00 1.01 1.00

11
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Figure 1.5.1: Dilepton invariant mass spectra from data and MC events, using the m; = 172.5 GeV
MC sample, for ee events (top left), ey events (top right), uu events (bottom left), and for all
categories combined (bottom right). All selection cuts are used, along with SFs for trigger, lepton
selection, and background estimation; the hatched area corresponds to the SF uncertainties as well

as the 2.6 % uncertainty on the overall integrateld2 luminosity.
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Figure 1.5.2: Leading lepton pr from data and MC events, using the m; = 172.5 GeV MC sample,
for ee events (top left), ey events (top right), puu events (bottom left), and for all categories
combined (bottom right). All selection cuts are used, along with SFs for trigger, lepton selection,
and background estimation; the hatched area corresponds to the SF uncertainties as well as the 2.6
% uncertainty on the overall integrated luminosiltg.
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Figure 1.5.3: Second-leading lepton pr from data and MC events, using the m; = 172.5 GeV MC
sample, for ee events (top left), ey events (top right), pu events (bottom left), and for all categories
combined (bottom right). All selection cuts are used, along with SFs for trigger, lepton selection,
and background estimation; the hatched area corresponds to the SF uncertainties as well as the 2.6
% uncertainty on the overall integrated luminosiltir.
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Figure 1.5.4: Leading jet pr from data and MC events, using the m; = 172.5 GeV MC sample,
for ee events (top left), ey events (top right), puu events (bottom left), and for all categories
combined (bottom right). All selection cuts are used, along with SFs for trigger, lepton selection,
and background estimation; the hatched area corresponds to the SF uncertainties as well as the 2.6
% uncertainty on the overall integrated luminosiltg'.
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Figure 1.5.5: Second-leading jet pr from data and MC events, using the m; = 172.5 GeV MC
sample, for ee events (top left), ey events (top right), pu events (bottom left), and for all categories
combined (bottom right). All selection cuts are used, along with SFs for trigger, lepton selection,
and background estimation; the hatched area corresponds to the SF uncertainties as well as the 2.6
% uncertainty on the overall integrated luminosiltg.
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Figure 1.5.6: Missing Fr from data and MC events, using the m; = 172.5 GeV MC sample,
for ee events (top left), ey events (top right), pu events (bottom left), and for all categories
combined (bottom right). All selection cuts are used, along with SFs for trigger, lepton selection,
and background estimation; the hatched area corresponds to the SF uncertainties as well as the 2.6
% uncertainty on the overall integrated luminosilt%r.
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Figure 1.5.7: Jet multiplicity from data and MC events, using the m; = 172.5 GeV MC sample,
for ee events (top left), ey events (top right), puu events (bottom left), and for all categories
combined (bottom right). All selection cuts are used, along with SFs for trigger, lepton selection,
and background estimation; the hatched area corresponds to the SF uncertainties as well as the 2.6
% uncertainty on the overall integrated luminosiltg/.
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Figure 1.5.8: Multiplicity of b-tagged jets from data and MC events, using the m; = 172.5 GeV MC
sample, for ee events (top left), ey events (top right), pu events (bottom left), and for all categories
combined (bottom right). All selection cuts are used, along with SF's for trigger, lepton selection,
and background estimation; the hatched area corresponds to the SF uncertainties as well as the 2.6
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1.6 Event Reconstruction

Our event reconstruction employs what is known as the Analytical Matrix Weighting Technique
(AMWT), an improved version of the Matrix Weighting Technique (MWT) first proposed for use
by the DO Collaboration by one of the authors [32]. The AMWT has previously been employed by
CMS for use in measurements of the top mass in 2011 and 2010 data [2}33].

In fully leptonic tt decays, the final state products include two charged leptons, two neutrinos,
and two jets. This leaves us with 18 total kinematical unknowns: three components of momenta
each from the two charged leptons, two jets, and the two neutrinos; these eighteen unknowns
completely specifiy the total momentum of the ¢t pair. Of these, we observe the momenta of the
two charged leptons and the two jets, and the transverse momentum of all other charged particles
and jets; the selection of the jets to be used is facilitated by b-tagging. Hence, after physics object
reconstruction, we can assign the momenta of the b and b quarks to the decays of the t and ¢ quarks,
respectively, to find the following observables for each event:

e the momenta py+ and py- of the charged leptons from the W and W~ decays,
e the momenta pj and pj of the b and b produced by the t and # quarks,

e the total transverse momentum pp.; of the ¢ pair.

The only decay products we cannot measure are the neutrinos. This leaves us with six unknowns:
three each from the momenta of the two neutrinos. Meanwhile, conservation of four-momentum
provides the following four constraints on the kinematics, if a top quark mass values is assumed:

e the masses my+, and my— of the lepton-neutrino pairs from the W+ and W~ decays must
be equal to the mass of the W boson,

e the masses of the systems of particles from the ¢ and ¢ decays must equal the mass of the top
quark.

There exist several methods to find solutions to these equations. We follow the method of L.
Sonnenschein, presented in [34-36]. In [34,35] it is shown that, if no sources of missing transverse
momentum other than the neutrinos are present, no more than eight configurations of neutrino
momenta are compatible with a given top mass hypothesis. In particular, the constraints force
the transverse momenta of each neutrino to lie on ellipses in the p,-p, plane; since we assume
all missing transverse momenta comes from the neutrinos, the momentum solutions compatible
with the top mass hypothesis are the intersection points of the momentum-space ellipses of the
two neutrinos. Any two ellipses can intersect in zero, two, or four places, and there is a twofold
ambiguity of assigning momenta to the b and b jets, leaving an upper bound total of eight possible
neutrino momenta configurations. In rare cases, a latent singularity in the equations used to find
these solutions can prohibit the calculation of the longitudinal momenta; in such events, a numerical
method is employed to find the uncalculable variables [36].

The implementation of this method of event reconstruction is conceptually straightforward. For
each event, we find all solutions of neutrino momenta for mass hypotheses between 100 and 600
GeV, in 1 GeV increments. In general, we expect consistent solutions to be found for a large range
of mass hypotheses. To each solution we assign a weight w given by [37]:

20



w = > F(21) F (%) | p(Eprlmy) p(Ep-|my) . (1.6.1)

initial partons

Here, we sum parton distribution functions F(z), evaluated at Q> = m? over the possible

leading order initial parton states (u, @u, dd, dd, and gg); r1 and x5 are the Bjorkén 2 values for
the initial state partons. The variable p(E|m;) is the probability density of observing a charged
lepton of energy E in the rest frame of a top quark of mass my, given by [37]:

dmyE(m? —m? — 2myE)

E = ’
PBI) = (o AT (i — ) — 2003,

(1.6.2)

For each top mass hypothesis, we find an overall weight by summing the weights of all found so-
lutions. For some events, however, no solutions are found for any top mass hypothesis, usually
because of hard gluon radiation removing the correlation between jet and quark momentum or de-
tector resolution-related mismeasurements of momenta. We compensate for this by reconstructing
each event, in both data and MC, 500 times, each time with jet momenta drawn randomly from
Gaussian distributions of width given by the detector resolution and with mean given by the mea-
sured momentum [38]. We average the weights of each hypothesis mass over each reconstruction
to find the event’s final weight curve. After this randomization procedure, we observe very high
rates of successful mass estimator reconstruction, shown for data in Table [9] and for MC in Table
Without the resolution smearing the solutions are found only 86% of the times [39]

Table 9: Percentage of events with at least one mass solution in data.

b-tag category | Events passing cuts | Events with a solution | % of events with a solution
1 b-tag 29537 27465 93.0%
> 2b-tags 40862 38792 95.0%
> 1b-tag 70399 66257 94.1%

Table 10: Percentage of events with at least one mass solution in signal MC events with m; = 172.5
GeV.

b-tag category | Events passing cuts | Events with a solution | % of events with a solution
1 b-tag 25479 24050 94.4%
> 2b-tags 38893 37291 95.9%
> lb-tag 64372 61341 95.3%

We estimate the top quark mass by extracting the hypothesis mass with the highest average
sum weight for each event, called the peak mass myeqk. In Figure we show distributions of
Mypeqk in data and for MC simulation with m; = 172.5 GeV; here, as above, we see good agreement
between data and simulation.

In previous iterations of the analysis, we instituted a lower cut on the sum weight itself, with
the intention of removing badly reconstructed or mismeasured events [2,33]. However, with the
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2012 datasets and MCs, we expect the statistics to be sufficiently large that the measurement is
robust against this form of noise, and instead merely require that all events have at least one mass
solution, and hence positive peak weight.

We do not claim that the peak mass itself is an unbiased measurement of the top quark, merely
that it is strongly correlated with the physical top mass. Instead, we perform a true unbiased
measurement by comparing the distribution of 7y, in data to simulated distributions evaluated
at a range of sample top quark masses, as described in the next section.

CMS  Preliminary 19.7 fb* (8 TeV)
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Figure 1.6.1: Distribution of the peak mass observed in data and in the simulation for a top mass
hypothesis of 172.5 GeV.

1.7 Top Mass Estimate from Template Fits

Our measurement of the top mass is a likelihood fit of the distribution of mpei to templates
obtained from Monte Carlo simulations. Templates are generated for samples with masses between
166.5 GeV/c? and 178.5 GeV/c? in steps of 3 GeV/c?, with additional templates at m; = 171.5 GeV/c?
and 173.5 GeV/c?.

22



The likelihood fit can simultaneously fit data split into several categories, such as b-tag multi-
plicities and lepton content (i.e. ee, ey, and up channels). In previous analyses, this was found to
be beneficial |2,[33]. As will be discussed below, we separate events by b-tags but not leptons, and
hence perform a two-category fit. Similarly, in the 2011 analysis, events with mpeqr > 300 GeV/ c?
were cut to exclude the effects of the low-statistics high-mass tail of the distribution. Here, we
instead cut events with mpeqr > 400 GeV/c2.

Each template is fit to data; for each mass point, different categories are treated as separate
templates in a simultaneous fit. Following the previous iterations of this analysis, we fit a parabola
to the negative logarithms of the likelihoods obtained from the fits in the range spanned by the
MC sample masses.

The backgrounds considered are Drell-Yan, single top production, W+Jets, and diboson events.
In the fit, the total number of events is not considered; instead, we fix the expected ratio of signal
to background, and examine the shapes of the template and data distributions. Because each MC
sample distribution has a different my, profile, it is necessary to fix their relative normalizations
in the templates. This is done by normalizing each MC distribution to the sample cross section
times luminosity; the sole exception is the DY background, for which the normalization is estimated
from data.

1.7.1 Study of the Method on Simulated Data

To study the validity of our technique, we generate 1000 pseudo-experiments at sample top masses
equal to those of the MC mass points used in the fit, and examine how close the measured masses
are to the input masses. In each pseudo-experiment, signal and background events are generated
from a Poisson distribution with mean given by the number of expected events in each channel.
The measurement is performed as described above, and we extract a measured mass. A Gaussian
is fitted to the distribution of the measured masses; the mean of this Gaussian is called the mean
measured mass. The pull width of the distribution is given by the standard deviation of a separate
Gaussian fitted to the standardized residual distribution.

We begin with categorization of the data. Multiple such categorizations are possible. In general,
these come from splitting by b-tags, lepton content, or both. Calibration tests were performed for
several such categorizations, and are summarized in Table The uncertainties found with the
different classifications are similar; within the precision of the simulation, all options give essentially
the same precision. We choose for convenience to split events only by b-tags. An entirely similar
procedure allows us to determine the optimal upper bound for acceptable values of mpeqr. We
examined the influence of removing events with peak mass above 300, 400, and 500 GeV/c? on
the mean uncertainty of the distribution. These results, summarized in Table indicate that
fixing upper bounds of 300 and 400 GeV/c? are essentially equivalent, within the precision of the
simulation; we choose an upper bound of mpeqr < 400 GeV/c?.

Table 11: Results of calibration tests for the different event classifications. The corrected uncer-
tainty (CU) is defined as the mean uncertainty times the pull width.

Classification scheme number cats. mean uncertainty (GeV) mass width (GeV) pull width CU (GeV)
lepton channels {ee, ey, pp} 3 0.169 0.163 0.948 0.160
b-tag categories {1, > 2 b-tags} 2 0.166 0.161 0.962 0.160
b-tag and leptons 6 0.165 0.158 0.952 0.157
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Table 12: Results of calibration tests for the different upper bounds on mye.r. The corrected
uncertainty is defined as the mean uncertainty times the pull width.

Upper bound (GeV) mean uncertainty (GeV) mass width (GeV) pull width corrected uncertainty (GeV)

300 0.163 0.162 0.962 0.157
400 0.166 0.161 0.962 0.160
500 0.170 0.174 0.999 0.170

In tests of the systematic uncertainty of our measurement, it has been seen that a tighter
selection consisting only of events with > 2 b-tags yields a smaller overall uncertainty than the
looser selection of events with > 1 b-tag. Thus, we will perform the final fit with one category,
looking only at events with > 2 b-tag and with 100 GeV/c? < Mpeak < 400 GeV/c2.

Lastly, with our most accurate categorization and bounds, we perform a final calibration. The
calibration curves are shown in Fig We observe a bias below 0.1 GeV/c? everywhere between
169.5 and 175.5 GeV/c2. A line fit to the bias points serves as a correction to the bias induced by
the calibration. The pull widths indicate that the statistical uncertainty is overestimated slightly,
by about 4% for m; = 172.5 GeV/c?. Taking this overestimation into account, we expect a statistical
uncertainty of £0.20 GeV/c? on the final result.

1.7.2 Result with Data

Using data events, the top mass is measured to be m; = 172.77 + 0.20 GeV. The distribution of
the -log(likelihood) points is shown in Fig. After correcting for the fit bias, the mass of the
top quark is measured to be m; = 172.82 £+ 0.20 (stat.) + 1.22 (syst.) GeV.
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I.8 Systematic Uncertainties

The contributions from the different sources of uncertainty are summarised in Table We cal-
culate systematic uncertainties with the prescription outlined in [40], in which systematics are
calculated by comparing the mean measured masses of pseudodata derived from modified and
unmodified templates. Generically, these modified templates are generated with some systematic
variable modified, usually by +1c¢ in the form of up- and down-templates.

e Jet energy Scale (JES):

The uncertainty of the overall jet energy scale is the dominant source of uncertainty on m;.
It has been evaluated for the different independent sources of systematic uncertainty. To
estimate the effect of each source on the measurement of m;, the (pr, n)-dependent uncer-
tainty is used to shift concurrently the energy of each jet by +1¢ with respect to its nominal
value, and correcting the £ accordingly. For each source, pseudo-experiments are generated
from simulated event samples for which the JES is varied by the relevant uncertainty, and
the reconstructed top-quark mass distributions are fitted with the templates derived with the
nominal JES. The average variation of the top-quark mass is used to estimate the system-
atic uncertainty. The uncertainties due to the different sources are listed in Table The
quadratic sum of the variation for each source is taken as the systematic uncertainty.

e b-quark JES and Hadronization Modeling

The b-flavour dependent uncertainties arising from the simulation of the parton-jet modeling
and the accompanying JES uncertainty are composed of three contributions:

— flavor-dependent JES term: Depending on the origin of the jets, the jet energies are
varied within their respective flavour-dependent uncertainties. The uncertainties for jets
from light quarks, b quarks and gluons are evaluated separately and added linearly.

— b-fragmentation term: The impact of b-fragmentation hardness is estimated by varying
zp in the Lund fragmentation model between the PYTHIA Tune Z2* and the experimental
results from ALEPH [41] and DELPHI [42].

— Semi-leptonic branching fraction term: The semi-leptonic branching fraction of b hadrons
is varied within the uncertainties [18].

e Jet energy resolution (JER):

Since the jet energy resolution in Monte Carlo events is corrected for the observed mismatch,
the uncertainty on the top mass is determined by varying the resolution by its uncertainty [43].

e Lepton energy scale:

An uncertainty of 0.5% is considered for electrons reconstructed in the barrel and 1.5% in the
endcap [44]. An uncertainty of 0.2% is considered for muons [45]. These uncertainties have a
minimal impact on the result.

e Unclustered MET:
The scale of the residual unclustered energy contribution to the Erp is varied by +10%.

27



Pile-up:

Pile-up collisions will give rise to extra jets in the detector. To study the effect of this, a
variation of 5% of the total inelastic cross section is considered.

b-tagging efficiencies:

The uncertainty due to 1-tagging efficiency was evaluated by varying the 1-tagging efficiency
and mistag rates of the algorithm by their respective uncertainties [29]. The two sources are
considered separately.

Fit calibration:

The calibration of the fit itself induces an additional systematic uncertainty to the overall
result, taken to be the precision with which the calibration at the measured value of the top
quark mass is determined. From the fit to the mean mass values of the pseudoexperiments
we find that this uncertainty is about 0.03 GeV.

Background:

To estimate the influence of the number of background events on the fit, the level of back-
ground used when generating the pseudo experiments is varied. For the DY background,
which is estimated from data, an uncertainty of 30% is used. For the remaining backgrounds,
W+Jets and single top, we scale the background up and down by the uncertainty of the
cross-section, using the calculated cross-sections given in [46].

Generator modelling;:

The uncertainty due to the modelling of the signal templates by the Monte Carlo generator
are studied by comparing the results of the pseudo-experiments using the reference sample
to that from a sample generated with the POWHEG generator.

Top quark ppr reweighting:

The impact of the difference between the transverse momentum distribution of top quarks in
data and the simulation [47] is evaluated by applying a scale factor to the simulated events
to correct for this mismatch. The difference between the results of the pseudo-experiments
using this sample and the reference sample is taken as systematic uncertainty.

Jet-parton matching scale and factorization scale:

The Monte Carlo samples shown in Table [3] where the jet-parton matching scale and fac-
torization scale have been increased and decreased, are used to evaluate the effect of these
variations on the measurement.

Underlying event (UE):

The uncertainties due to the underlying event are estimated by comparing alternative PYTHIA
tunes with increased and decreased underlying event activity relative to a central tune. The
results for the top-quark mass measured in pseudo-experiments using the Perugia 2011 tune
are thus compared to the Perugia 2011 mpiHi and Perugia 2011 Tevatron tunes [48]. The
difference found between the two samples is taken as an estimate of the uncertainty in the
modelling of the underlying event in our simulation.
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e Color reconnection (CR):

The Perugia 2011 noCR tune is a variant in which colour reconnection effects are not taken
into account. The difference in the average top-quark mass, measured with and without
colour reconnection effects, is taken as the estimate for the colour reconnection systematic
uncertainty.

e PDF: To evaluate the systematic uncertainties arising from the parton density functions, the
procedure outlined in Ref. [49] is followed.

Table 13: Categories of systematic uncertainty, along with their respective contributions to the
overall systematic uncertainty. The symmetrized uncertainty is defined as Am; = %(|Am?p | +
|Amdown)|. Bold face entries appear in the systematics summary table in the PAS.

Source of uncertainty omy (GeV)
Fit calibration 0.03
pr- and n-dependent jet energy calibration 0.37
Lepton energy scale 0.12
Unclustered missing pr 0.06
Jet energy resolution 0.06
b tagging 0.04
Pile-up 0.12
Non-tt background 0.02
Flavor-dependent jet energy scale 0.28
b fragmentation 0.69
Semi-leptonic b hadron decays 0.17
Parton distribution functions 0.16
Renormalization and factorization scales 0.75
Parton-shower matching threshold 0.12
Matrix-element generator 0.35
Underlying event 0.04
Color reconnection modeling 0.11
Total 1.22

1.9 Conclusion

In conclusion, we have presented a measurement of the top quark mass from dilepton ¢t decays,
using CMS data corresponding to an integrated luminosity of 19.7 fb~!. We measure the top mass
to be my = 172.82 £+ 0.20 (stat.) £ 1.22 (syst.) GeV. This value is in good agreement with the
world average from measurements at the Tevatron and the LHC of m; = 173.34 £ 0.76 GeV [50]
which does not contain any input from the data used for this measurement.
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Table 14: Components of the overall JEC contribution to the systematic uncertainty.

Category Component Am? Ameown Amy
(GeV/c?) (GeV/c?) (GeV/c?)
In-situ correlation group AbsoluteMPFBias 0.258 -0.221 0.239
JEC inter-calibration group RelativeF'SR 0.036 -0.018 0.027
JEC Pile-up 0.112 -0.127 0.117
PileUpDataMC 0.074 -0.041 0.057
PileUpPtBB 0.006 0.024 0.015
PileUpPtEC1 -0.003 0.005 0.004
PileUpPtEC2 0.013 0.02 0.017
PileUpPtHF 0.023 0.026 0.025
JEC uncorrelated group 0.528
AbsoluteStat 0.026 0.008 0.017
AbsoluteScale 0.103 -0.102 0.102
SinglePionECAL -0.098 0.126 0.112
SinglePionHCAL -0.144 0.165 0.154
RelativeJEREC1 0.014 0.005 0.009
RelativeJEREC2 0.017 0.007 0.012
RelativeJERHF 0.022 0.01 0.016
RelativePtBB 0.072 -0.05 0.061
RelativePtEC1 -0.12 0.158 0.139
RelativePtEC2 0.007 0.013 0.01
RelativePtHF 0.017 0.019 0.018
RelativeStatEC2 0.011 0.018 0.014
RelativeStatHF 0.026 0.016 0.021
bIES Semileptonic B-hadron decays 0.182 -0.182 0.182
b-fragmentation 0.672
FlavorJES -0.221 0.342 0.282
FlavorPureBottom -0.327 0.360
FlavorPureBottom -0.33 0.341 0.336
FlavorPureCharm 0.008 0.021 0.015
FlavorPureGluon 0.084 -0.044 0.064
FlavorPureQuark 0.017 0.024 0.021
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I.A Transverse momentum based reweighting of the tt Monte Carlo

Previous analyses have observed that the distribution of top quark transverse momentum is softer in
data than in simulation; our data-to-MC comparisons in Figures[[.5.1[.5.6|support this observation.
To counteract this phenomenon, MC reweighting scale factors have been calculated . In this
Appendix, we demonstrate the effects of this reweighting by displaying data-to-MC comparison
plots with the reweighting implemented. As can be seen in Figure§[LA.TH[.A3] the agreement for
the pr distributions of the leptons and the jets has improved, but the Fr distributions is now softer
in MC (Figure . We treat the effects of this reweighting as a systematic uncertainty.
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Figure I.A.1: Transverse momentum of the leading (left) and second leading (right) lepton, for data
and MC events, using the m; = 172.5 GeV MC sample.
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Figure I.A.2: Transverse momentum of the leading (left) and second leading (right) jet, for data
and MC events, using the m; = 172.5 GeV MC sample.
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Abstract

A major failing of the initial interpretation of string theory as a model for the strong in-
teraction is its failure to reproduce the empirically observed power-law falloff in the center of
mass energy s of certain scattering cross sections. In particular, flat space string theory indi-
cates that the cross section for 2 — 2 scattering at fixed angle decays exponentially in s. Here
we will demonstrate that curved space string theory can remediate this problem in the case
of inclusive single particle production of the form ab — ¢X in the large center of mass limit.
Starting with a brief review of string theory, we will demonstrate that flat space string theory
predicts exponential behavior for this cross section. Then, motivated by the success of curved
space string theory to calculate the exclusive fixed-angle 2 — 2 scattering cross section, we will
discuss string theory in curved space, and in particular the AdS/CFT correspondence between
theories of gravity and gauge theories, before demonstrating that the curved space prescription
indeed yields results that agree with the empirical phenomena.

II.1  Introduction

Before its modern incarnation as a proposed theory of quantum gravity, string theory was pro-
posed with the much more modest intent of modeling the strong interaction. What is now known
as string theory was originally called the dual resonance model, and was intended to provide a
way to calculate scattering amplitudes that captured the empirically known Regge phenomenology
of strong-mediated scattering [51-53|; the dual resonance model corresponds to what in modern
parlance is called flat-space string theory. Although initially quite successful in this goal, the dual
resonance model was eventually discarded. Extremely characteristic of its predictions were expo-
nential dependences of amplitudes and cross-sections on the center-of-mass energy s, whereas the
physical dependence follows a power law [54-56]; this power law dependence hold good at least
until center-of-mass energies of the scale of the Large Hadron Collider (LHC) [57]. A poignant
example comes from fixed angle 2 — 2 scattering, which in flat space has an exponential decay but
experimentally decays only via a power law in s. Eventually, it was shown that Yang-Mills gauge
theories yield the correct prediction, and the current SU(3) description of the strong interaction
was adopted.

More recently, however, string theory has regained traction as a method to describe strong
interactions. It has famously been argued [58] by Maldacena that strings propagating in anti-de
Sitter space should have the same dynamics as gauge theories defined on the boundary of this space.
In the nearly twenty years since it was conjectured, this so-called “AdS/CFT correspondence” has
been the subject of thousands of papers, and the holographic ideas it has inspired have been
applied to topics ranging from quantum information theory [59] to condensed matter physics [60].
Most importantly for our purposes, however, AdS/CFT has found great success in describing
QCD-like theories. This AdS/QCD correspondence has helped elucidate aspects of QCD ranging
from nonperturbative features such as the glueball spectrum [61H63] to calculations of scattering
amplitudes [64-69]. Here we will concern ourselves primarily with the use of AdS/QCD to compute
cross-sections.

In particular, here we are interested in applying the AdS/QCD correspondence to compute the
inclusive single-particle production cross section in QCD; this process is depicted schematically in
Figure More precisely, we examine the process ab — cX, where c¢ is a produced central
particle with fixed momentum p. and X represents some other number of particles produced in
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the scattering process, and compute the inclusive cross section

dSUab—)cX
Oinc = dpi’ (1111)
We take the produced particles X to have invariant-mass-squared M? = (p, + pp — pc)2, but are
otherwise uninterested in the properties of X. We work in the limit where the center of mass energy
s — 00. In the context of flat space string theory, this process was studied in 70|, which, following
an approach suggested in [71], found that the cross section decays exponentially in the center of
mass energy.

Figure II.1.1: Inclusive single-particle production. The produced particles X are taken to have
invariant mass-squared M?.

In [70], the flat-space string theory prediction for this cross section is evaluated by taking ad-
vantage of a generalized optical theorem which relates the desired cross section to the discontinuity
amplitude for 3 — 3 scattering. We will follow this same method to evaluate the curved space
string theory prediction for the cross-section.

In Section we will discuss flat-space string theory and its application to scattering in
gauge theories. In particular, Section features a review of the essentials of flat-space string
theory, which segues in Section to a discussion of the simplest possible scattering of strings,
the Virasoro-Shapiro amplitude. In Section [[I.2.3] we will, after a brief discussion of the optical
theorem Eq. summarize the results of |[70], and derive the flat-space string theory prediction
for the inclusive single-particle production cross section. Next, in Section 3 we will discuss curved
space string theory, starting in Section with an overview of the AdS/CFT correspondence
before moving on to a variant of the conjecture compatible with confining field theories in [[1.3.2]
and then summarizing the results of [64] in Section Finally, we will in Section 4 compute
the curved-space string theory prediction for the inclusive cross section. We will conclude with a
brief discussion of our essential results in Section 5.
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I1.2 String Scattering in Flat Space

In this section we will discuss some important results in flat space string theory. We will begin with
a brief overview of the critical bosonic string, and then proceed to discuss string scattering, giving
two examples: a simple example of 2 — 2 string scattering in flat space and the case of interest,
3 — 3 string scattering.

11.2.1  An Overview of Bosonic String Theory

Here we aim to provide a brief introduction to bosonic string theory. Of course, this is a vast subject,
and numerous texts have been written on it, such as [72-76]. We neither can nor will attempt to
cover the whole subject; instead, we will follow the discussion in [74,/77] to call attention to some of
the most important results in the theory before specializing to the topics in flat space string theory
most relevant to our work on cross sections.

I1.2.1.1 Formalism, Geometry, and the Equations of Motion

Bosonic string theory is in its modern incarnation viewed as a theory of D real bosonic fields X*#
defined on a two-dimensional base manifold; this base manifold is called the string worldsheet,
denoted by X, and can be viewed as a straightforward generalization of the concept of the worldline
of a point particle. The trajectory of a point particle is a map from the interval (71, 72), a one-
dimensional real manifold, to D-dimensional spacetime, represented once again by fields X#. When
one transitions from studying point particles to particles with extent in space as well as in time,
one must add an additional dimension to the time interval; this two-dimensional space is the string
worldsheet.

Quantitatively, we parameterize 3 with coordinates 7 and o, with 7 timelike and o spacelike,
and define a metric h,g on the worldsheet. The D bosonic fields are taken to be coordinates in a
D-dimensional target spacetime manifold with metric g,,,,. In general, we shall use label worldsheet
indices as a, 8,7,6 € 0,1 and spacetime indices as u, v, p, A € 0,1,2,..., D — 1.

To arrive at an action for the worldsheet string theory, we will return to the point particle
analogy. The equations of motion for a (massive) point particle are derived from an action of the

form
[ dXHdXY
Spoint = m/ds = m/dT gpu?F, (I1.2.1)

where m is the particle’s mass and 7 is a parameter along the worldsheet. In particular, the
action corresponds to the path length traversed by the point particle in its motion, and is given
by an integral over the one-dimensional worldline. The natural analogue of path length in a two-
dimensional space is area, so it is reasonable to hypothesize that the string action is given by

OXHOXV 2 AXFOXV OXP OXA
_ _ 2 _
SN _T/sz_T/Ed J\/(gw, 9 oo > GuvGpr 5 o o B (I1.2.2)

where T is the string tension. This is known as the Nambu-Goto action, and is the correct action
for worldsheet string theory. The Nambu-Goto action is classically equivalent to (i.e. gives the
same equations of motion as) a different action, known as the Polyakov action:
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S / d*ov/—hh™P 8o X" 05 X" g, (I1.2.3)
by

where o/ = % is a string parameter known as the Regge slope and h = det h,3. The Polyakov

action takes the form of a sigma model action, and heuristically corresponds to the alternate point

particle metric

dX* dX"Y
Spoint = m/dTg,uudT ar (1124)

We will take the Polyakov action as the string action going forward. Because in this section we are
interested in flat space string theory, we will make the simplifying assumption

1
—1
Guv = Nuv = T . (1125)
—1
-1

From the Polyakov action we can read off several symmetries of the worldsheet theory. Firstly,
because in the target space this action is a Lorentz scalar, we have invariance under the generalized
Poincare group SO(1, D — 1) x RP, which acts on the X* by

XF— XM = XF 4 el XY + M, (I1.2.6)
where €, = —¢, is an infinitesimal generator. Similarly, the action is invariant under worldsheet
reparameterizations of the form

o = o' = f*(c%) (I1.2.7a)
afr afd

Both of these symmetries are also found in the point particle action, and fundamentally correspond
to special relativity in the target space. The Polyakov action, however, has one extremely important
symmetry that has no analogue in the point particle case: Weyl symmetry, invariance under the
rescaling transformation

hap = hiag = €1 hgp. (I1.2.8)

Because of its relative novelty and paramount importance, we will explicitly demonstrate the Weyl
invariance of the Polyakov action. Clearly,

q q
V—H =, /deth! ;= \/— det ( ;Z?g ;Z?i ) = /=€ (hooh11 — hothig) = e9v/—h.  (11.2.9)

Similarly, because h*? is the matrix inverse of hag, we have

peB = e=apes, (I1.2.10)
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Then
S = / 2o/ —HRP 9y X 5" 1y
)
= / A’/ —he_qeqha'gaaX“ﬁgm”nW
b

:/dQJ\/—hhaﬁaaX“agx”nW
»
= 8. (IL.2.11)

We note briefly that the reparameterization and Weyl symmetries of the Polyakov action can be
conceived of as a sort of gauge symmetry in the worldsheet metric h,g. In fact, these symmetries
are sufficiently robust that they allow us to work in the so-called conformal gauge, in which hqg
is the two-dimensional Minkowski metric; for now, however, we leave h,g arbitrary, and will only
impose this gauge condition later. Having described the symmetries of the Polyakov action, we will
now derive the equations of motion for string theory.

We begin by considering the worldsheet metric. The action Eq. has no terms of the form
Oyhag, so by the Euler-Lagrange equations we have

08

Motivated by this, we define the worldsheet stress-energy tensor

Tog = 4770/\/1_7(;55 =0. (I1.2.13)
To find an explicit expression for this tensor, we must evaluate the variational derivative:
525/3 - 4730/ 5h5a5 [*/jhméaVX”aéX V”W}
- —%ﬁmé + 5;5;;] 0, X"05 X1y
_ 47;/ :_ 2\/1Th 522 e 5;52} 0, X 05 X 1
_ 47;, :_2\/1_7hhhaﬁm5 + (m] 0 X195 X" 1y,
— ﬁ\/fh [aaX“aﬂX”nw, ~ %&YX“(%X”nu,,h'y‘shag : (11.2.14)
where we have used the identity
0h = hhasdh®”. (I1.2.15)
We then have
Top = 0a X 05 X" Ny — %67X“85X”77Wh75ha6 =0. (I1.2.16)
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This is an important constraint on the dynamics of the X*#, and is essential to successfully quantizing
the string. The equation of motion for X* is somewhat simpler; only derivatives of X* enter into
the action, so by the Euler-Lagrange equation

O |V —hh*POsXH| = 0. (I1.2.17)

As it stands currently, the equations of motion are somewhat intractable; we will fix a gauge for
hap to simplify them considerably. As alluded to above, the combination of reparameterization and
Weyl invariances of the Polyakov action allow us to entirely fix h,g; reparameterization invariance
allows us to fix two of the three degrees of freedom, and Weyl invariance takes care of the third.
We will use this to fix

1 0
hag = Nap = ( 0 -1 ) . (I1.2.18)

To avoid confusion with the target spacetime metric 7,,,, we will still refer to the worldsheet metric
as hqp. In this gauge, the equations of motion are

Oahapds Xt = (02— 92) XF =0 (I1.2.19a)
Too =111 = 8TX“8TXM + (%X“E)UXM =0 (H.Q.lgb)
T01 = T10 = 8TX“8(,XM =0. (H.2.19C)

These are the equations of motion for the string, also obtainable from the Nambu-Goto action
in perhaps a more direct manner. Eq. is in some sense the string equation of motion;
it represents an independent wave equation for each of the D bosonic fields, which we may now
interpret as oscillators. Eqgs. [L1.2.19bland [I1.2.19¢| on the other hand, are constraints; only solutions
to Eq. which meet the constraints are viewed as physical solutions to the theory.

I1.2.1.2 Solving the Equations of Motion

Having written down the equations of motion in Eq. we would now like to solve Eq.
for the spacetime coordinates X*. To do this, we must specify boundary conditions for the X*.
There are three boundary conditions in the literature. We will focus on only one of these conditions,
the so-called “closed string” condition

Xt (r,0) = X" (1,0 + 7). (I1.2.20)

The other two conditions correspond to open strings, and are unimportant for the particles of
interest.

We are now in a position to fully solve the classical equations of motion. To do so, it is convenient
to define new “lightcone” coordinates given by

ot =r+o0. (I1.2.21)
In these coordinates, the Equations become

L 0_XH =0 (11.2.22a)
Tiy =8, X 0, X, =0 (11.2.22b)
T =8 X' X, =0. (11.2.22¢)
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Then the solution is given by
Xt (oF) =XV (M) + Xk (07), (11.2.23)

where X/ corresponds to left-moving excitations and X J!fi corresponds to right-moving excitations.
X and X% have Fourier mode expansions given by

1 1 ' 1 :
Xp = dor s B 43 g 22
n#0
1 1 ' 1 o
Xpy = Jat+ §l§pu0_ + %ls 3 Eage—%w . (I1.2.25)
n#0

Here we have introduced the center-of-mass position * and momentum p*, as well as the string
length

I, = V2d. (11.2.26)
For future convenience, we will also define
1
ay = dapy = Elsp“; (I1.2.27)

this convention will simplify our expression for some important results later on. Because we demand
that the spacetime coordinates of the physical string, i.e. the value of the X*, be strictly real, we
must have

ok = (ot )", (11.2.28)

-n

An entirely similar identity holds for the &*. In principle, these solutions have D degrees of
freedom, one for each of the spacetime oscillators. However, the Virasoro constraints (Eqgs. [[1.2.22b
and remove two of these, leaving us with D — 2 degrees of freedom. This can be seen
explicitly in the light cone gauge, in which we take X = 7. Then the Virasoro constraints can
be solved for X~ as a function of the other X, leaving us with D — 2 degrees of freedom. One
route towards quantizing string theory, known as light cone quantization, stems from working in
this gauge, and is worked out in [76].

11.2.1.3 Quantizing String Theory

We will now set out to quantize this theory; the full procedure of quantizing string theory is quite
involved, and we will in the interest of brevity merely emphasize the most salient points. To do so,
we compute the conjugate momentum

08 1
- - p
Pt = 50, X, szan (I1.2.29)
and the equal-time Poisson brackets
{P*(r,0),P"(1,0")} = (11.2.30a)
{XH(1,0),X" (1,0")} = (I1.2.30b)
{X*(r,0),P" (1,0")} = =6 (0 — 0'). (I1.2.30c)
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We can now proceed with a canonical quantization procedure, and replace each of these Poisson
brackets with ¢ times a commutator to find that

[P*(1,0),P" (1,0")] =0 (I1.2.31a)
[ X*(1,0),X" (1,0)] =0 (I1.2.31Db)
[(X* (1,0),P" (1,0")] =in*é (o — ). (I1.2.31c¢)

Inserting the expansions Eqs. [[T1.2.24] and [[T.2.25] and defining the annihilation and creation opera-
tors

ak = ﬁa%, and o/l = \;ﬁa“m, (I1.2.32)
respectively, we find that
[a%,af] = —1"6mn (I1.2.33)
[agwagﬁ] = 0" (I1.2.33D)
[a%,agf] ~0. (I11.2.33¢)

These operators look like two independent sets of quantum harmonic oscillators. In particular,
we can create states of the form

[¥) = otk afmt o), (I1.2.34)

where |0) is the ground state; such states are eigenstates of the momentum operator p#. It is worth

noting here that there exist states with negative norm. For instance, the state |1} = a9l |0) has
norm

(W[p) = (0lab,a5f10) = (0] [af,, abi] 10) + (0ladfal,|0) = — (0]0) +0 = ~1. (I1.2.35)

This is unacceptable in a physical theory, and removing such states has important consequences
for the internal algebra of the theory.

We can now plug the mode expansions Eqgs. [[T.2.24] and [[T.2.25] into the lightcone stress-energy
conditions to find constraints on the allowed oscillation modes. Quantum mechanically, this discus-
sion must be treated more carefully, so we will give slightly more detail. Recall from Eq.
that, in lightcone coordinates,

T++ — 8+X‘LL8+XM.

A major advantage of the lightcone decomposition Eq. is that the o+ dependence is com-
pletely decoupled from the o~ dependence, so that the derivatives in this expression are indepen-
dent, and we can evaluate T’y without considering right-moving solutions at all. From Eq. [[1.2.24]
we can easily read off that

1 , e ,
0L X1 = 0, X[ = S + 1) ale 2t =g, N Gl emHmet (I1.2.36)

n#0 m=—00
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so that

oo oo
Ty =12 ) ) alhape 2mote2inot, (11.2.37)

m=—0o0 N=—00

Classically, the ordering of the mode coefficients & is irrelevant, since they are just complex
numbers, so we can rewrite [L1.2.37] and the exactly corresponding result for 7__ as

o
Tpy =22 > Lye2m (11.2.38a)
m=—o00
) .
T =22 ) Lpe ™, (I1.2.38b)
m=-—00

where we have introduced the new mode expansion coefficients

1

L =5 nz_:oo Qmn - O (I1.2.39a)

- 1 ~

L, = 5 O * Ol (I1.2.39Db)
n=—oo

These are the famous Virasoro generators, and classically close an algebra given by
{Lm,Ln} =i(m —n)Lpyin. (I1.2.40)

In quantum mechanics, however, we are not free to simply commute the mode coefficients, as
they are operators, rather than numbers. Instead, we must adopt an ordering convention for the
creation and annihilation operators. It is conventional to adopt the so-called normal ordering,
in which annihilation operators always act to the right of creation operators; a normal ordered
product of the operators O; and Oy is written as : O105 :. In the quantized string theory, then,

the worldsheet stress-energy conditions 7, = T _ = 0 still take the form
[e.e]
Tiy =22 Y Lye2m” (11.2.41a)
m—=—0oQ
oo
T =27 ) Lpe ™, (11.2.41D)
m=—00

but we now define the normal-ordered Virasoro operators

(e 9]

1
L, = 3 Z D Qp—n Oy, (I1.2.42a)
n=-—o0o
- 1 &
Ln=3 > tamen b (I1.2.42b)
m=—oo

43



The normal ordering introduces an ambiguity in Lg related to convention choice, so in general we
expect

1 & 1 =
LO = 5 Z O/inO[,um, +a= 5043 + Z O/inau,n +a (11243)

n=-—00 n=1

for some constant a. These normal ordered operators have commutator
c
[Lns Ln] = (m = 1) Linn + 75m (m? = 1) Gmn0- (11.2.44)

This second term, which has no analogue in the classical theory, can be viewed as stemming from
normal ordering conditions; moreover, it can be shown that ¢, the so-called central charge of the
Virasoro algebra, must be equal to the dimension D of the target spacetime manifold.

I1.2.1.4 Constructing the State Space

The second term in the commutator has important physical implications. Classically, Eqgs. [[1.2.38
and imply that

Ly = Ly, = 0Ym. (I1.2.45)

It is tempting to take this vanishing condition as a definition of physical states in the quantum
theory, i.e. to demand that, for all physical states |p), we have

Ly ) = Lun ) = 0, (I1.2.46)

but this is inconsistent with the commutator Eq. [[1.2.44] To see this, we simply note that Eq.
implies that

(@l [Lm, L-m] 1) = {p|LmL—m|p) — {(@|L—mLm|p) =0—0=0. (11.2.47)

However, direct evaluation of the commutator yields
D 9
(Lo, L_pn] = 2mLo + ™M (m — 1) , (I1.2.48)

so Eq. [I1.2.46|is not a satisfactory condition. Instead, we call a state |p) if it is both annihilated
by all L,, for m nonzero, and also satisfies the “mass-shell” condition, i.e. there exists some a such
that

(Lo~ a)|¢) = (Lo — a) ) = 0. (I1.2.49)

Not all states satisfying this condition are physical; certain states, known as “spurious states”,
are orthogonal to all physical states. Although in general we will not consider the full details
of constructing the physical state space of the bosonic string theory, and hence will not work
through the full formalism of the spurious state, we can study these spurious states to determine

the appropriate value of a in Eq. [I.2.49]
Consider a basis set of states |¢;) satisfying (Lo — a + 1) |£;) = 0Vi > 0, and define the vector

|spur) = aL_11&1) +bL_2 |E2) . (I1.2.50)

44



This is a spurious state, and moreover all spurious states can be written in this form through
appropriate use of the Virasoro commutator. In particular, we will consider the state

) = L1 &), (11.2.51)

where as before L, [£1) = OV m > 0 and (Lo —a+1)[&) = 0. |[¢) is a spurious state; let us
consider the conditions that make it also a physical state. If it is to be physical, we must have
Ly, |Y) =0Vm >0 and also (Lo — a) [¢)) = 0. Then

0=L1|y) = LiL_1|&) = (2Lo + L—1L1) [&1) = 2Lo [§1) + L-1L1 [&1) = 2(a — 1) |§1) + 0,
(11.2.52)

where we have used Eq. [[1.2.44| to find Ly L_; — L_1L; = 2Lg. By definition, |£;) # 0, so for this
to hold we must have

a=1. (I1.2.53)

In some sense, a is a free parameter of the theory; we take it to be 1 to maximize the overlap
between spurious and physical states. This is desirable because states that are both spurious and
physical have zero norm, since spurious states are orthogonal to all physical states, and so they will
decouple from the physics of non-spurious physical states without any additional constraints.

I1.2.1.5 The Closed String Spectrum

We are now in a position to compute the closed string spectrum, i.e. the properties of excited closed
string states. This will directly enable us to compute the dimension D of the target spacetime
manifold. We will see that D = 26; there are numerous ways of showing this, and we will merely
demonstrate one method out of the very many ways of doing so. Consider the number operators

oo o [e.9] o0
N=> o oun=> nal,al, N=> a" 6,,=) nal ik (I1.2.54)
n=1 n=1 n=1 n=1

We note that Ly = %a% +N, Ly = %&% + N. Then, since oy = dy, for any physical state |¢) of the
closed string we have

_ jod _ =~ _ - ]. 2 ]. ~9 _ - it
0=[Lo—a~ (Lo —a)]le) = (Lo~ Lo) Iy} = (N i+ 5 2%) o) = (N =N) l),
(I1.2.55)
and hence we must have
N=N (I1.2.56)

for all closed string states. This is known as the level matching condition, and provides an important
relation between the left and right movers.
Consider a vacuum state |0, 0, k), which is an eigenstate of the momentum operator:

P10, k) = KM |0, k). (I1.2.57)
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In principle, we should label this state as |0, 0, k), where the first parameter is the number of left
moving excitations and the second is the number of right-moving excitations, but by Eq.
only states of the form |N, N, k) are allowed, and we can happily proceed with the | N, k) notation.
In particular, consider the normalized, physical state

Nn,u Nn,u
D—-2 oo (QIL’M) (aj{“)
N, k) = || || k I1.2.
| ? > #:1 ook Nn“u ‘0’ > Y ( 58)

where N, is the eigenvalue of a;r%uaﬁ (and, by the level matching condition, also of diwdﬁ);
following the discussion of Section 2.1.2., we have only allowed for D — 2 degrees of freedom. Such
a state has a mass given by

D—-2 o~

2)0D N+ % : (I1.2.59)

n=1n=0

M? =

R |w

This formula is nontrivial to derive; its mysterious-looking second term stems from a zeta-function

regularization of the form (D — 2)>.°° 'n. Because ((—1) = —<5, this sum after regularization

—,
becomes —% = %.

The state in Eq. is quite general. To examine the spectrum more concretely, it is helpful
to consider less general states. First consider the vacuum |0,%). By Eq. [I1.2.59] this state has

mass-squared

2-D 2-D

2
2—7
MO_O/ 12 60/

(I1.2.60)
Next consider the state [¢]") = aJ{“ELT“ |0, k). Once again by Eq. [[1.2.59] the mass of this state

is
M ="——", (I1.2.61)

since N, = 1 here. This is sufficient to see that we must have D = 26, since this state should be
invariant under the residual SO(D-2) symmetry of the closed string modes. It is a general theorem
of representation theory that rank-2 tensor representations of special orthogonal groups must be
massless, so we must have M? = 0, i.e.

D = 26. (11.2.62)

We can now evaluate the mass in Eq.

2-2 4
2
M§="m = (I1.2.63)

These are tachyonic modes! This is a serious problem in bosonic string theory, and can only be
rectified in superstring theory.

Because we could just as easily have constructed [¢]") by exciting modes along any of the D—2 =
24 directions, there are 242 = 576 massless tensor states. These correspond to symmetric and
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antisymmetric tensor states, and also a scalar state known as the dilaton, which will be especially
important later on.

By adding on additional operators of the form az’“ a}’” to [¢]"), one can construct states of the
form

|w7,ltlV2N2V2"'Mn71Vn71/'LnVn> — aTle aT7V2aTvN2aT7V2 .. aTnunflaTaynflaT#n&tVn ‘O’ k) . (11264)

In general, one can show that [¢,) has a mass given by

44
M2 = iy (I1.2.65)

a/

This is the full spectrum of the closed string; all physical states can be created as a sum over the
|tn), and each of these states has known mass and tensor behavior (given from the Lorentz indices
of the creation operators). This concludes our review of critical bosonic string theory; there are of
course more topics to cover in this theory, to say nothing of the entirety of superstring theory, but
in the interests of brevity we will terminate this section. In what follows, the general structure of
string theory as a quantized theory of the relativistic, two-parameter spacetime surface is probably
more important than any specifics of the theory; however, working through this formalism is an
interesting exercise.

11.2.2 A Simple Example: 2 — 2 Scattering of Tachyons

Having discussed the basics of flat-space string theory, we will now demonstrate its application to
scattering problems. We begin with perhaps the simplest string scattering amplitude, the elastic
scattering of two tachyons in flat space, i.e. the process ab — cd, shown in Figure [I.2.1] This
is known as Virasoro-Shapiro scattering, and is a historically important problem in string theory;
more importantly, studying the Virasoro amplitude will establish a program with which we will
attack all future amplitudes. Here we will follow the discussion in [72]; similar discussions can be
found in |73.[74].

kl ]‘53

kQ k4

Figure I1.2.1: Virasoro-Shapiro scattering of tachyons.

We begin with momenta ki, ko, k3, k4 and vertices z1, 2o, 23, 24, and will concern ourselves only
with the tree-level contribution to this amplitude. Before we can compute the amplitude, however,
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we must define kinematical invariants with which to describe the scattering. For 2 — 2 scattering,
these are the classical Mandelstam variables:

s = (ky + ko)? (I1.2.66a)
t = (kp — ks)? (I1.2.66D)
w= (ki —kq)?. (I1.2.66¢)

These are Lorentz invariants, and fully encode the kinematics of 2 — 2 scattering. Of these,
the most important are the center-of-mass energy-squared s and momentum transfer squared t. It
is important to note that

s+t+u=mq+mg+ms+ my, (I1.2.67)

which can be easily verified. We saw in Eq. that the mass of a tachyon with string parameter
o ism = —%, so for tachyon scattering we have

16
s+ttu=——. (I1.2.68)

Oé/
We are now in a position to compute the scattering amplitude.

As in standard perturbation theory, we can formulate the scattering amplitude as a power series
in the coupling constant. In string perturbation theory, the k-th term in this sum is given as an
integral over each vertex z; over a surface of genus k, or equivalently Euler characteristic y = 2—2j.
Thus the tree level amplitude stems from integrating the vertices over a complex surface of genus
0, i.e. the Riemann sphere. However, the sphere is homeomorphic to the complex plane by the
well-known stereographic projection map [78|, so we can take each integration to be over C itself.
We will correspondingly take z; = x; + iy; € C, and take the integration measure dzzj = 2dxjdy;.
Then the amplitude T} is given by

Ty = g36%° (k1 + ko + k3 + ka) Vi, (I1.2.69)

where g, is the string coupling and Vj is the four-point closed string vertex operator, itself given
by

4
Vi~ / Aoy d?zod? 2y d®zy [ | 27 — 27 (I1.2.70)
C .
i<k

We are primarily concerned with V4, and will focus on simplifying it. The above procedure
of mapping from the sphere to C is not unique; there is a residual symmetry under simultaneous
transformation of the z;. This symmetry takes the form of invariance under the action of a Mobius
transformation, and allows us to simultaneously assign three of the z; to 0, 1, and oo, respectively.
We will take z; — 0, 20 — 1, z3 — 00, so that only z, is free to be integrated over. Then the
amplitude simplifies considerably:

Vi~ / @2y |2g| TR |1 — gy |0 2R (I1.2.71)
C
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With the use of Eq. [[1.2.68] this integral can be performed explicitly to obtain the amplitude
in terms of gamma functions. We will not reproduce the calculation, which can be found in almost
any elementary string theory text, here, but will merely quote the result:

F(-1-ads/4)T (-1 —-adt/4)T (-1 - d'u/4)

Vi~ TRt als/ )T 2+ at/4)T (2 1 oufd)

(11.2.72)

The form of this amplitude, and in particular its singularity structure, has profound conse-
quences for string scattering. It is well-known that I'(x) diverges iff = is a negative integer or zero.
Then Vj has singularities in s at an infinite number of values s3° given by

5 = 4;7%”, n=0,12... (I1.2.73)
Recall from Eq. that these are exactly the squares of the masses of excited states of closed
strings. Hence we can conceive of this scattering as a sum over all excited string states of s-channel
single-string exchanges. However, because the amplitude is symmetric in s and ¢ (and also in the
less important u), we can in exactly the same way conceive of this scattering as a tower of t- or
u-channel exchanges; in these channels, we again have infinite towers of poles given by

4—4
o — = =0,1,2,... (I1.2.74)

n o
This duality in scattering mechanism is the origin of the original name for string theory, the so-
called “dual-resonance model”, and was a driving factor in the initial study of string theory as a
model for the strong interaction.
There is an interesting kinematical limit to discuss, the so-called near-forward limit in which
s — oo while t remains small and fixed; because at high s the scattering angle 6 ~ i, this limit
corresponds to small-angle scattering. In this limit, the amplitude is given approximately by

Ty~ T [=a(t) [(=5)" + (—u)*®)], (I1.2.75)
where
at) = ap(t) + Z,t (I1.2.76)

is the Regge trajectory; in flat space, the Regge intercept oy = 2.
For what follows it will be useful to write Eq. strictly in terms of s. BY Eq. [[I.2.68 we
have

16
u:—a—t—SN—s (I1.2.77)
so that
Vi~ (—8)*® 4 (5)2® (11.2.78)

In the forward limit, the singularities in negative u become singularities in positive, real u. To
avoid these singularities in the s — 0o, we give s a small imaginary part. This procedure induces
an effective branch cut in s along the positive real axis.
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This concludes our discussion of the Virasoro-Shapiro amplitude. Because the method we em-
ployed to analyze this scattering process is more important to what follows than the details of the
result, we will summarize it briefly here. We begin by parameterizing the kinematics of the scatter-
ing in terms of Lorentz invariants; for this example it sufficed to consider the classical Mandelstam
variables, but in the more complicated processes studied below we will need to construct gener-
alized Mandelstam invariants. We then wrote down an explicit form of the scattering amplitude,
including the vertex operator, in terms of these invariants and the string parameter o/. Lastly, we
will take the s — oo limit (or, for more complicated amplitudes, a similarly structured limit) to
simplify the amplitude into a useful form. This is the method we will employ in all further studies.

11.2.3 The Inclusive Single-String Production Cross Section in Flat Space

Here we will compute the inclusive single-string production cross section in flat space. This is
the physical quantity of interest; if string theory is to be an accurate model of quantum chromo-
dynamical processes, its prediction for this cross section should agree at least qualitatively with
the result in traditional gauge theory calculations. We will see, however, that the two results are
fundamentally incompatible, and so we will be driven to consider string theory in curved space.

Our approach will echo the discussion in Section 1. We will consider the six-point amplitude for
3 — 3 scattering, and compute its discontinuity to find the cross section. First, we will in Section
justify this method through a discussion the optical theorem used in [70].

11.2.3.1 Optical Theorems

In this thesis, we are interested in computing an inclusive cross section. In general, such calculations
are nontrivial; there exist, however, several profound identities that facilitate these computations.
In particular, there exists a series so-called optical theorems relating inclusive cross sections to
scattering amplitudes in certain kinematic regimes.

The first optical theorem is the most-well known, and is frequently referred to as the optical
theorem. It pertains to the total two-particle cross section for the process ab — X, and indicates
that this cross section can be viewed as the imaginary part of the 2 — 2 cross section evaluated at
the forward limit, ¢ = 0, where here ¢ is the same momentum-transfer invariant defined above [79]:

1
T2~ Im T}

|,—o- (11.2.79)
Being essentially a consequence of unitarity, Eq. [.2.79]is always true, but it is not always useful.
Consider, for instance, the scattering of two closed-string tachyons. The optical theorem indicates
that this has a total cross section given by the imaginary part of the 2 — 2 tachyon scattering
amplitude, i.e. the Virasoro amplitude Eq. For generic s, it can be quite difficult to
evaluate the imaginary part of this amplitude. In the forward limit, however, the amplitude takes
the simple form given in Eq. albeit with a branch cut in s. Consider two points in the
complex s-plane, s; = |s1|e?® and its complex conjugate s95; = |s1|e”®, where we take § < 1.
Then Im Ty (s1) = —Im Ty (s2) so that the discontinuity Discs Ty of Ty in s at s is

Disc, T4]S1 =ImTy(s1) — ImTy(s2) = 2Im Ty (s1). (I1.2.80)

In this way, we can conceive of the imaginary part of the amplitude as given approximately as its
discontinuity across a suitably defined branch cut. This “smoothing” of the amplitude in the limit
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of infinite-center-of-mass energy is extremely characteristic of string theory, and allows the optical
theorems to be at least in principle useful in many situations.

Our goal, then, is to take advantage of this “smoothing” to calculate the inclusive single-particle
production cross section in the limit of infinite center-of-mass energy. The analogy to Eq.
for single-particle production relates the cross section to the amplitude of 3 — 3 scattering. The
theorem is schematically depicted in Figure and quantitatively has the form [70]

dSUab—>cX 1
—————= ~ = Discy2 T§. I1.2.81
dpg) s ]\42 6 ( )
This is the central result we will use to compute the inclusive single-particle production cross
section; we will effectively be analyzing the six-point amplitude instead of the four-point amplitude.
Additionally, we will need to work in the limit of infinite center-of-mass energy; this limit will be
discussed below, and enables us to write the discontinuity of the amplitude in a convenient form.

2

}X
Figure I1.2.2: A schematic representation of the generalized optical theorem given in Eq. [[1.2.81

11.2.3.2 The Six-Point String Amplitude

We consider 3 — 3 scattering of the form abé — abc, with the intention of computing a six-
point amplitude from which we can find the inclusive single-particle production cross section. The
kinematics of 3 — 3 scattering are shown in Figure We will consider the case when all
external lines are scalar glueballs; however, a similar discussion holds some or all of the external
lines are hadrons [66]. The internal lines are pomerons with Regge trajectory a(t;) = ap + %ti.
Here, we will take all strings to be open for simplicity; it was shown in [80] that entirely similar
results hold for closed-string scattering. Because we do use open strings, however, some modification
will be needed when we reuse the results of this section in the closed string scattering of Section
4. In particular, our final result will involve the quantity o/, the Regge slope. However, this is the
Regge slope of open strings, properly denoted agpen; the appropriate Regge slope for closed strings,
QL oseds 18 given by

/ _ 1 /
Xclosed = iaopena

(11.2.82)
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so to translate our results for use in closed string scattering we will need to substitute

o — %o/.
kg > <
o (t1)
kz < >
o (t2)
ks > <

Figure 11.2.3: Schematic representation of 3—3 scattering of strings.

(11.2.83)

To encode the kinematics of this process, we construct generalized Mandelstam invariants [66]:

= (kg + kg + k¢)?

We also define the energy ratio

(I1.2.84a)
(I1.2.84b)
(I1.2.84c¢)
(I1.2.84d)
(I1.2.84¢)
(I1.2.84f)
(I1.2.84g)
(I1.2.84h)

)

(I1.2.84i

(I1.2.85)

These are labelled in analogy with the traditional Mandelstam variables. In particular, s is the
center of mass energy, the s; are partial energies, and the ¢; are the momentum transfers. We are
in particular interested in the so-called double diffractive limit [66,/70], also known as the double
Regge limit. In this limit, the energies s, s1,so — 00 with s > s, s9 so that the ratio x remains
fixed; we will later take kK — oo to obtain the cross section. We also demand that the ¢; are fixed
and constant. Physically, this corresponds to fixed angle scattering, in which the incoming particles
are deflected only slightly from their initial trajectories [66]. We note briefly that in this limit the

kinematics of the produced particle ¢ are described by k:

_ .2 2
n:pT’c—i—mc,
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where pr. . is the spatial momentum of ¢ in directions transverse to the collision.
In the region of phase space of interest to our calculation, the amplitude for this 3 — 3 scattering
is given by [70]

T = go (51)*") K72V (S1, Sa, ta, ta, 1) (52)) go, (I1.2.87)

where the two-pomeron-to-two-glueball vertex operator Vg is given in terms of the two-pomeron-
to-one-glueball vertex operator Vs as

1
Vo(31, 29,1, t2, K) ~/ dz 272271 (1= 2)" 27 s [ a(t), a(ts), R (11.2.88)
0 z

(1-2)
—

=T

To take advantage of the optical theorem, we must compute the discontinuity of Tglat in the missing
mass M?, i.e. in the center-of-mass energy s. However, from Eq. we see that all of the s
dependence of T, (?at, and hence of its discontinuity, enters through the s-dependence of x. Thus we
can use the optical theorem by calculating the discontinuity of Tglat in k. Now, the only (possibly)
discontinuous term in this expression for Télat is Vg, and hence the k-dependence of the discontinuity
in Tgat is given by

Disc 2 Ta® = k72 Disc 2 V. (11.2.89)

Meanwhile, the only discontinuity in Vg stems from the x-discontinuity of Vs, so we must have
1
Discype Vg ~ / dz 272271 (1 — 2) 7 7 [Disc, Vs (a(t1) , o (t2) , )] . (I1.2.90)
0

To evaluate this discontinuity, we must examine in detail the behavior of Vs(«a (t1) , a (t2) , ), which
is discussed in Section [1.2.3.3
11.2.3.3 The Five-Point String Amplitude and Its Discontinuties

First we will describe the kinematics of 2 — 3 scattering of the form ab — abc, depicted pictorially

in Figure [I.2:4]

kg > < ka
a(t)

> ke
a(t2)

ky > < kg

Figure I1.2.4: Schematic representation of 2 — 3 scattering of strings.
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As before, we take all external lines to be scalar glueballs, and all internal lines to be pomerons.
We define generalized Mandelstam invariants to parameterize the process:

= (ko + kp)? (11.2.91a)

51 ::(kc4—k@)2 (I1.2.91D)

s9 = (ke + kp)? (I1.2.91¢)

t1 = (kg — kq)? (I1.2.91d)

ty = (kg — k)2 (I1.2.91¢)

We also again define the energy ratio
K= 2192 (I1.2.92)
S

We will again work in the double Regge limit. In terms of channel invariants s1, so, t1, to, Kk, the five
point amplitude is (up to a constant)

Ts(s1, 52, t1, t2, k) ~ (=s1) ") (=52)" 2 V5 (a (1), (t2) . w), (11.2.93)
where « is the Regge trajectory and the vertex operator Vs is given by [81}82]

V5 (a (tl) (tg / dxl/ d.il?g €y —at)-1 _a(tQ) ! —:(:1 z2+x1x2/(o¢ K) (11.2.94)

We will begin to analyze this amplitude by studying Vs (a (¢1), « (t2), k) in the limit K — oo.
Recall the identity

00 I(n+1
/0 du e = glnjl) (I1.2.95)

found by repeated application of integration by parts. Immediately, we see that, as Kk — oo,
Vs (a(t1),a(tz),00) = lim Vs (a(ti),a(tz), )

= lim/ dxl/ dzs 371 -1 —a(tz) 1e—x1*mz+xlxg/(a//{)

K—00

—a(t —1 —a(te)—1 —gq—
:/ dl‘l/ de xla 1 1,206( 2) e T1—T2
—at1)—1 — —a(te)—1 —
[/ dry 1 ml] [/ dzy g 2)=1 =2

a(t)) T (—a(t2)) (11.2.96)

Importantly, Vs (« (t1) , e (t2) , 00) is real and finite. For more general x, the situation is some-
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what more complicated:

Vs (a(ty),a(ty), k) = / d:El/ dxs xfa(tl)*lx;a(w)*le*wl*“””2/(0‘/”)
0 0
— /OO dxq x{a(tl)—lem /OO x;C*(tz)—le*wz(lfm/a’ﬂ)
0 0

_ /Oo dzyz )T gmm ['(-a(t))
0 (1 _om )*a(tz)

o'k

e’} al(t
— T (—a(ty)) / doyzy e (1 - ﬂ) ) (I1.2.97)
0

o'k
It is tempting here to express (1 — %)a(@) (where a(t2) is not in general an integer) as an
infinite sum using the generalized binomial theorem and integrate term-by-term over the sum, but
this does not in general converge. Instead, we must examine this more closely. Here we are primarily
interested in the k-dependency of the amplitude; for different values of k, vastly different behavior
is observed. Whereas for z < o'k, (1 — %)a(h)
natural, then, to split this integral into two:

is real, for z > o'k, it is in general complex. It is

> —a(t)— alts)
Vs (a(ty),a(te),k) =T (—a(t2)) / day 2, (t1) Lo—a (1 . ﬂ) 2
0

o'k

o'k NG alts)
=T (—a(t2)) / dxix, ()= g—as (1 - ﬂ) ’
0

o'k

-~

=0(—a(t2)) ™" fi(s,alt1),otz))

AN a(t2)
+/ dpyzy @ e (17 ‘“) “l. (I1.2.98)

e o'k

~~

=T(—a(t2)) "t fa(r,a(tr),a(tz))

Because f is everywhere real, the imaginary part of V5 can be obtained entirely from fo:

fa(k) =T (—a(t2)) /Qi dzyz 0l (1 B %)a(tz)
=T (—a(t)) /o: day oy @ e [(em) (% _ 1)}@('52)
so that
I(r) = Im(V5) = sinma (t2)T' (— (¢2)) /:: dayary "0 e (S 1)%) . (IL2.100)

We saw earlier that V5 is asymptotically real as k — oo, so it is reasonable to check that
limy 00 I(k) = 0. We proceed straightforwardly albeit through a roundabout series of substitutions
(u= (k)" oy 4 =u—1;v = Ki):
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o0

—a(t1)— a(tz)
I(k) =sinma (t2)T (—« (tg))/ day 2] (t1)=1 —ay (% _ 1) 2

= (Ck/,‘ﬁ)_a(tl) sin To <t2)I‘ (—Oé (t2)) / du u—a(tl)—le—nu (’LL _ l)oz(tz)
1

= (¢'r) W sin o ()T (—a (t2)) / dii (1 + @)~ =1 g=r(+u) galtz)
0
0 —a(t1)—1
= (o/r) "1t e gin oy (£5)T (—a (tg))/ dv (1 + i) VT emvgalta) (I1.2.101)
0

This is quite general; we have never explicity taken k£ — oo. In this limit, I(x) simplifies
considerably:

, o —a(t1)—1
lim I(k) = o/ g iTetmell) —alk gy (t2)T (—ax (tQ))/ dv (1 + L) “ e Vpelt2)
0

K—00 Oé//{

~ a/ﬁflfa(tl)*a(tz)e—a/n sin T (tz)r (_a (tg)) / dv e—vva(tg)
0

= o/t mell) ol g iy (49)T (—a (2)) T (e (£2) + 1)
= —ra/k Tt malt) —a'k (I1.2.102)
where we have taken —7- — 0 as Kk — 00; in the last step we have made use of the identity
T(2)D(1 - z) T (I1.2.103)
x —x)= . 2.
sin ()

We hence confirm what we have seen above: as k — oo, I(k) vanishes exponentially quickly in
k. This will be essential to what follows.

11.2.3.4 The Discontinuity in the Six-Point Function and The Inclusive Cross Section

Having computed the discontinuity in Vs, we are ready to evaluate the discontinuity in V4. For fixed
t1,ta, Vs(a(t1),a(t2),x) converges iff < 0; in particular, Vs (a (t1),a (t2),x) is infinite for all
x > 0. If we allow x to be complex, we can evaluate directly the discontinuity in V5 about the real-x
axis by examining lim._,o V5 (a (¢1), 0 (t2) , x +ie) and lim._,o V5 (a (£1) ,  (t2) , @ — ie). From Eq.
3.6, we see that, whereas lim._,o Re V5 (a (1), a (t2) , = + ic) = lim. o Re V5 (a (£1) , a (t2) , & — ig),
lime 0 Im Vs (e (t1), e (t2) ,x +ie) # lime0Im V5 (a (t1),a (t2) , & —ie). Thus the discontinuity
in V5 across z is given approximately by (the absolute value of) its imaginary part:

Discy Vs (o (t1), @ (t2) , ) ~ |Im Vs (o (t1) , @ (£2) , ) ‘ (11.2.104)

We saw above that

, 00 —a(ty)—1
Im Vs (@ (t1) @ (t2) @) | = /2™ 7" sina (1)1 (—a (12) / e
0 QT

(11.2.105)
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or, in the limit z — oo,
‘Im Vs (ar(t1) ,(t2) ,2) | = mala~ 'm0 700)mae, (I1.2.106)

Thus, in this limit, the inclusive cross section is given by

1 / —1—a(t1)—a(tz) /
. B R L SR L.
DISCMQVG—W/O dz 2 (1-2) [<z(1z)> eXp( 2(12)>]'
(I1.2.107)

This simplifies considerably; because of the [z (1 — z)] 7t =) term the integrand is
sharply peaked about z = %, and we can approximate

Discppe Vg ~ 7 [(4&'/{)_1_a(t1)_a(t2) 6_40‘,“} . (I1.2.108)

Then by Eq. we have
Discya Te™ ~ 172 Discyye V ~ 167 | (4a/k) 271700 mials] (I1.2.109)

This is the central result in flat space string theory. We see that, in the double Regge limit, the
inclusive particle cross section decays exponentially quickly in x. This stands in stark contrast to
the result from QCD, in which the decay is only polynomial. Historically, this discrepancy was an
important contribution to the abandonment of flat-space string theory as a model for the strong
interaction.

II.3 AdS/CFT Correspondence and Curved Space String Theory

In this section we review some of the developments that suggest that curved space string theory
might alleviate the discrepancy between the predictions of string theory, derived in Section
and QCD. In particular, we give a brief introduction to the AdS/CFT Correspondence and conclude
with a discussion of the results of [64], the first paper to demonstrate that curved space string theory
can describe QCD processes.

I1.3.1 The AdS/CFT Correspondence: A Brief Discussion

The AdS/CFT correspondence is a conjectured equivalence between semiclassical gravity in d + 1-
dimensional Anti de-Sitter (AdS) space and a conformal field theory (CFT) defined on the d-
dimensional boundary of AdS space. The correspondence was suggested by Maldacena in 1997 [5§],
and since then has inspired thousands of papers, becoming one of the most vibrant research topics
in high energy theory. It has never been proven to be true, however; all evidence supporting the
conjecture is circumstantial. We will discuss here the two physical theories linked by AdS/CFT
correspondence, and then illustrate why they are believed to be linked. The literature on these
topics is vastly too large to be summarized here, and so our goal here is only to provide a brief
introduction to the aspects to the correspondence that will be most useful to us later on.
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I1.3.1.1 Anti de Sitter Space

Anti-de Sitter space is a vacuum solution to the D-dimensional Einstein field equations
1
R;w - §Rg,u,1/ + Ag;w =0 (1131)

with negative cosmological constant A, where R, is the Ricci tensor and R is the Ricci scalar. For
D = 5, the AdS metric takes the familiar form

,,,,2 R2
dshas, = ﬁnw,da;“dx” — r—zdrz, (I1.3.2)
where here 7, is the four-dimensional Minkowski metric, the x# are three-plus-one dimensional
coordinates, and R is the AdS radius, a length scale characteristic of the solution.

The AdS/CFT correspondence involves type II supergravity in an AdS background [58}|77];
however, type II supergravity, like all traditional superstring theories, requires ten dimensions of
spacetime. Thus to arrive at a suitable metric for the AdS/CFT correspondence, we multiply five-
dimensional AdS space with a compact, transverse 5-dimensional space, usually taken to be the
five-sphere S°:

r2

R2
dsidS/CFT = ﬁnwdx“d:c” - T—er2 — R%ds%s; 0 <71 < oo, (I1.3.3)
where dség, is the metric on the five-sphere.

I1.3.1.2 Conformal Field Theories

Although the AdS/CFT correspondence was originally formulated for conformal field theories,
these are unsuited to describe QCD, and we will discuss them only briefly. In particular, Mal-
dacena arrived at the correspondence by considering the most famous CFT, the so-called N/ = 4
supersymmetric Yang-Mills theory (SYM) [58]. This theory has four generations of supersymmetry,
the maximum number allowed in four-dimensions, and is defined by the Lagrangian [77]

1 o |

L=Tr <—92YMFWFW + 1gra Fuw " —iX0" Dyuda — D' DHei
2

+ gyMCPNa [©%, M) + gymCiap\® [cpz,)\b} + gYTM [gol,gof]2> ) (11.3.4)

In this Lagrangian, the A, are Lorentz vectors, the the A are Weyl fermions, and ¢ are real scalar
fields; these are all defined to live in representations of SU(4), and the Cfb are the Clebsch-Gordan
coefficients for this group. We further define the Yang-Mills coupling fy s, the field strength tensor
Fu = 0,A, —0,A,+1i[A,, A)] and its Hodge dual Fuv = %su,,)\pF/\p, and the covariant derivative
D,,. We take this theory to have SU(N) gauge symmetry; note the important difference between
the number A of supersymmetry generations and N the number of colors in the theory.

This Lagrangian contains a rich structure which is entirely unnecessary to provide a reasonable
model of QCD. In particular, we will calculate glueball-glueball scattering, so we can neglect these
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terms. Additionally, the parameter ¢ describes the CP violation scale of the theory, so it can be
set to zero for our purposes. Then the Lagrangian simplifies drastically:

1 . 2 .
L= . Tr <FWF“” — D" DFe; + QYTM [¢", @9]2> . (I11.3.5)

Because it only contains massless fields and the coupling constant gy is dimensionless, N' = 4
SYM is classically scale invariant; moreover, upon quantization the beta function of this theory is
believed to vanish order-by-order in perturbation theory, so we expect A" =4 SYM to remain scale
invariant quantum mechanically. We will not need any more information about this theory, so in
the interest of brevity we will curtail our discussion of it.

11.3.1.3 The Correspondence

Having discussed the basic elements of the AdS/CFT correspondence, we will now explain how to
equate the two theories. Maldacena identified the correspondence in [58] essentially by identifying
degrees of freedom between the two theories, which he accomplished by embedding the state space
of type IIB supergravity inside of the state space of SYM. For our purposes, it suffices to consider
the practical details of the correspondence, which consist of a carefully structured series of limits
of coupling constants designed to ensure equivalence of results between the two theories. In what
follows, we will follow the conventions of [64,/66].
We immediately relate the coupling constants as

G = 4mgs, (I11.3.6)

where g5 is the string coupling. Moreover, we take the number of colors N in the gauge theory to
infinity, while keeping the ’t Hooft coupling

A= gy N (I1.3.7)

fixed but large; this forces gy, and hence g, to be small, and hence limits the importance of string
splitting. We relate A to the AdS radius R and the Regge slope o’ by
R4

A= R (I1.3.8)
An interesting consequence of this relationship is that the AdS radius R is large; this allows us to
treat the AdS geometry classically, and work in supergravity rather than using the full apparatus
of superstring theory. These relationships suffice to quantitatively link results between the bulk
gravity theory and the boundary gauge theory. This so-called “AdS dictionary” was worked out
in [83] soon after the AdS/CFT correspondence was discovered.

We now discuss the kinematics of these holographic theories. It has been observed in many
holographic models that the kinematics of four-dimensional processes in higher-dimensional space
have a dependence on transverse coordinates [64,(77]. It can be seen that the metric Eq.
is invariant under infinitesimal translation in xz#, so by Noether’s theorem there exist conserved
four-momenta

pu = i0). (I1.3.9)

59



Correspondingly, from the metric it is clear that the four-dimensional components p,, of the full ten-
dimensional momentum measured in a frame localized at some r are related to the four-momentum
components by

ro_
Pu = TP (I1.3.10)

so that in particular states strongly localized at R, and hence of characteristic ten-dimensional
energy p ~ R~!, have dual four-dimensional energy

r
= 7

Finally, we discuss the dynamics of string scattering in the bulk, which is dual to scattering in the
gauge theory. All of the following can be made rigorous through an analysis of the string partition
function and generating functionals for gauge theory correlation functions; this discussion can be
found in, inter alia, |77,/84] and will not be repeated here. We will instead focus on computational
aspects of the AdS/CFT correspondence following the discussion in [77].

In traditional QFTs, computations of amplitudes and other important quantities in scattering
theory are facilitated by diagrams, schematic visual representations of the power-series expansion of
the generating functional for the field theory. Feynman diagrams are formulated in flat spacetime,
and are insufficient to describe string scattering in AdS space. We can, however, utilize an analogue
of Feynman diagrams known as Witten diagrams to perform these calculations in curved space.
Defined entirely analogously to traditional Feynman diagrams, Witten diagrams are uniquely suited
to describe string scattering in curved space. A Witten diagram is shown in Figure [[I.3.T} we will
discuss its interpretation below.

p (I1.3.11)

Figure 11.3.1: Example of a Witten diagram corresponding to 2 — 2 scattering in curved space.

For simplicity, we take all particles in Figure [[1.3.1] to be scalars with mass-squared m? and
conformal dimension A. The circle surrounding the diagram represents the d — 1 dimensional
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boundary of AdS space; this is the surface on which the CFT is defined; the interior of the circle
represents the full d-dimensional bulk of AdS. To compute an amplitude from this diagram, we
need to define two types of propagators: the boundary-to-bulk propagator and the bulk-to-bulk
propagator. The boundary-to-bulk propagator is used for the external strings, and the bulk-to-bulk
propagator is used exclusively for internal lines.

To relate the wavefunction ¢ of a scalar at a point (z,7) in the bulk to the boundary wavefunc-
tion o (y), we can introduce a kernel Ka given by

p(x,r) = / A YK (2,759) oo (y). (11.3.12)
0AdS

Similarly, to relate the wavefunctions at bulk points (z,71) and (y,r2), we can introduce a Green’s
function Ga given by

69w —y)d(r1 —r2)
N/

where [ is the laplacian on AdS space and g is the determinant of the metric. Then, introducing
a bulk source function J(x,r), we can write

(D B m2) GA (‘T» 1Y, TQ) = ’ (11313)

o (1) = /A g dror/G Ga (@1 ysr) T (yra) (I1.3.14)
ds

These functions Ka and Ga are, respectively, the boundary-to-bulk and bulk-to-bulk propaga-
tors for a particle of conformal dimension A. Explicit representations for these functions can be
found in terms of hypergeometric functions, but for our purposes the definitions in Eqs. and
are sufficient. Because boundary points can be considered as bulk points at infinite radius,
we have

KA (.1', 13 y) o lim GA (l’, 5Y, TQ) ) (11315)
T9—>00
so we can for the moment focus on Ga.

In what follows, it will be convenient to work with the momentum space propagators, i.e. the
Fourier transforms of Eqs. [[1.3.12] and [[1.3.14] As discussed above, the metric is invariant under
translations in the x*, so by Lorentz invariance the propagators must be functions only of the
difference x — y. Then by suitable Poincare transformation we can rewrite the propagators to be
functions of only one four-coordinate . Under this transformation,

Ka(z,r3y) = Ka(z1,7) (I1.3.16a)
Ga (z,r15y,7m2) = Ga (1, 71572) (I1.3.16b)

We can then define the Fourier transforms of these propagators as a function of the momentum ¢
along the x| direction:

KA (r,t) = / dlee T KA (,7) (I1.3.17a)

Ga(ri,re,t) = /dd_lﬂﬁ@_iquA (z,71572), (I1.3.17b)
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where we have defined ¢ = ¢° after noting that Lorentz invariance ensures that these are only
functions of the nglomentum—squared. It is now convenient to abandon r and instead work with the
coordinate z = RT; the boundary of AdS space is now found at z = 0 so that

Ka(z,t) lim0 Ga (z,7,1). (I1.3.18)
2/ —
It can can be shown that
J (kz)J k
Ga (2,71 / dl kA2 ]:) a-2(k?) (11.3.19)

Here, k corresponds to the mass of the propagating particle, and the integral over k indicates that
particles of arbitrary mass are allowed in the theory; this is in line with the conformal properties
of the boundary theory. By taking the 2z’ — 0 limit, one can show that

_ k3 k
Ka(z,t) / dk‘W. (11.3.20)
; =

With these propagators defined, one can construct from Figure an amplitude in much the
same way one would construct an amplitude from a Feynman diagram. The discussion in Section
4 will entail the use of momentum-space propagators analagous to those in Eqs. [[I.3.19] and [[T.3.20]
to evaluate a Witten diagram to facilitate the calculation of the six-point function in curved-space
string theory.

I1.3.2 AdS/CFT Without Conformality: the Hard Wall Model

As originally formulated, the AdS/CFT correspondence holds that conformal field theories can be
thought of as dual to the dynamics of strings in ten dimensional AdS space with metric given in
Eq. However, string theory in this space has a characteristic conformal symmetry that is not
found in QCD. Although at high energies QCD is nearly conformal, in general QCD can not be well
approximated as conformal, and so we do not expect results for strings in such a space to accurately
model QCD dynamics; in particular, conformal field theories feature neither confinement nor mass
gaps in the glueball spectrum, both of which are important characteristics of QCD. Instead, we
must break the conformality of the metric 2.1 in such a way that it is dual to confining theories
with mass gap. In has been shown that this can be done straightforwardly, by simply imposing a
lower limit 7,,;, on r, i.e. working in the metric

2

R2
ds? = datdx” — r—2d7’2 — R2ds?g5; Tmin < T < 00, (I1.3.21)

r
2L

known as the hard wall metric [64}/66,/77]. The numerical value of r,,;, is closely related to the
mass gap scale of the dual field theory, in a way that can be read off clearly from the holographic
dynamics in the sawn-off AdS space. Hence, for the hard wall metric to correspond to a four
dimensional mass gap scale A, the discussion of Section indicates that we must have

Tmin = R°A. (11.3.22)

It can be argued that the presence of this mass gap demonstrates that the gauge theory dual to
this gravity model is confining [77].
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As we saw above, it is convenient to replace the AdS radial coordinate with its normalized
inverse

R2
2= —. (I1.3.23)
r
In terms of z, the hard wall metric is
2 _ R2 2\ p27.2 .
ds (mwdx dx¥ — dz ) R%dsgs; 0 < 2 < Zmazs (I1.3.24)
where
1
Zmax = K7 (11325)
and the holographic momenta are
== (I1.3.26)
p= Rp' 3.

11.3.2.1 Propagators in the Hard Wall Model

The propagators derived in Sec. have dynamics dual to those of a conformal field theory,
and hence are unsuited for use in the hard wall model, in which the gravity dual is instead a
confining field theory. In particular, whereas the propagators [[1.3.19 and [[T.3.20] correspond to
the propagation of particles of arbitrary mass, only particles with discrete masses are allowed in a
confining field theory. To arrive at propagators satisfying this discrete mass condition, we simply
replace the integral in Eqs. [[T1.3.19] and [I1.3.20]| with a sum over allowed particle states:

% Pn,A ( )
(2,7,1) Z #n.a ( ‘P”A( ?). (IL.3.27h)
where
n,a X Ja—2do (my) (11.3.28)

is the normalized wavefunction for the n-th excited state of conformal dimension A and m,, is this
state’s mass. These are the propagators that will be used in Section 4.

I1.3.3 Calculating QCD Cross Sections From AdS/CFT

Here we will outline the argument of [64]; in this article, Polchinski and Strassler showed that the
AdS/CFT correspondence can be exploited to allow the computation of gauge theoretic quantities
through string theoretic calculations. We are interested in the 2 — m exclusive scattering cross
section of scalar glueballs in four dimensions; the AdS/CFT dictionary maps this scattering to the
scattering of dilatons. We will work in the hard wall model, with geometry given by with

Tmin ~ AR (11.3.29)
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Here, A corresponds to the mass of the glueballs being scattered. We will further take the fixed-
angle scattering limit, in which

t
§ — 00, t — 0o with — fixed. (I1.3.30)
s

The dilaton wavefunction can be written as
O = ePTe(r, W), (I1.3.31)

where the W parameterize the transverse compact space. This wavefunction has two sources of r
dependence: the four-momentum p in the exponent has a holographic r» dependence, and the radial
wavefunction ¢ has an r dependence with a scale set by R. In the regime where the AdS/CFT holds
good, i.e. large gV, approximate the scattering as occurring at a fixed four-dimensional coordinate
. Then the full scattering amplitude 7 (p) can be expressed as an integral over dimensions
transverse to the four-dimensional physics:

4
T— / dr W /=g Astping (5) [ 0 (r, W) . (11.3.32)
=1

Importantly, the amplitude Asiring (p) is a function of the holographic momentum p. The
amplitude A (p) has an exponential dependence on its argument, so, since

R
p=" (I1.3.33)

at small r this amplitude exponentially suppresses the integrand. Similarly, at large r the dilaton
wavefunctions suppress the integrand, so we can approximate the integrand as being sharply peaked
at

T'scatt ™~ R\/07p ~ p\/armm-- (11334)
For large r, the radial wavefunction 1 factorizes as

r

Y, W) =Cf ( ) g(w)., (I1.3.35)

min

where

f~< : >A. (11.3.36)

Tmin

with A being the conformal dimension of the state ®. The radial wavefunctions obey a normaliza-

tion condition
2
02R4/dr {r {f (J )] } = 1. (I1.3.37)

The conformal dimension A > 0 so this integrand is dominated by 7 ~ 7,:», and hence we have

1
RQTmin .

CN

(11.3.38)
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Finally, dimensional considerations indicate that, for 2 — m scattering of 10-dimensional
strings, the amplitude has the form

Astring (D) = gi'a/*" ' F (pf ) (I1.3.39)

where F' is a dimensionless factor. Inserting Egs. and into Eq. we
find

T(p) ~ L / dr v T"”” F(W&). (11.3.40)

R2m+2rm+2

This is sharply peaked around r ~ 74, SO we can effect the integration to find
NmAm—2 (p> :

In this calculation, we have used Eq. and the discussion of to relate rpin, T'scatt, and
R to gauge theory quantities such as the lightest glueball mass A and number of colors N.
This is the central result of [64]. The QCD prediction of this quantity is

a0 (4
Tp)~———— | — . 11.3.42

T(p) ~ (11.3.41)

Here, n is the total number of partons in the QCD particles involved in the scattering, and plays the
role of A in the string theory. We see the same A-, N-, and p-dependence in both theories, with the
't Hooft coupling A = g/N being replaced with its square root. This tremendous success is a direct
result of the holographic kinematics of the string theoretic calculation, which allowed us to perform
the r-integration in a region where the exponential dependence of Agying (p) is unimportant. We
will see the same process happen in Section 4, and it will there prove to have the same effect it has
here.

I1.4 Computing the Inclusive Single-Particle Production Cross
Section Through Curved Space String Theory

Inspired by the results of Polchinski and Strassler, we will now use the AdS/CFT correspondence
to compute the QCD cross section we are interested in. We will study, as we did in Section
the scattering of six strings of the form abé — abc, but this time we will take the background
spacetime to be ten-dimensional AdS space in the hard wall model, with the metric given in Eq.
A Witten diagram for this scattering is shown in Figure

The external lines are scalar glueballs with conformal dimension A = 4, and the internal lines
are pomerons that line on the Regge trajectory

/

alt) = ag + O‘Zt, (IL4.1)

where in curved space
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Figure 11.4.1: Witten diagram for 3 — 3 scattering in curved space.

From this Witten diagram we can read off that the full six-point amplitude in curved space is

2 Zmax Zmax Zmax
Tt (K, 51,82, t1,t2) = 1%(21/ dz1\/—g (21)/ dza\/—g (22)/ dz3\/ —g (23)
0 0 0
—2A(z1)

X e Ya (21) pa (21) Ka (81,11, 21, 23) 23c (23) Vo (R, t1, 2, 23)

~242) gy (29) @y (22) - (IT.4.3)

This has the same form as the flat-space six point amplitude given in Eq. [I.2.87 in this
amplitude, the ¢; are the wavefunctions of the i-th glueball, and Vg is the vertex operator defined
in Eq. However, we must modify this vertex somewhat; whereas since the AdS/CFT
dictionary dictates that glueballs are mapped to dilatons we are here considering the scattering
of closed strings, the vertex described in Eq. is for open string scattering. For simplicity,
we will assume the vertex has the same form, but will make the substitution o/ — %o/ given in
Eq. Importantly, we have introduced the Reggeized graviton propagators K, described
in [65,/67,/68]. We will not discuss this propagator in detail, but will, for reasons that will become
clear, note that each of these propagator has a discontinuity in the subenergy s; given by

X 230¢ (23) K (82,12, 22, 23) €

Discs, Kq (si, ti, 2i, 23) o< 8;°. (I1.4.4)

It is essential that all Mandelstam invariants in this amplitude are holographic quantities, related

to the flat space invariants in Eq. by the prescription in Eq. For instance, 3; is
given by

~ ~\2 2 2 2
s1=(Rathe) = (Tha+ ohe) = k2 + o kake + =5 ~ S kake ~ S

- 11.4.
R R R2"a T TR Rz R? s, (I145)
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where the k2 and k2 terms are neglected as they are masses, taken to be small relative to the large
center of mass energy. The most important holographic Mandelstam invariants are

~ ~\2
5= (k:a + kb> ~ %s (I1.4.6a)
51 = (ka+ ke)® ~ %’2331 (IL.4.6b)
Gy = (ki + ka)® ~ %32 (IL.4.6¢)

Py 2

. 5182 ?3
R=—"~ gk (I1.4.6d)

In particular, the vertex operator Vg, taken to be the same in form as in flat space, is now a
function of & = ;—%m. We must now compute the complete discontinuity in this amplitude across the
missing mass M?. This comes from two sources: The vertex operator Vg has a discontinuity across
a k=0 branch cut, and the two Reggeized graviton propagators Kg both contain discontinuities in
the partial energies s;. Recalling the defintion x = *122, we argue that these discontinuities from
the Reggeized gravitons contribute to the overall k dependence of the discontinuity. Then

2 Zmax Zmax Zmax
Discyp2 T = % dz1\/—g (21)/ dzoN/—g (22)/ dz3\/—g (23)
0 0 0
X e_gA(Zl)goa (21) va (z1) Disc [KG (§1, t, 21, Z3)] z%@c (23)

x Disc [Vs (&, t1, %2, 23)] 23¢¢ (23) Disc [K¢ (32, 2, 22, 23) | e72402) oy (22) 05 (22) .
(IL4.7)

These continuities are given in Egs. [[I.2.108 and [T.4.4] Because the exponent of x in Eq.
is highly model dependent, we will consider here only the exponential term of this equation;
this will not affect the character of our final result. We will also remember to substitute o/ — %o/
in the discontinuity in Vj. Inserting those discontinuities into Eq. we have

Zmax

2 Zmazx Zmax
Discp2 Ts = 53(11/ dzi1v/—g (21)/ dza\/—g (22)/ dz3\/—g (23)
0 0 0

6—214(21)

X Pa (21) pa (21) 370250 (23) €2 F 23z (23) 350 242) 0y (29) gy (22) . (I1.4.8)

Crucially, the discontinuity in Vg induces an exponential cutoff in &, which itself exponentially
suppresses the z3 integrand:

T2 = g2 R/ R, (I1.4.9)
Thus, for large values of z3 the contribution is small, and there exists some scattering length

zs < Zmaz Past which the z3 integral becomes negligible; hence, we are free to integrate only over
zg in the domain [0, z5]. From Eq. [I1.4.9] we read off that

R (11.4.10)




Because we work in a limit where k — 00, all z in this interval are small, and we can approximate
e~22'% ~ 1 and neglect the exponential term in the integral. Now, writing

ag oo 200 ap o0 200

~00 ~&x @0 @o (07 (07 (07
57085 = <SIEE> (SQEE> = (s5182)™ Ran Roo Rar = sk ORao Toas R2as (I1.4.11)

we have

. QSOL() K0 Zmazx Zmazx Zs
Discyp2 Ts = L%_RﬁlTOéo /0 dz1v/—g (21) /0 dz2\/—g (22) /0 dz3\/—g(23)

6—2A(21) 2A(22)

X ap a0 2010}'

o (22) 03 (22) [ 4£925°23
(11.4.12)

¢a (21) @a (21) 239 (23) 23¢e (23) €

In what remains, the z3 terms are completely independent of the z; and zo terms, and moreover
all residual k dependence stems from the x dependence of z;. Thus the z; and zo integrals contribute
only an overall numerical prefactor, which we write as 5. Then

) ZSQOKQQB Zs
Discp2 Ts = go}gliTao dzz/—g(23) 2572 pe(23)pe(23)- (I1.4.13)
0

We will now analyze the components of this integrand to extract the final £ dependence of the
discontinuity, and hence of the inclusive cross section. From the hard wall metric

2
ds? = % (nm,dw“dw” + sz) + ds§5, (I1.4.14)
we can read off
10

where we have neglected the dependence of the metric on the transverse compact space, and hence

V=g ="—. (I1.4.16)

Now, the open-string wavefunctions near z = 0 are

p(z) = %JA—2 (moz), (I1.4.17)

where A is the conformal dimension of the operator producing the particle and mg is an energy
constant corresponding to the string mass. To leading order in small z, then,

©(z) ~ R7225. (I1.4.18)

Inserting these results into Eq. we find that
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gg g0 ;=00 ﬁ Zs

Sl M E R A (IL4.19)

Discyp2 Ts =

2 a0 . z
_ Ggs™ORMB [* dz LAc+Ac+2a0
R3tdao [0 23 73

2
= 5374 gysO K™ B Z3AC+A5+2010 s
R3+420 (A, + Az + 2ap) 0
2
gosao,{aoﬁ AC+AE+2040‘ (11.4.20)

fd R3+40{0 (AC—I_AE"I'QOZO) S

Finally, we insert Eq. into this result to find that

Discpp2 T =
20K

ggsoco Iﬁaoﬁ R Ac+Az+200
R3+4a0 (A, + Az + 2ayp)

Ac+Az—200-3 ;2
_ § Ji— o 908 500 i~ (BetDe) /2 (I1.4.21)
(20/)( ctAs+ 0)/ (AC + AE + 20[0)

With this result, we directly calculate the inclusive cross section
RAC+A5—2a0—3ggB
(2a/)(Ac+AE+2a0)/2 (Ac + Az + 200)

3
d°oah—ex

-1, _—(Ac+Ag)/2
ip? 501~ )2 (11.4.22)

1
= — Discy2 T =
s

For the calculation we have performed, the external particles ¢ and ¢ are scalar glueballs, so
A, = Az =4 [83]. Then our cross section is given essentially by

d3U b—cX — —
e g0~ l—d

= (11.4.23)

This is our final desired result. Its simplicity is striking, as is its origin. That curved space string-
theory predicts this exponential cutoff in x is a direct consequence of the holographic momenta.
Because all kinematic quantities in the AdS calculation gain a dependence in the AdS coordinate z,
we are allowed to integrate only over a region in which the exponential dependence is unimportant,
and this allows us to extract a power-law dependence. This is exactly the sort of physics seen
in [64], and is a spectacular demonstration of the power of AdS/CFT.

We will now examine the physical consequences of Eq. [[[.4:23] which should be thought of
as a distribution of the cross section in the momentum p. of the produced particle. Then the
s-dependence determines the height of the distribution, i.e. the total cross section, since s is
independent of p.. As we saw in Eq. at high energies K ~ p?p. Thus the power law behavior
in k translates immediately to a power law behavior in the transverse momentum of the produced
particle:

BPoahseX  apo1 -8
—_—~ 7 11.4.24
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Figure [1.4.2: A fit of the distribution in Eq. |[1.4.25|to particle collider data. Extremely good agree-
ment between theory and experiment is seen in all kinematic regimes. Figure originally appeared
in [57].

This distribution can be directly compared to experiment. In particular, [57] fits the inclusive
charged particle cross section found in particle collider data to a distribution of the form

2o K 2\
A —] S ) Ay (14 T 11.4.25
dndpr 1exp< T1>+ 2( +T%N) | (11.4.25)

where 7 is the pseudorapidity of the produced particle, K is its (relativistic) kinetic energy, and
Ay, Ag, T, To, N are fit parameters. This distribution, suggested in [85], is the sum of a Boltzmann-
like exponential distribution and a power-law distribution; each of these is expected to dominate
in a certain kinematic regime. The fit to data is shown in Figure originally found in [57].

The agreement between the fitted function and the experimental data is striking; in all kinematic
regimes, the fitted distribution is seen to match the data excellently. In particular, in the high pp
regime, the fit is entirely dominated by the power-law distribution, as the exponential contribution
becomes exponentially small. This qualitatively matches the curved space prediction in Eq.
and reinforces our faith in the ability of the hard wall model to give accurate predictions for QCD
processes.

II.5 Conclusion

Through use of the AdS/QCD correspondence, we have employed curved-space string theory to
calculate the inclusive single-particle production cross section in QCD. We find good agreement
with the experimental observation of a power-law decay, in contrast to the exponential cutoff
predicted by flat space string theory. Although the AdS/CFT correspondence has never been
proven theoretically, results such as this one add to the already enormous pile of circumstantial
evidence supporting this duality that has accumulated in the literature, and adds to our confidence
in this seminally important idea.

70



Outlook: Beam Experiments and QCD

Here I have presented the two research projects that I have worked on at Brown. Naively, it looks
like these are completely disparate; the LHC doesn’t operate at infinite energy, or interact with
more than three colors of gluons, much less an infinite number of them! However, at second glance,
and with an eye towards the future of collider physics, it seems like these two topics might not be
as unrelated as they seem.

The LHC is, of course, a proton collider. At the high energies it operates at, however, what that
label translates to is a gluon collider; the three quarks inside the proton are much less important
than the high-energy virtual gluons inside the proton. This is why, for instance, the dominant
method of Higgs production at the LHC is gluon fusion (mediated, as it happens, by virtual tops;
the top-Higgs coupling is proportional to the top mass, so this represents yet another important
application of top mass physics!).

However, to understand the dynamics of gluon-gluon interactions requires the full, massively
nonlinear dynamics of QCD. Computationally, making any sense of this theory is almost impossible.
No exact solutions are known, and it seems like wishful thinking to ever expect one to appear. The
only way to attack the gluon field equations is perturbation theory; for a myriad of theoretical
reasons, however, the standard procedure, familiar from any graduate course in quantum field
theory, does not really apply to QCD. Feynman was, after all, working with QED firmly in mind
when he wrote down his famous rules for coupling-constant perturbation theory, and the coupling
constants of QED and QCD inhabit completely different regimes. It has been suggested that a
new toolbox, beyond the familiar processes of MC simulation, might be needed to fully exploit the
potential of the LHC and its eventual successor.

While the somewhat simple hard wall analysis discussed here of course is insufficient to com-
pletely describe LHC physics, it is a clear step in the right direction. Cross sections are the
observables most directly applicable to experimental particle physics as it exists today, and baring
a dramatic shift away from collider experiments are posed to remain so in the future. It is now clear
that AdS/CFT methods can make predictions for QCD cross sections at experimentally relevant
energies. Even beyond cross sections, AdS/CFT can be much more useful than perturbative meth-
ods; it has been, and remains, the best theoretical technique to describe the firmly nonperturbative
quark-gluon plasma phase of QCD studied at RHIC and ALICE.

Although I cannot predict the theoretical tools necessary for the next generation of experiments,
or even what those experiments will be, it seems that AdS/CFT can provide a profoundly useful
tool to perform the sorts of calculations necessary to understand their results. From perturbative
cross sections to nonperturbative physics, many questions remain in the study of nonabelian gauge
theory, many of which are at least in principle accesible to AdS/CFT methods theoretically, and
experimentally to the supercolliders of the future.
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