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1 Introduction

All elementary particles known to us fall into two big classes: bosons and fermions. This
classification is made according to how two identical particles can coexist in the same state.
Electrons, quarks, and other fields of matter are fermion. They satisfy Pauli exclusion prin-
ciple, which states that fermions can not simultaneously occupy the same state. Photons,
gravitons, and so on are the fields that carry interaction. These are bosons. One can also
form composite particles expanding the number of examples. Mathematically quantum
mechanical wave function ψ(r1, . . . , rN) of N identical particles satisfies

ψ(. . . , ri, . . . , rj , . . . ) = exp(iθ)ψ(. . . , rj , . . . , ri, . . . ) (1)

θ = 0 for bosons and π for fermions.
Needless to say that finding a system of identical particles whose wave function has

θ ≠ 0, π was considered a fascinating discovery. Such systems were found first theoretically
and later experimentally.

According to [5] the starting point was Hall effect. Let us think of electrons on an
infinite conducting strip of width w on the xy-plane. There is a uniform magnetic field B
pointing in z-direction. If an electric current is flowing in the x-direction, the magnetic
field forces the current to curl in the negative y-direction due to Lorentz force, so a Hall
voltage VH develops in the y-direction. Experimentally, though, there hasn’t been found a
“curling” of current inside such a strip. For the current to flow in a straight line, the Lorenz
force originating from the magnetic field should be cancelled by the force originating from
the gradient of the Hall voltage. Thus, one expects,

e

c
vB = VH

w
(2)

where v is the electron’s velocity, e is the electron charge and c is the speed of light. Since
the current is I = vwne, with n being the electron’s density, we get

VH
I

= B

nec
(3)

This ratio of the Hall voltage to the current is known as the Hall resistance, denoted by
RH . Once the force that results from the Hall voltage cancels the force that results from
the magnetic field, there will be no other effect of the magnetic field. Thus, the longitudinal
voltage, the voltage drop parallel to the current, will be independent of the magnetic field.
The ratio of this voltage to the current is the longitudinal resistance Rl.

In practice when the Hall effect is measured in high mobility two dimensional electronic
systems at low temperatures, the Hall resistance is not linear in magnetic field, in contrast
to what (3) suggests (see Fig 1 the diagonal graph). The graph shows horizontal steps.
The length of a step depends on a sample, but the value of RH at the steps (the height of
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Figure 1: The quantum Hall effect. When the Hall resistance (RXY or as we call it in
the text RH) is measured as a function of magnetic field, plateaus at quantized values are
observed. In regions of the magnetic field where the Hall resistance is in a plateau, the
longitudinal resistance (RXX or as we call it in the text Rl) vanishes (sample grown by
Vladimir Umansky and Measured by Merav Dolev, the Weizmann Institute of Science).
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a step) is universal. At the steps,

RH = h

e2

1

ν
(4)

Here h/e2 (h is the Planck constant) is the quantum of resistance. The dimensionless
number ν has, in the observed steps, either integer values ν = 1,2,3... going up to several
tens, or “simple” fractions p/q. In addition, at the steps Rl = 0 we are dealing with
(anisotropic) superconductor!

Later Arovas and Schrieffer, ([1]), and Halperin, [4], put forward a theory that gave an
explanation of this effect through the use of anyons. In this text we are going to discuss
some aspects of their theory. Any theory of quantum Hall effect must have some minimal
set of features. Conductances R−1

H and R−1
l are functions of temperature T . We have a nice

picture with steps at T ∼ 0. It is known from experiments that deviation of R−1
H (T ) and

R−1
l (T ) from R−1

H (0) and R−1
l (0) has the order of magnitude exp(−T0/T ). The function

exp(−T0/T ) goes to zero exponentially fast as T → 0. Such thing is possible only in theories
with spectral gap. Thus we have to show that there is no continuous family of eigenvalues
of the Schrödinger operator of the theory that starts at zero (energy of vacuum). We will
see in Section 3.1 that this is true in some approximation. Needless to say that particles
have to be coupled with a vector potential that gives magnetic field B.

One should emphasize that anyons by no means are elementary particles. These are
composed objects like Cooper pairs (which are made of electrons) in superconductors. They
disappear when temperature goes up. Still under right conditions they can be manipulated
as ordinary electrons. The difference is that their wave function satisfy rather strange
symmetry relation (1). After looking at it, it becomes clear that the phase depends on
the direction we rotate an anyon at ri about an anyon at rj . In other words the phase
remembers some information about the paths of particles. The double slit experiment shows
the relation between the phase of wave function and interference of electrons. Something
similar can be done in the context of anyons: if one anyon makes a full turn about another
anyon their interference patterns are supposed to change. Indeed several interferometers
for anyons have been proposed: In the Fabry-Perot interferometer a stream of anyons splits
in two. One of the streams makes a loop and acquires a phase. In a series of beautiful
experiments by Camino et al. (see e.g. [2]), devices of the Fabry-Perot type were fabricated,
and were measured in the integer and fractional quantum Hall regime.

This paper has the following structure: Section 2 covers Chern-Simons action, its in-
terpretation, and why it is utilized in describing anyons. It continues on introducing the
action for anyons

This paper sticks to the following structure: Chern-Simons Action section covers Chern-
Simons action, its interpretation, and why it is utilized in describing anyons. It continues
on, introducing the action for anyons and manipulating it to find the equations of mo-
tion that produce some important results. We find the Hamiltonian, which is used to
find the energy spectrum. In Random Phase Approximation we generalize the system so
that instead of having finite amount of anyons, we have an infinite uniformly continuous

6



Figure 2: The Fabry-Perot (a,b) and Mach-Zehnder (c) interferometers. The second
drawing is meant to emphasize the difference between the two interferometers. The interior
edge is a part of the interference loop in the Mach-Zehnder interferometer, while it is not
part of that loop in the Fabry-Perot interferometer. Furthermore, in the former only
single tunnelling events take place, while the latter allows for multiple reflections and the
formation of resonances.
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distribution of anyons. We find the Hamiltonian for such a system and the corresponding
energy spectrum. Then we start representing anyons as perturbation to boson and fermion
and explain why choosing to represent anyons as perturbation of fermions is better. Next
we do second quantization of the anyonic Hamiltonian. We derive an effective Coulomb
interaction which is responsible for formation for the mass gap in the interacting theory.
In the Vortices section we cover some dual theories. The main achievement of dualities is
that they find the correspondence between statistics of quasiparticles and defect statistics
in the same theories.

2 Chern-Simons action

Occasionally we will be using the language of differential forms. It will prove useful when
change of variables is needed. The space R3 has coordinates r = (t, x, y). Later we will inter-
pret it a 1+2-dimensional space-time. A triple of functions (a0(t, x, y), a1(t, x, y), a2(t, x, y))
encodes a differential form a = a0dt+a1dx+a2dy. Curl and exterior differential are related
by the formula

da = (∇⃗ × (a0, a1, a2)) ⋅ (dxdy, dydt, dtdx)
df = ∇⃗f ⋅ (dt, dx, dy)
d((a0, a1, a2) ⋅ (dxdy, dydt, dtdx)) = ∇⃗ ⋅ a dV (r)

(5)

To avoid cluttering we denote dxdydz by dV (r). We assume that coefficients of the form
a decay rapidly and the Chern-Simons functional

CS(a) = 1

2
∫
R3
ada (6)

is well defined. d = dt∂t+dx∂x+dy∂y is the De Rham differential, ada stands for the product
of forms. A more explicit formula for CS is 1

2 ∫R3 a ⋅ (∇⃗ × a) dV (r). Let f ∶ R3 → S1 ⊂ C×

be a complex-valued function. We can use it to modify the form a

a→ a − if−1df (7)

Observe that d(f−1df) = −f−2dfdf − f−1d2f = 0 because d2 = 0 and dfdf = −dfdf = 0. Let
us see how the action changes under such transformation of a field:

1

2
∫
R3

(a − if−1df)d(a − if−1df) =

= 1

2
∫
R3

(ad(a) − iad(f−1df) − if−1dfd(a) − (f−1df)d(f−1df))

= 1

2
∫
R3

(ad(a) − if−1dfd(a))
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Let B3 be a ball in R3 of radius R and S2 its boundary sphere. Suppose that f−1df is
nonzero only inside B3. We use identity

f−1dfd(a) = −d(af−1df) + d(f−1df)a = −d(af−1df)

and Stocks theorem ∫B3 d(a)f−1df = ∫S2 af−1df = 0 to show that that action is invariant
under such transformations. (7) are called gauge transformations.

Should we replace R3 by a more general manifold, e.g. torus (see (56) for appropriate

boundary conditions), a variation of Chern-Simons action under general (big) gauge

transformation takes integral values. To ensure that exp(i2πkCS(a)) is gauge invariant

k must be an integer. This is condition of quantization of the coupling constant.

(8)

Let us compute equations of motion corresponding to CS:

δCS(a) = 1

2
∫
B3
adδa + 1

2
∫
B3
δada

= ∫
B3
δada − 1

2
∫
S2
aδa

We used that adδa = −d(aδa) + d(a)δa. Let us now assume that δa is nonzero only inside
B3. Then variation will be equal to ∫B3 daδa. As δa is arbitrary we conclude that da = 0
in B3 at critical a for CS. As the radius of B3 can be chosen arbitrary large, da = 0 on
R3. In components equation da = 0 is equivalent ∇⃗ × a = 0.

It is important to mention that by Poincare lemma da = 0 implies that there is a function
f such that df = a. In components it means that a = ∇⃗f . This can be interpreted as follows:
a is a result of a gauge transformation of a trivial solution a = 0 with a transformation
g = eif . (By definition gauge transformation is a → a − i∇⃗ log g.) From this point of view
all classical solutions of abelian CS theory are trivial on R3 or on a ball B3 or any shape
the ball can be deformed to. This is equivalent to the statement that CS theory has no
local degrees of freedom.

It is no longer the case if we introduce some topology. For example, we can look for
solution on R3 with t-axis removed. We know that νβ = βω (82) satisfies dνβ = 0. On
the other hand if β is an integer by Remark 1 we know that it is logarithmic gradient of

x+iy
√
(x2+y2)

. Thus νβ is gauge-equivalent to νβ+n. The set of real numbers up to integrals

shifts is equal to a circle. It is possible to prove that any solution dν on R3 with a line
removed is gauge equivalent to νβ with β defined up to integral shift.
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2.1 Symmetries of the action

Let r̃(r) = (t̃(t, x, y), x̃(t, x, y), ỹ(t, x, y)) be an invertible change of variables. We can use
r̃(r) and a0dt + a1dx + a2dy = a(r) ⋅ dr to construct a new form by pull-back construction:

r̃∗a ⋅ dr ∶= a(r̃(r)) ⋅ d(r̃(r))
= a(r̃(r)) ⋅ (∂r̃/∂r) ⋅ dr.

It requires a simple computation to show that

(r̃∗a ⋅ dr)d(r̃∗a ⋅ dr) = (a ⋅ (∇⃗ × a))(r̃(r))det(∂r̃/∂r).

From this we conclude (with a help of change of variables )that

CS(a) = 1

2
∫
R3
a ⋅ ∇⃗ × a dxdydt

= 1

2
∫
R3

(a ⋅ ∇⃗ × a)(r̃(r))det(∂r̃/∂r)dV (r)

= 1

2
∫
R3

(r̃∗a ⋅ dr)d(r̃∗a ⋅ dr)

= CS(r̃∗a)

In other words such change of variables (or diffeomorphism) defines a symmetry of Chern-
Simons theory.

2.2 Quantization of abelian Chern-Simons

I would like to apply ideas of Gaussian integrals to Chern-Simons functional. We need to
modify Chern-Simons action (6) slightly: For this we fix N closed disjoint curves in R3:
γi ∶ [0,1] → R3, γi(0) = γi(1). Later we will identify non-closed curves with relativistic
particle trajectories. τ will be the local time of an observer. We postulate that curves have
no self-intersections. We define the modified action by the formula

CSγ(a) = kCS(a) +
N

∑
i=1

ki∫ a ⋅ γ′i(τ)dτ, k, ki ∈ R

If space-time has nontrivial topology (e.g. torus) the the sum in the action is not invariant
with respect to arbitrary gauge transformation. The effect is similar to (8). In order to
avoid it ki must be integers.

One approach to quantization is through computation of path integrals. Statistical sum
of the quantized theory is equal to

I = ∫ exp(iCSγ(a))Da (9)
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This infinite-dimensional integral bears resemblance to finite integral (88). Indeed, the
field a is analogous to x. The action −iCS(a) is quadratic expression in a and is analogous
to b(x)/2 (it is quadratic in x). The sum i∑Ni=1 ki ∫ a ⋅ γ′i(τ)dτ is linear in a. It is similar
to linear function ipjx

j (pj is fixed). The idea is to derive an analogue of the formula (89).
In finite dimensions linear transformations are defined by means of matrices. Can this

be done in infinite dimensions. For example the analogue of the identity matrix δij is
the Dirac delta function δ(x − y). The identity transformation on functions is defined
by operator f(x) = ∫ ∞−∞ δ(y − x)f(y)dy. Matrix coefficients of the operator ∂k, which is

(−1)kδ(k)(y − x), can extracted from ∂kf(x) = ∫ ∞−∞(∂kxδ(y − x))f(y)dy. In the case of
Chern-Simons theory CS can be written (it follows directly from (5)) as

CS(a) =

= 1

2
∫
R3
∇⃗ × a ⋅ a dV (r)

= 1

2
∫
R3
a ⋅

⎛
⎜
⎝

0 −∂y ∂x
∂y 0 −∂t
−∂x ∂t 0

⎞
⎟
⎠
⋅ a dV (r)

= 1

2
∫
R3
a(r′) ⋅

⎛
⎜
⎝

0 −∂y′δ3(r − r′) ∂x′δ
3(r − r′)

∂y′δ
3(r − r′) 0 −∂t′δ3(r − r′)

−∂x′δ3(r − r′) ∂t′δ
3(r − r′) 0

⎞
⎟
⎠
⋅ a(r) dV (r) dV (r′)

= 1

2
∫
R3
a(r′) ⋅∆(r − r′) ⋅ a(r) dV (r) dV (r′), r = (t, x, y), r′ = (t′, x′, y′)

(10)

In our computations with pure Chern-Simons theory we use Euclidean (non-Minkowski)
dot-product in the definition of the curl, gradient, and divergence. We can do this because
Chern-Simons action is independent of the choice of the dot-product and the final answer
should not depend on our computational technique. What we have to do is to find an inverse
to the “matrix” ∆(r − r′) whose indices runs through the set {(r, i)∣r ∈ R3, i = 1,2,3}. The
analogue of the equation for the inverse matrix b−1: bijb

−1jk = δki is

∫
R3

∆(r − r′)ijG(r′ − r′′)jkdr
′ =

⎛
⎜
⎝

δ3(r − r′′) 0 0
0 δ3(r − r′′) 0
0 0 δ3(r − r′′)

⎞
⎟
⎠

= δikδ3(r − r′′), i, j, k = 1, . . . ,3

(11)

Equations (11) on the columns (G1(r),G2(r),G3(r)) of matrix G are

(∇⃗ ×G1(r), ∇⃗ ×G2(r), ∇⃗ ×G3(r)) = −
⎛
⎜
⎝

δ3(r) 0 0
0 δ3(r) 0
0 0 δ3(r)

⎞
⎟
⎠
=D
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I am going to use matrix

A =
⎛
⎜⎜
⎝

1
4π∣r∣ 0 0

0 1
4π∣r∣ 0

0 0 1
4π∣r∣

⎞
⎟⎟
⎠

made out of fundamental solutions of Laplace equation to construct an approximation to
G. Fundamental solution satisfies ∇2 1

4π∣r∣ = δ
3(r). I set

Gi = ∇⃗ ×Ai. (12)

More explicitly

G(r) = 1

4π

⎛
⎜⎜⎜
⎝

0 y

(t2+x2+y2)3/2
− x

(t2+x2+y2)3/2

− y

(t2+x2+y2)3/2
0 t

(t2+x2+y2)3/2
x

(t2+x2+y2)3/2
− t

(t2+x2+y2)3/2
0

⎞
⎟⎟⎟
⎠

Recall the identity
∇⃗ × (∇⃗ × a) = ∇⃗(∇⃗ ⋅ a) −∇2a,

where ∇2 is the Laplace operator on vectors, then

∇⃗ ×Gi = ∇⃗(∇⃗ ⋅Ai) −∇2Ai = ∇⃗(∇⃗ ⋅Ai) +Di. (13)

Operator G is an infinite-dimensional analogue of the matrix (90). We have to check
equation (91). In our setting after taking (13) into account it becomes

∫
R3

dV (r′)a(r′) ⋅ (∇⃗r′ × (∫
R3
G(r − r′) ⋅ a′(r) dV (r))) =

= ∫
R3
∫
R3
a ⋅D(r − r′) ⋅ a′(r) dV (r) dV (r′)+

+ ∫
R3
∫
R3
a ⋅ ∇⃗r′ (∇⃗r′ ⋅A(r − r′)) ⋅ a′(r) dV (r) dV (r′)

After integration by parts it becomes

∫
R3
a(r) ⋅ a′(r) dV (r) + ∫

R3
∫
R3

(∇⃗r′ ⋅ a(r′)) ⋅ (∇⃗r′ ⋅A(r − r′)) ⋅ a′(r) dV (r) dV (r′) =

= ∫
R3
a(r) ⋅ a′(r) dV (r) if a, a′ ∈ Ker ∇⃗⋅

We found infinite-dimensional analogue of the matrix gij . Now we have to formulate
the analogue of b−1ijp′ip

′
j = gijp′ip′j . Recall that the analog of ixjpj with xj replaced by the

field (a0, a1, a2) was the sum A = ∑ni=1 ki ∫ a ⋅γ′i(τ)dτ -the result of integration of a over the
union of curves with multiplicities which we write additively C = ∑kiγi. To make analogy
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ixjpj more apparent we want to think about A as a pairing ⟨a,C⟩. This reflects additivity
property of A (very much similar to ixjpj when x is fixed) with respect to γi:

⟨a,C⟩ + ⟨a,C ′⟩ = ⟨a,C +C ′⟩

b−1ijpipj is no longer linear in p, it is rather quadratic. We have to use G to write quadratic
function in C.

Equation p′ ∈ Ker b⊥ in our setup becomes an equation ⟨a,C⟩ = 0 for a ∈ Triv. But this
equation is trivially satisfies because

N

∑
i=1

ki∮ a ⋅ γ′idτ =
N

∑
i=1

kig(γi(τ))∣2π0 = 0 for a = ∇⃗g

We define L(γi, γj) as

L(γi, γj) = ∫
2π

0
∫

2π

0
γi(τ)′ ⋅G(γi(τ) − γj(κ))γj(κ)′dτdκ (14)

The function we are looking for is

− i

k

N

∑
i,j=1

kikjL(γi, γj). (15)

The answer for the functional integral (9) is

I = const exp
⎛
⎝
− i

2k

N

∑
i,j=1

kikjL(γi, γj)
⎞
⎠

2.3 Topological Interpretation of L(γi, γj)

Introduce a two-form

ω = 1

4π

tdxdy + ydtdx + xdydt+
(t2 + x2 + y2)3/2

and a vector

A0 =
1

4π (t2 + x2 + y2)3/2
(t, x, y) (16)

In spherical coordinates

t = ρ cos(θ),
x = ρ sin(θ) cos(φ),
y = ρ sin(θ) sin(φ),
ρ ≥ 0, 0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π

13



it becomes
1

4π
sin(θ)dθdφ. (17)

Which is (up to 1
4π -factor) an element of the unit sphere. It takes a simple computation with

Mathematica to show that under the map ψγi,γj(τ, κ) ∶= (γi(τ) − γj(κ))/∣γi(τ) − γj(κ)∣ the
pullback of ω is the integrand of (14). By construction ψγi,γj(τ, κ) defines a map of a torus
to unit two-dimensional sphere. The integral (14) computes the volume of the torus with
respect to the volume elements pulled-back from the sphere. This pull-back construction
of of the volume form has a nice geometric interpretation. Fix some triangulation of the
unit sphere. We can approximate area of the sphere by the sum of areas of triangles in
triangulation. Preimage of the vertices of triangulation under the map ψ can be used to
define triangulation of the torus (we think about the torus as a square [0,2π] × [0,2π]
with identified opposite sides). ψ maps triangle ∆i on the torus to triangle ψ(∆i). Of
course areas ψ(∆i) and ∆i are not equal. They are different by the factor approximated

by Jacobian J(τi, κi) = ∣
∂θ
∂τ

∂φ
∂τ

∂θ
∂κ

∂φ
∂κ

∣ (τi, κi), (τi, ui) in ∆i. Triangles ψ(∆i) cover the sphere but

the sum ∑Area(ψ(∆i)) is different the area of the unit sphere. Here is why.
By definition degree degψγi,γj of ψγi,γj is the number of solutions of the equation

ψγi,γj(τ, κ) = (θ,ψ) for a generic coordinate θ,ψ on the sphere taken with signs:

degψγi,γj ∶= ∑
ψγi,γj (τ,κ)=(θ,ψ)

signJ(τ, κ)

It turns out that deg doesn’t depend on the particular choice of θ,ψ.
Because of the possible nontrivial degree collection of triangles {ψ(∆i)} cover the sphere

degψ times. This is why ∑Area(ψ(∆i)) = 4π degψ. On the other hand ∑iArea(ψ(∆i))
converges as ∆i becomes smaller to ∑i J(τi, ui)Area(∆i) which by definition of pullback
converges to ∫T ψ∗γi,γjω.

So

∫
T
ψ∗γi,γjω = degψγi,γj ∫

S2
ω = degψγi,γj

4π

4π

Another interesting fact that this number of solutions doesn’t depend on small deformations
of ψ. In fact degree doesn’t change as long as the curves γi, γj don’t intersect.

Now we encounter an important quantum effect that happens if i = j. This term
is certainly present in the sum (15). Quantization requires an additional data - a tiny
deformation γi,ε of γi in normal direction:

As we change ε γi,ε sweeps a band as it is shown on the picture above.
The quantity L(γi, γi,ε) is well defined. The numbers L(γi, γj) and L(γi, γj,ε) are equal

because the deformation is small and γi, γj are sufficiently far away. We should be aware
that γi,ε is not unique-there are many ways to cable γi,ε around γi.

There is a simple way to compute L(γi, γj). For this we have to attach an oriented film
S to γi and count the number n of times (with signs) γj intersects this film:
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Figure 3: Deformation defines a band

Figure 4: Computation of the linking number

This result has a nice interpretation in terms of magnetostatics. Imagine that the curve
γi represents position of a wire with a constant current I. By Biot-Savart Law it produces
magnetic field B:

B(r) = µ0I

4π
∫

2π

0
γj(κ)′ ×

r − γj(κ)
∣r − γj(κ)∣3

dκ. (18)

µ0 is permeability of a free space. We can calculate line integral ∮γi B(r)⋅dr = ∫ 2π
0 B(γi(τ))⋅

γi(τ)′dτ by using Ampere’s law:

∮
γi
B(r) ⋅ dr = ∫

S
∇⃗ ×B ⋅ dS = µ0∫

S
J ⋅ dS = µ0Iencl = µ0nI. (19)

Here, Iencl means the total amount of current crossing the surface S. The number Iencl/I
is the number of times n the wire crosses the surface S. On the other hand

∮
γi
B(r) ⋅ dr = ∮

γi
∮
γj

µ0I

4π

dr′× (r − r′)
∣r − r′∣3

⋅ dr

= µ0I

4π
∮
γi
∮
γj

(r − r′) ⋅ (dr×dr′)
∣r − r′∣3

, (20)

where the last step follows by applying the cyclic property of the triple product. Up to
factor of µ0I it is equal to (14). This proves the assertion.

Linking number number is s topological invariant of the system of the curves. If we
deform configuration of curves keeping them disjoint free from self-intersection the new
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Figure 5: Modification of the linking number

configuration will have the same matrix Lij = L(γi, γj). This can be seen directly by
looking at CS action. Indeed, as we know (see paragraph 2.1) the group of diffeomorphism
(changes of variables) preserve the action. We can use such diffeomorphism to deform
configuration of curves without affecting path integral. An example of a diffeomorphism is
a flow along a vector field on R3 for a given duration of time.

Such invariance can be used for iterative computation of linking numbers. Imagine that
we have a film attached to the curve γj which we use for computation of linking number
L(γj , γl). We can align γj , γl as it is shown on the left picture

Modification shown on the right picture increases linking number by one. The reverse
procedure decreases the number by one. This modification is local and all other numbers
L(γm, γn), (m,n) ≠ (j, l) stay the same. Denote the old configuration of curves by C
and the new by C ′. From this we see that the path integral I(C ′) changes on phase:

I(C) exp( ikjkl2k ).
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2.4 The action for anyons

In the more realistic model curves have to be dynamic objects-trajectories of relativistic
2 + 1-dimensional particles. The action for γ(τ) = (t(τ), x(τ), y(τ)) is

S(γ) =mc∫
√
c2t′2 − x′2 − y′2dτ.

The total action

S(γ, a) =
N

∑
i=1

mic∫
√
c2t′2i − x′2i − y′2i dτ + (

N

∑
i=1

kia ⋅ γ′idτ +
k

2
∫
R3
a ⋅ ∇⃗ × a dV (r))

= S(γ) +CSγ(a)

The theory has certain Schrödinger operator H. The matrix coefficients of the evolution
operator exp itH can be computed by means of path integral. Fix initial ri = (xi, yi, ti) and
final r̃i = (x̃i, ỹi, t̃i) space-time coordinates. In addition ti = t t̃i = t̃. Matrix coefficients are

exp iH(r1, . . . , rN , r̃1, . . . , r̃N) = ∫ exp(S(γ, a))DγDa (21)

The integral is taken over configurations γi(0) = ri, γi(1) = r̃i. The gauge transformations
of a are trivial at ri, r̃i. We can compute matrix coefficients in two steps. First we integrate
out a. After that we do integration over γi. In the process of integrating out a we notice
that

∫ exp(S(γ, a))DγDa = ∫ Dγ exp(S(γ))∫ exp(CSγ(a))Da

We have already know how to integrate Ibraid = ∫ exp(CSγ(a))Da the only modification
that collection {γi} defines a braid, rather then a knot. Familiar arguments work in this
case also. Ibraid is (up to a universal constant ) equal to exp(− i

2k ∑i,j kikjL(γi, γj)). The
quantity L(γi, γj) is no longer integral because ψγi,γj(τ, κ) doesn’t sweep the sphere. Still
if we keep the ends of the braid fixed local modifications described on the Figure (5) change
L(γi, γj) on ±1. It means that the effective action

exp(S(γ) − i

2k

N

∑
i,j=1

kikjL(γi, γj)) (22)

gets multiplied on the phase

exp(± i

2k
kikj) . (23)

Suppose that two trajectories γi and γj of particle A and B that meet a point. There
are two ways to slightly perturb trajectories avoid collision-either A leaves B on the right
or on the left. Such deformation has a negligible effect on the action S(γ). As we saw
the residue of the Chern-Simons term gives a significant contribution. This is why (22) is
called the exponent of anyonic action.
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The action −mc ∫
√
c2t′2 − x′2 − y′2dτ is invariant with respect to reparametrization

τ → τ̃(τ):

−mc∫
√
c2t′2(τ̃(τ))(τ̃(τ)′)2 − x′2(τ̃(τ))(τ̃(τ)′)2 − y′2(τ̃(τ))(τ̃(τ)′)2dτ =

= −mc∫
√
c2t′2(τ̃(τ))(τ̃(τ)′)2 − x′2(τ̃(τ)) − y′2(τ̃(τ))τ̃(τ)′dτ =

= −mc∫
√
c2t′2(τ̃) − x′2(τ̃) − y′2(τ̃)dτ̃

We want to use this invariance to get read of t′2 in the Lagrangian and set it to one. For
this we are going to use coordinate t as independent parameter on the curve. In this case
∂t
∂t = 1. (x(t), y(t)) ∶= (x(τ), y(τ)), where t = t(τ).

After this the action becomes −mc2 ∫ t1t0
√

1 − (x(τ)′)2/c2 − (y(τ)′)2/c2dt, which is an

equivalent form of −mc ∫ τ1τ0
√
c2t′2 − x′2 − y′2dτ, t0 = t(τ0), t1 = t(τ1).

We would like to study non-relativistic anyons. It means that

x′2 + y′2 ≪ c2. (24)

In this case we can use Taylor expansion in relativistic Lagrangian which yields
−mc2

√
1 − (x′)2/c2 − (y′)2/c2 = −mc2 +m(x′2 + y′2)/2 +⋯. We are going to drop mc2 term

which won’t affect the dynamics. The terms corresponding to ⋯ can also be dropped
because of the assumption (24).

2.5 Integrating out Chern-Simons field

Lagrangian becomes

L(γi, a) =
N

∑
i=1

(mi(x′2i + y′2i )/2 + ki(a0 + a1x
′
i(t) + a2y

′
i(t))) +

k

2
∫
R2
a ⋅ ∇⃗ × adxdy

= L(γi) +CS2(γi, a)
(25)

In the formulas below γ(t) ∶= (t, x(t), y(t)) = (x0(t), x1(t), x2(t)) is a path in R3.
Then we have that γ′2 ∶= x′2 + y′2 and a ⋅ γ′ ∶= a0(t, x(t), y(t))1 + a1(t, x(t), y(t))x′(t) +
a2(x(t, x(t), y(t))y′(t). Equations of motion are

S(γi + δγi, a) − S(γi, a) =
N

∑
i=1
∫

t1

t0
(miγ

′
i ⋅ δγ′i + ki(∂ia) ⋅ γ′δxi(t) + kia ⋅ (δγ)′)dt =

=
N

∑
i=1
∫

t′

t
(−miγ

′′
i ⋅ δγi + ki((∂ia) ⋅ γ′δxi − (a)′ ⋅ δγi))dt + (miγi ⋅ δγi + kia ⋅ δγi)∣t

′
t

(26)

S(γi, a + δa) − S(γi, a) =∫
t2

t1

N

∑
i=1

(kiδa ⋅ γ′i)dt + k∫
B3
δa ⋅ ∇⃗ × a dV (r)−

− k
2
∫
S2
a × δa ⋅ ndS

(27)
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(∂xia) ⋅ γ′δxi − (a)′ ⋅ δγ = (∂ia) ⋅ γ′δxi − ((∂xia) ⋅ δγ)x′i
= curla ⋅ (δγ × γ′)
= −δγ ⋅ (curla × γ′)

If we assume that variation on t1 and t2 vanish we get

−miγ
′′
i − ki(curla × γ′i) = 0

If δa vanish on the curves γi equation of motion (27) gives

∇⃗ × a = 0 x ∈ R3/
n

⋃
i=1

γi

δ-function δ0 concentrated at a point 0 = (0,0,0) is defined by equation

∫ f(t, x, y)δ0(t, x, y) dV (r) = f(0,0,0).

By analogy δ-function δγ concentrated at a curve γ is defined by equation

∫ f(r)δγ(r) dV (r) ∶= ∫
t2

t1
f(t, x(t), y(t))dt.

In terms of curl and δγ equation (27) can be written as

k∇⃗ × a(r) = −
N

∑
i=1

kiδγi(r)γ′i(t) (28)

which is the form Ampere’s law for fictitious magnetic field a.
Let n0 be a unit vector (1,0,0). Fix time t0 and choose a closed oriented contour C in

the plane (t0, x, y), which bounds domain S. Equation (28) implies that

k∮
C
a(r) ⋅ dr = ∫ ∫ k∇⃗ × a(r) ⋅ ndxdy

= −
N

∑
i=1

ki∫ δγi(r)(γ′i(t0) ⋅ n0)dxdy

= −
N

∑
i=1

ki∫ δγi(r)dxdy

= −
N

∑
i=1

ki

In the formula we used Green’s formula for integrals. We have control over the sign ± in
front of ∑Ni=1 ki by means of reversing time orientation or by changing orientation of the
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contour C. We arrive to the formula k ∮C a(r) ⋅ dr = −∑
N
i=1 ki if a is a solution of equation

of motion.
To make connection with formulas in [3] we have to set

ki = e, k = µ,mi =m and reverse direction of time compared to ours as in [3]. (29)

The last formula simplifies to µΦ = µ∮C a(r) ⋅ dr = eN , (c.f. formula 2.3 in [3] ).The phase
(23) becomes exp(ie2/2µ) (c.f. formula 2.4 in [3]).

Again, our goal is to analyze functional integral

∫ exp(S(γi, a))DγiDa0Da1Da2

with boundary conditions on γi as in integral (21). As before we are going to integrate out
a. We want make some simplifications first.

In paragraph about Gaussian integral we discussed what happens with Fourier trans-
form of the Gaussian integral when coefficient b goes to zero or infinity. From this we deduce
that δ-function δ(x−x0) has an integral presentation δ(x−x0) = 1

2π ∫ exp(i(x−x0)p)dp. It
admits an obvious multidimensional generalization δn(x−x0) = 1

(2π)n ∫ exp(i(xj−xj0)pj) dV (p).
The integral 1

(2π)n ∫ f(x,x0) exp(i(xj−xj0)pj) dV (p) dV (x) dV (x0) is equal to ∫ f(x0, x0) dV (x0).
Let us replace xj−xj0 with a more general Kj(x,x0). Kj(x,x0) = 0 defines implicit relation
between x and x0 which can be solved xj =Mj(x0). As before

1

(2π)n ∫ f(x,x0) exp(iKj(x,x0)pj) dV (p) dV (x) dV (x0) (30)

reduces to ∫ f(M(x0), x0) dV (x0). This could be useful in computation of path integral.
For example consider action S = ∫ (i(w′(t) − y(t))p(t) − y2(t))dt.The path integral (with
appropriate boundary conditions for fields w(t), p(t), y(t)) ∫ exp(S)DwDyDt has a for-
mal analogy with (30). Variable x corresponds to y(t), x0 - to w(t) Array of functions
{Kj(x,x0)} corresponds to (y(t),w(t)) → w′(t) − y(t). Function f(x,x0) corresponds to
exp(∫ (−y2(t))dt). We conclude that up to some standard constant corresponding 1

(2π)n

∫ exp(S)DwDyDp = ∫ exp(∫ (−w′2(t))dt)Dw

There is a simple, but less convincing method, to arrive to the same result. Euler-Lagrange
equation for this Lagrangian corresponding to variation with respect to p is w′(t)−y(t) = 0.
It is independent of p because t-derivatives of p never appear. It defines a constraint, which
allows to reduce our initial action to ∫ (−w′2(t))dt. The argument with path integrals shows
that after making this reduction we loose no information.

We would like to apply this idea to Lagrangian (25). We interpret expression (25) as
a Lagrangian of a quantum mechanics with infinite degrees of freedom. Besides particles
represented mathematically at time t0 by two-dimensional vectors (xi(t0), yi(t0)) we also
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have fictitious magnetic field (a0(t0, x, y), a1(t0, x, y), a2(t0, x, y)). We interpret it as a
vector in the space of triples of functions on R2. Configuration space of such objects is
infinite-dimensional.

We would like to look at the partial functional integral

∫ exp(S(γi, a))Da0 = exp(S(γi))∫ exp(CS(γi, a))Da0.

from this point of view. First we rewrite a ⋅ ∇⃗ ×a as a sum of two terms: one that contains
t-derivatives, the other that doesn’t. x, y integrations gives

∫ a ⋅ ∇⃗ × adxdy =

= ∫
R2

(a2∂ta1 − a1∂ta2)dxdy + ∫
R2

(a1∂ya0 − a0∂ya1 − a2∂xa0 + a0∂xa2)dxdy =

= ∫
R2

(a2∂ta1 − a1∂ta2)dxdy + 2∫
R2
a0(∂xa2 − ∂ya1)dxdy

We used integration by parts once. Lagrangian (25) transforms to

L(γi, a) =
N

∑
i=1

mi(x′2i + y′2i )/2+

+ ∫
R2

N

∑
i=1

(kia0δγi(x, y)) + ka0(∂xa2 − ∂ya1)dxdy+

+
N

∑
i=1

ki(a1x
′
i(t) + a2y

′
i(t)) +

k

2
∫
R2

(a2∂ta1 − a1∂ta2)dxdy

(31)

Note that we transformed the term a0(t, x(t), y(t)) in ((25)) to equivalent form

∫R2 a0(t, x, y)δ2(x − x(t), y − y(t))dxdy. We are using notations δ2(x − x(t), y − y(t)) =∶
δγ(x, y).

We would like to point to analogy of of the middle term ∫R2 a0(∑Ni=1(kiδγi(x, y)) +
k(∂xa2−∂ya1))dxdy in (31) and the term (w′(t)−y(t))p(t) from the example. Component
a0 is analogous to p. Its time derivatives never appear in the Lagrangian as it was explained
can be integrated out leaving us with the constraint

N

∑
i=1

(kiδγi(x, y)) + k(∂xa2 − ∂ya1) = 0 (32)

In this equation curves γi serve as parameters. We are going to solve this equation at a given
time t = t0. Solution of this equation is obviously non unique. If (a1(t0, x, y), a2(t0, x, y))
is a solution then (a1(t0, x, y) + ∂xf(t0, x, y), a2(t0, x, y)) + ∂yf(t0, x, y) is also a solution.
This is due to the gauge symmetries of the initial problem. To eliminate non uniqueness
we impose gauge-fixing condition ∂xa1 + ∂ya2 = 0.
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From Section B we know that solution of ∂xa2(x, y) − ∂ya1(x, y) = δ2(x, y) is given by
ω = 1

2π (
−y

x2+y2
, x
x2+y2

). Denote vector (x, y) by r. The operator J has matrix

J = (0 −1
1 0

) (33)

ω can be written as Jr
2π∣r∣2

. By superimposing solution corresponding different γi we get

(a1,i, a2,i)(x, y) = −
N

∑
j=1

ki/kω(x − xj(t0), y − yj(t0)) = −
ki

2πk

N

∑
j=1

kj
J(r − rj)
∣r − rj ∣2

In order to simplify formulas we will use an abbreviation

ai(r) ∶=
ki

2πk

N

∑
j=1

kj
J(r − rj)
∣r − rj ∣2

ai ∶=
ki

2πk

N

∑
j=1,j≠i

kj
J(ri − rj)
∣ri − rj ∣2

a(r) ∶= e

2πk

N

∑
j=1

J(r − rj)
∣r − rj ∣2

(34)

Upon substitution into (31) Lagrangian becomes

L(γi) ∶= L(γi,a) =
N

∑
i=1

mi∣r′i∣2/2 −
1

2πk
∑

1≤i≠j≤N

kikj
J(ri − rj) ⋅ r′i

∣ri − rj ∣2
+

+ 1

8π2k
∑

1≤i≠j≤N

kikj∂uF (ri(u), rj(t))∣u=t =

=
N

∑
i=1

mi∣r′i∣2/2 − ai ⋅ r′i+

+ 1

8π2k
∑

1≤i≠j≤N

kikj∂uF (ri(u), rj(t))∣u=t

(35)

The function F (ri, rj) is defined by the integral

∫
R2

⟨r − ri, r − rj⟩
∣r − ri∣2∣r − rj ∣2

dV (r). (36)

⟨ri, rj⟩ stands for determinant det ∣ xi xjyi yj ∣. We used that ⟨Jri, Jrj⟩ = ⟨ri, rj⟩. It is hard
to evaluate this integral directly. Instead we will use its symmetries to show that it is a
constant function. Fix a vector q, then

F (ri + q, rj + q) = ∫
R2

⟨r − ri − q, r − rj − q⟩
∣r − ri − q∣2∣r − rj − q∣2 dV (r)
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After a change of variables r − q = r̃ we recover the original integral. Thus F (ri + q, rj +
q) = F (ri, rj) and F (ri, rj) = F (ri − rj ,0). If we apply rotation matrix ( cos(θ) sin(θ)

− sin(θ) cos(θ)
)

simultaneously to ri, rj the integral won’t change either - we just have to do a change of
variables in the integral given by the same matrix. It means that F (ri − rj ,0) depends
only on ∣ri − rj ∣. To see that it is independent of the length we do rescaling of arguments
by the factor of c:

F (cri, crj) = ∫
R2

⟨r − cri, r − crj⟩
∣r − cri∣2∣r − crj ∣2

dV (r) = ∫
R2

⟨cr̃ − cri, cr̃ − crj⟩
∣cr̃ − cri∣2∣cr̃ − crj ∣2

c2 dV (r̃) = F (ri, rj)

We derive that F is a constant C. Finally C = F (ri, rj) = −F (rj , ri) = −C and C = 0.
Our manipulations with the integral were a bit formal. The reason is that though the
integral converges, it diverges absolutely. This conclusion agrees with explicit calculation
with Mathematica. The final form of the Lagrangian is

L(γi) =
N

∑
i=1

mi∣r′i∣2/2 − ai ⋅ r′i (37)

2.6 Derivation of Hamiltonian

We derive the Hamiltonian by means of Legendre transform of the Lagrangian: H(pi, qi) =
∑i piq′i−L(q′i, qi). This amounts to solving pi = ∂L

∂q′i
for q′i and re expressing ∑i piq′i−L(q′i, qi)

in terms pi and qi only.
In our case pi =mir

′
i − ai(ri) or r′i = 1

mi
(pi + ai).

H =
N

∑
i=1

pi ⋅ (
pi + ai
mi

) − mi

2
∣pi + ai
mi

∣
2

+ ai ⋅ (
pi + ai
mi

)

After expansion we get

H =
N

∑
i=1

∣pi∣2
2mi

+ ai ⋅ pi
mi

+ ∣ai∣2
2mi

=
n

∑
i=1

1

2mi
∣pi + ai∣2 (38)

It agrees with the formula 2.9 in [3] under assumption (29).
As usual Schrödinger operator can be obtained by replacing momenta variables pi =

(px,i, py,i) in the above formula by

p̂i ∶= (ih̵∂xi , ih̵∂yi) (39)
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Here is Schrödinger operator written explicitly:

Ĥ =
N

∑
i=1

1

2mi
∣p̂i + ai∣2 =

=
n

∑
i=1

1

2mi
(−h̵2∂2

xi − h̵
2∂2
yi + ih̵∂xi ○ a1i + ih̵∂yi ○ a2i + ih̵a1i∂xi + ih̵a2i∂yi + a2

1i + a2
2i) =

=
N

∑
i=1

1

2mi
(−h̵2∂2

xi − h̵
2∂2
yi + 2ih̵a1i∂xi + 2ih̵a2i∂yi + a2

1i + a2
2i + ih̵∂xia1i + ih̵∂yia2i)

Schrödinger operator acts on wave functions ψ(r1, . . . , rN). One way to define an
equivalent Schrödinger operator is to conjugate it with a function φ(r1, . . . , rN). φ−1○Ĥ○φ =
∑ni=1

1
2mi

∣φ−1 ○ (p̂i + ai) ○ φ∣
2
. Both components of ai (thought as operators) commute with

φ. Let us analyze x-x component of φ−1 ○ p̂i ○ φ:

φ−1 ○ ih̵∂xi ○ φ = ih̵∂xi + ih̵
∂xiφ

φ

Denote (ih̵∂xiφφ , ih̵
∂xiφ

φ ) by φ−1p̂iφ = ih̵φ−1 ∂φ
∂ri

. We obtain that

φ−1 ○ Ĥ ○ φ =
n

∑
i=1

1

2mi
∣(p̂i + ai + φ−1p̂iφ)∣

2

We can completely eliminate ai and simplify Ĥ if we solve equation ai + φ−1p̂iφ = ai +
p̂i logφ = 0 or more explicitly

ki
2πk

∑
1≤j≤N,j≠i

kj
ri − rj

∣ri − rj ∣2
+ ih̵∂ logφ

∂ri
= 0 (40)

In order to find such function we identify rj = (xj , yj) with a complex number zj = xj + iyj .
We define the function φ by the formula

φ = ∏1≤i<j≤n(zi − zj)
kikj
2πh̵k

∣∏1≤i<j≤n(zi − zj)
kikj
2πh̵k ∣

(41)

We will be writing Ĥfree = ∑ni=1
1

2mi
∣p̂i∣2 for Schrödinger operator corresponding to a collec-

tion of N noninteracting particles. To summarize: φ−1○Ĥ ○φ = Ĥfree or φ○Ĥfree○φ−1 = Ĥ.

Say we want to solve a stationary equation Ĥψ(r1, . . . , rN) = λψ(r1, . . . , rN). It is
equivalent to φ ○ Ĥfree ○ φ−1ψ = λψ or Ĥfree(φ−1ψ) = λφ−1ψ. From this we conclude that

instead of studying Schrödinger operator Ĥ we can work with Ĥfree. The operator Ĥ acts

on the space of functions ψ(r1, . . . , rN), Ĥ - on

ψ(r1, . . . , rN)φ(r1, . . . , rN). (42)
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One could argue naively that the function φ(r1, . . . , rN) can be absorbed into ψ(r1, . . . , rN)
and the theory would become trivial. The catch is that φ(r1, . . . , rN) is a multivalued
function. If rj makes a full turn around rl the function φ multiplies of the phase factor

exp(±ikjklh̵k ). This is the square of the phase (23) (corresponding to a half of the full turn)
in the units where h̵ = 1.

2.7 Discussion of spectrum in case of zero density

Even though Schrödinger operator Ĥfree is very simple it acts on wave functions that are
defined on a pretty complex space C̃n. C̃n was discussed in Section A.3.

Still it not hard to determine the spectrum Ĥfree. Let Aµ be a transformation of
R2×⋯×R2 that rescales ri: Aµri = µri on a positive real number. Scaling transforms wave
functions by the formula Aµψ(r1, . . . , rN) ∶= ψ(µ−1r1, . . . , µ

−1rN). The function φ stays

invariant under scaling: numerator and denominator in (41) pick up factors∏1≤i<j≤n µ
−
kikj
2πh̵k .

Also A−1
µ ○ p̂i ○Aµ = µ−1p̂i. Indeed, let us take a look at x component of p̂i.

A−1
µ ○ ih̵∂xi ○Aµψ(⋯, xi,⋯) = ih̵A−1

µ (∂xi(ψ(⋯, µ−1xi,⋯)))
= µ−1ih̵A−1

µ (∂xiψ)(⋯, µ−1xi,⋯))
= µ−1ih̵∂xiψ(⋯, µ−1µxi,⋯)
= µ−1ih̵∂xiψ(⋯, xi,⋯)

We conclude that A−1
µ ○ Ĥfree ○ Aµ = ∑ni=1

1
2mi

∣A−1
µ ○ p̂i ○Aµ∣

2 = ∑ni=1
µ−2
2mi

∣p̂i∣2 = µ−2Ĥfree.
Suppose we found a function ψλ such that

Ĥfreeψλφ
−1 = λψλφ−1. (43)

We can apply A−1
µ to both sides of equation (43): A−1

µ Ĥfreeψλφ = λA−1
µ ψλφ. It leads us to

λA−1
µ (ψλφ−1) = A−1

µ ĤfreeAµ(A−1
µ ψλ)φ−1 = µ−2Ĥfree(A−1

µ ψλ)φ−1

In the above formula we used that φ is Aµ-invariant. The function ψλ,µ ∶= A−1
µ ψλ = is a

solution of
Ĥfreeψλ,µφ

−1 = µ2λψλ,µφ
−1

As we can vary µ continuously in the interval 0 < µ <∞ the eigenvalues µ2λ cover the set
of positive real numbers without holes.

We conclude that in infinite two-dimensional area anyonic system has a continuous
energy spectrum for any finite number of particles. In this case the density of particles is
equal to zero because of infiniteness of the area. In the next section we will see that the
spectrum properties change drastically when the density becomes nonzero.
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3 Random phase approximation

Law of large numbers, proven in the course of probability theory, states that if ξi, i =
1, . . . ,N are independent equally distributed random variables which take real values and
f is a real function, then

P(∣ 1

N

N

∑
i=1

f(ξi)) −E(f)∣ > ε)→ 0 as N →∞

In the above formula P stands for probability. We assume for simplicity that P (ξi < y) =
P (ξj < y) = ∫ y−∞ p(x)dx. The quantity E(f), called mathematical expectation, is equal
to ∫ ∞−∞ f(x)p(x)dx. Theorem works under assumption that ∫ ∞−∞ ∣f(x)∣p(x)dx is conver-
gent. The law used in the Monte Carlo method for practical estimation of the integral

∫ ∞−∞ f(x)p(x)dx by averaging f(ξi)) with ξi produced by computer. There is a multi-
dimensional generalization of the theorem. ξi = (ξ1,i, . . . , ξk,i) becomes a vector-valued
random variables and p(x1, . . . , xk) is defined through the formula P(ξi < (y1, . . . , yk)) =
∫ y1−∞⋯ ∫ yk−∞ p(x1, . . . , xk)dx1⋯dxk.

We would like to look at the function (34) that appear in the formulas (37,38) for
Lagrangian and Hamiltonian from such statistical point of view. First we assume that
k = N . If the dynamics of rj is sufficiently chaotic we can safely substitute rj by random,
equally distributed variables. If, in addition, assumptions (29) hold, the sum (34) can be
safely approximated by

a(r) = e2

2πN

N

∑
j=1

J(r − rj)
∣r − rj ∣2

∼ e2

2π
∫
R2

J(r − r′)
∣r − r′∣2 p(r′) dV (r′) (44)

Probability p(r′) is proportional to the density ρ(r′) of particles. Let us assume that p(r′)
converges to a uniform distribution (whatever it means) so that ρ(r′) becomes a constant
ρ.

In formulas (85,86) we provided some (not very presise) justifications that

e2

2π
∫
R2

J(r − r′)
∣r − r′∣2 dV (r′) = e

2

2
(−y, x) = e

2

2
Jr (45)

that supports a convergence

e2

2π
∫
R2

J(r − r′)
∣r − r′∣2 ρ(r′) dV (r′)→ e2ρ

2
Jr (46)

We also discussed issues related to absence of convergence of this integral. Introduce a
notation

a ∶= e
2ρ

2
Jr (47)
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In [6] the effect of multiplication on operator J is achieved by cross-product multiplication
with a constant vector B in the direction perpendicular to x, y-plane (c.f. formula 2.9 in
[6]).

Some comments are appropriate. To achieve desired randomness one should probably
work with anyon billiard or deal with anyons on a torus T 2, which could be simpler. Then
one should slowly, to preserve randomness, send size of a torus to infinity. This requires
additional work. One has to find the appropriate version of the function ai,T 2 by solving
(32) under periodic boundary conditions. After that one has to do the analogue of integral
(45) for ai,T 2 , which now makes more sense because torus T 2 has a finite area and ri ∈ T 2

have a chance to have a random (ergodic) dynamics. Hopefully after sending the area of
the torus to infinity, torus will converge to the plane R2 and we will recover the function
e2

2 Jr.
In this limit Hamiltonian becomes an infinite sum

Hred =
∞

∑
i=1

1

2mi
∣p̂i +

e2ρ̄

2
Jri∣2 (48)

of decoupled expressions (c.f. formula 2.11 in [6]).

3.1 Spectrum of 1
2m ∣p̂ +

e2ρ̄
2 Jr∣2

The operator Ĥred = 1
2m ∣p̂+ e2ρ̄

2 Jr∣2 is one of the ith terms that makes the Hamiltonian (48).
Tt would be interesting to find its spectrum. The argument which involves the function

φ won’t work here. Equalities − e
2ρ
2 y + ih̵∂ logφ

∂x = 0, e
2ρ
2 x + ih̵∂ logφ

∂y = 0 similar to (40)is not

possible because
∂− e

2ρ
2
y

∂y ≠ ∂ e
2ρ
2
x

∂x . Operator can be written more explicitly

2mĤred = (ih̵∂x −
e2ρ̄

2
y) ○ (ih̵∂x −

e2ρ̄

2
y) + (ih̵∂y +

e2ρ̄

2
x) ○ (ih̵∂y +

e2ρ̄

2
x)

= −h̵2(∂2
x + ∂2

y) +
e4ρ̄2

4
(x2 + y2) + ie2ρ̄h̵(−y∂x + x∂y)

Our present goal is to find the spectrum of Ĥred.
The last formula shows that Ĥred is a sum of the energy operator of a simple harmonic

oscillator Ĥharm = − h̵2

2m(∂2
x + ∂2

y) + e4ρ̄2

8m (x2 + y2) and operator Ĥrot = ie2ρ̄
2m h̵(−y∂x + x∂y)

of infinitesimal rotation. Laplacian and potential in Ĥharm are rotation-invariant. Thus
Ĥharm and Ĥrot commute. A theorem of linear algebra states that a pair of self-adjoint
commuting operators have a common eigenbasis. We are going to find it and from this find
the eigenvalues of Ĥred.

It is well-know that one-dimensional quantum harmonic oscillator with energy operator
− h̵2

2m∂
2
x + mω2

2 x2 has an eigenbasis

ψn(x) =
1√

2n n!
⋅ (mω
πh̵

)
1/4

⋅ e−
mωx2

2h̵ ⋅Hn (
√
mω

h̵
x) , n = 0,1,2, . . . .
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with energy levels (1
2 + n)h̵ω. Hn(x) are Hermite polynomials polynomials:

Hn(x) = (−1)nex2 d
n

dxn
(e−x2) .

ψn(x) is a result of orthogonalization of the set {ψ̃n(x) = xne−
mωx2

2h̵ } with respect to the
inner product (f, g) = ∫ ∞−∞ f(x)ḡ(x)dx.

We translate this to our variables: the eigenbasis for Ĥharm is orthogonalization of the

set xayb exp( e
2ρ̄(x2+y2)

4h̵ ). It is convenient to replace variables x, y by their complex linear
combination z = x + iy, z̄ = x − iy. Then

Hrotz = −
e2ρ̄h̵

2m
z, Hrotz̄ =

e2ρ̄h̵

2m
z̄

Functions zaz̄b exp( e
2ρ̄∣z∣2

4h̵ ) are eigenvectors of Hrot with eigenvalue e2ρ̄
2m (b − a). Let us fix

c = b−a. By the above comment orthogonalization of the set {zaz̄c+a exp( e
2ρ̄(∣z∣2)

4h̵ ) leads to

a set of eigenvectors ψa,a+c(z, z̄) of Ĥharm with eigenvalues (1/2 + a + 1/2 + c + a)h̵ e
2ρ̄

2m . We
see that

Ĥredψa,a+c(z, z̄) = Ĥharmψa,a+c(z, z̄) + Ĥrotψa,a+c(z, z̄)

= (1 + 2a + c)h̵e
2ρ̄

2m
ψa,a+c(z, z̄) +

e2ρ̄h̵

2m
cψa,a+c(z, z̄)

= (1 + 2(a + c))h̵e
2ρ̄

2m
ψa,a+c(z, z̄)

To summarize: the eigenvalues ψa,b of Ĥred are labelled by two non negative integers a, b.

As the corresponding eigenvalue (1/2+b)h̵ e
2ρ̄
m depends only on b we have infinite degeneracy

of each energy level (c.f. [6] beginning of the page 2754 and Appendix A).

3.2 Anyons as deformations of bosons and fermions

In Section 2.6 we learned that the theory of anyons can be formulated in a Hilbert space
whose vectors are products ψ(r1, . . . , rN)φ(r1, . . . , rN). The function φ is given by the
formula (41) with ki = e. To emphasize e-dependence we will be writing φe If we would like
to work with undistinguishable anyons we we have to impose a condition that the product
ψφe picks up a phase exp(i e22kh̵) after counter clockwise rotation of ri about rj on angle
π. We can achieve this by taking symmetric ψ in ri. There is another possibility: we can
take e′ such that e′2

2kh̵ = e2

2kh̵ − π. If we tale ψ̃ to be anti-symmetric the product ψ̃φe′ will

produce the same phase exp(i e22kh̵). We see that we can describe anyon either by means
of a bosonic wave function or by means of fermionic wave function. The only difference is
that we have to adjust the charge e.
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Recall that a Cooper pairs of electrons is counterintuitive structure that exists in crys-
tals and studied in the theory of superconductivity. Electrons can’t stay long close to each
other in the empty space because of the repulsing electric force caused by their negative
charges. In crystals with a large number of positively charged ions in lattice nodes an-
other effect can take over repulsion. As electron almost freely moves along the lattice it
attracts heavy positively charged ions. This way it creates a trail of matter with increased
density of positive charges behind it. Of course, soon at any given point ions restore their
initial position and the density of positive charges will go back to normal. Still, as a wave
the density surge (phonon) will follow the electron. Other electrons will get attracted to
the surge. If we had been unaware of the wave of phonons we would have observed a
rather strange phenomenon: electrons chaise electrons. If looked from afar the pair of such
electrons (Cooper pair) form a quasi-particle that has properties of a boson. Electrons in
the Cooper are separated by phonon and occupy a sizable part of the space (100 nm). It
explain why Cooper pair behave as boson. If we have two Cooper pairs in the same state
Pauly principle for individual electrons tells us nothing as these electrons are spread over
a large part of the space.

One can hope to reproduce a phenomenon like Cooper pairs in the context of anyons.
We have to answer a question-how many anyons does it take to forma a boson. With
fermions the answer is known-it is two. It can be seen in the language of wave func-
tions: given an antisymmetric ψ(r1, . . . , r2N) we can reinterpret it as a wave function
ψ̃(q1, . . . ,qN), where qi = (r2i+1, r2i+2) is a space coordinate for the composite particle. It
is obvious that ψ̃ is a symmetric function.

We can repeat this argument for anyons. Let us assume that in phase (23) the exponent
is i2π

n . If we rotate a point with coordinate ri about the point with coordinate rj the wave
function will pick up a phase exp(iπn). Suppose n = 2m2. If we repeat this procedure for the
group of variables A = {r1, . . . , rm} B = {rm+1, . . . , r2m} in the function (42) by swapping

the first and the second group. The total phase will be exp(i2πm2

n ) = 1. As in the case of
fermions we can interpret (42) as a wave function of N/m bosons. Presence of such bosons
can be a hint for superconductivity.

We, unfortunately, have a strange phenomenon. As n in the phase becomes large the
phase approaches to one. We recover bosonic theory. As we saw this nearly bosonic theory
does contain composite particles that look like bosons. The number of constituents, which
is proportional to

√
n,growth with n, instead of decreasing. As a result composite particles

do not continuously evolve to actual bosons as n→∞.
To avoid this difficulty we choose a point of view that anyons are deformations of

fermions. In this case the phase could be chosen 2π(1− 1
n). As n→∞ the theory degenerates

into a gas of fermions which doesn’t have superconducting properties. It agrees with
the previous observation that composed bosons are scarce because a large number ∼ √

n
constituents which growth with n.
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3.3 Anyonic Hamiltonian in second quantization formalism

The reader might wish to consult Appendix D for quick review of the formalism. The
point of working in second quantization formalism is that Hamiltonian of the multi particle
system can be written in concise form with the help of operators Ψ(r) and Ψ†(r). Now r
again is a two-dimensional vector r = (x, y).

The simplest illustration is a free multi-particle fermionic system. In this case
Schrödinger operator acts by the formula ∑Ni=1 ∆riψ(r1, . . . , rN). It is easy to see that it
coincides with the operator ∫ Ψ†(r)∆rΨ(r) dV (r). Indeed

∫ Ψ†(r)∆rΨ(r) dV (r)ψ(r1, . . . , rN) =

=
N−1

∑
i=0

(−1)(N−1)i∫ ∫ δ(rσi(1) − r)(∆rδ(r′ − r))ψ(r′, rσi(2), . . . , rσi(N)) dV (r) dV (r′)

=
N−1

∑
i=0

(−1)(N−1)i∫ δ(rσi(1) − r)∆rψ(r, rσi(2), . . . , rσi(N)) dV (r)

= (−1)(N−1)0∆r1ψ(r1, . . . , rN) + (−1)(N−1)1∆r2ψ(r2, . . . , rN , r1) +⋯

=
N

∑
i=1

∆riψ(r1, . . . , rN)

The same argument shows that if U(r′, r) is a family of potentials that depends on r′

∫ Ψ†(r)U(r′, r)Ψ(r) dV (r)ψ(r1, . . . , rN) =
N

∑
i=1

U(r′, ri)ψ(r1, . . . , rN) (49)

In particular if U = 1 we get a particle density operator

ρ̂(r) = Ψ†(r)Ψ(r) (50)

The integral ∫ ρ̂(r) dV (r) scales ψN of the factor of N . The quantity (ρ̂ψ,ψ) is the average
number of particles in the normalized state ψ (92).

If we freeze ri in the sum ∑Ni=1U(r′, ri) we can apply the above identity to r′:

∫ Ψ†(r′)
N

∑
i=1

U(r′, ri)Ψ(r′) dV (r)ψ(r1, . . . , rN) =
N

∑
j=1

N

∑
i=1

U(rj , ri)ψ(r1, . . . , rN)

It almost explains the identity

∫ ∫ Ψ†(r′)Ψ†(r)U(r′, r)Ψ(r)Ψ(r′) dV (r) dV (r′)ψ(r1, . . . , rN) =

= ∑
1≤i≠j≤N

U(rj , ri)ψ(r1, . . . , rN)
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The terms U(ri, ri) drop out because of skew-symmetry of ψ that is used in the actual
calculation of the above integral.

The vector-valued momentum operator p̂ is (ih̵∂x, ih̵∂y) (39). By (49) the operator

â(r) = ∫ Ψ†(r) e
2

2π

J(r − r′)
∣r − r′∣2 Ψ(r) dV (r′)

with fixed r acts of ψN by multiplication of a(r)(34), all ki are set to e.
After all these preliminaries we see that operator (38) with mi = m acting on ψN can

be written as

∫ Ψ†(r)(p + â(r)) ⋅ (p̂ + â(r))Ψ(r) dV (r)ψN

The difference (H −Hred)ψN (38)(48), corresponding to interaction, with mi = m is equal
to

HIψN =
N

∑
i=1

(2(ai − a) ⋅ pi + ∣ai∣2 − ∣a∣2)ψN

=
N

∑
i=1

(2(pi + a) ⋅ (ai − a) + ∣ai − a∣2)ψN
(51)

As we rearranged terms we used that pi ⋅ ai − ai ⋅ pi = ih̵∇⃗ ⋅i ai = 0,p ⋅ a − a ⋅ p = ih̵∇⃗ ⋅ a = 0
In the second quantized language

HI =
1

2m
∫ Ψ†(r)(p+a(r)) ⋅ (â(r)−a(r))+ (â(r)−a(r)) ⋅ (â(r)−a(r)))Ψ(r) dV (r) (52)

Fix r. We use (45) (with all provisions related to divergence of the integral) and (47)
to rewrite â(r) − a in more convenient for our purposes form:

â(r) − a(r) = e2

2πk
∫

J(r − r′)
∣r − r′∣2 (Ψ†(r′)Ψ(r′) − ρ) dV (r′)

The constant ρ is the density of particles. Then the operator HI (52) can be written as

HI =
1

2m

e2

2πk
∫ ∫ Ψ†(r)(p + a(r)) ⋅ J(r − r′)

∣r − r′∣2 (Ψ†(r′)Ψ(r′) − ρ)Ψ(r) dV (r) dV (r′)+

+ 1

2m

e2

2πk

e2

2πk
∫ Ψ†(r)(Ψ†(r′)Ψ(r′) − ρ)J(r − r′)

∣r − r′∣2 ⋅ J(r − r′′)
∣r − r′′∣2 ×

× (Ψ†(r′′)Ψ(r′′) − ρ)Ψ(r) dV (r) dV (r′) dV (r′′) =
=H1 +H2
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We rewrite H1 as

H1 =
e2

4mπk
∫ ∫ Ψ†(r)(p + a(r))Ψ(r) ⋅ J(r − r′)

∣r − r′∣2 (Ψ†(r′)Ψ(r′) − ρ) dV (r) dV (r′)−

− e2

4mπk
∫ ∫ Ψ†(r)(p + a(r)) ⋅ J(r − r′)

∣r − r′∣2 δ(r − r′)Ψ(r′) dV (r) dV (r′)

The second term is obtained by transporting Ψ(r) across Ψ†(r′)Ψ(r′) by using rela-
tions (96). This term is infinite and is dropped in [3] (equation 5.12). Indeed that

∫ J(r)
∣r∣2

δ(r)λ(r) dV (r) = J(0)
∣0∣2

λ(0) makes sense only for scalar test-function λ(r) that has

zero of order two at 0. We set

ĵ(r) ∶= 1

m
Ψ†(r)(p + a(r))Ψ(r)

ĵ is a two-dimensional array of operators. In this notation a simplified version of H1

becomes

Hsimp
1 = e2

4πk
∫ ∫ ĵ(r) ⋅ J(r − r′)

∣r − r′∣2 (ρ̂(r′) − ρ) dV (r) dV (r′)

If we do similar manipulations with H2 and get

H2 =
1

2m

e2

2πk

e2

2πk
∫ Ψ†(r)Ψ(r)(Ψ†(r′)Ψ(r′) − ρ)J(r − r′)

∣r − r′∣2 ⋅ J(r − r′′)
∣r − r′′∣2 ×

× (Ψ†(r′′)Ψ(r′′) − ρ) dV (r) dV (r′) dV (r′′)

− 1

2m

e2

2πk

e2

2πk
∫ Ψ†(r)Ψ(r)(Ψ†(r′)Ψ(r′) − ρ)J(r − r′)

∣r − r′∣2 ⋅ J(r − r′′)
∣r − r′′∣2 ×

× δ(r′′ − r)Ψ(r′′) dV (r) dV (r′) dV (r′′)

− 1

2m

e2

2πk

e2

2πk
∫ Ψ†(r)Ψ(r)δ(r′ − r)Ψ(r′)J(r − r′)

∣r − r′∣2 ⋅ J(r − r′′)
∣r − r′′∣2 ×

× (Ψ†(r′′)Ψ(r′′) − ρ) dV (r) dV (r′) dV (r′′)
Finally

Hsimp
2 = e4

8π2mk2 ∫ Ψ†(r)Ψ(r)(ρ̂(r′) − ρ)J(r − r′)
∣r − r′∣2 ⋅ J(r − r′′)

∣r − r′′∣2 ×

× (ρ̂(r′′) − ρ) dV (r) dV (r′) dV (r′′) =

= e4

8π2mk2 ∫ (ρ̂(r) − ρ)(ρ̂(r′) − ρ)J(r − r′)
∣r − r′∣2 ⋅ J(r − r′′)

∣r − r′′∣2 ×

× (ρ̂(r′′) − ρ) dV (r) dV (r′) dV (r′′)+

+ e4ρ

8π2mk2 ∫ (ρ̂(r′) − ρ)J(r − r′)
∣r − r′∣2 ⋅ J(r − r′′)

∣r − r′′∣2 ×

× (ρ̂(r′′) − ρ) dV (r) dV (r′) dV (r′′)
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Unfortunately the arguments that we used in evaluation of (36) can not be used in the case
of integral

G(r′, r′′) ∶= ∫
J(r − r′)
∣r − r′∣2 ⋅ J(r − r′′)

∣r − r′′∣2 dV (r) = ∫
(r − r′)
∣r − r′∣2 ⋅

(r − r′′)
∣r − r′′∣2 dV (r). (53)

The reason is that the integral diverges. Here is the precise result obtained with Mathe-
matica.Define

G(Λ, r′, r′′) = ∫
Λ

−Λ
∫

∞

−∞
dx

(r − r′)
∣r − r′∣2 ⋅

(r − r′′)
∣r − r′′∣2 dV (r)

Then
G(Λ, r′, r′′) ∼ 2π log Λ − π log ∣r′ − r′′∣2 + 2π log 2 +O(1/Λ)

As we are free to add or subtract any constant value from the Hamiltonian this way
changing the reference point for zero energy, the constant 2π log Λ+2π log 2 can be absorbed
by this arbitrary constant. This way we get renormalized effective potential

Gren(r′, r′′) = −2π log ∣r′ − r′′∣

which agrees with formula (5.14) in [3].
This formula can be extracted directly from the potential in (51)

N

∑
i=1

∣ai − a∣2 =
N

∑
i=1

ai ⋅ ai − 2ai ⋅ a + ∣a∣2

We are interested in the first term of this sum

N

∑
i=1

ai ⋅ ai =
e4

4π2k2

N

∑
i=1,j≠j,k

J(ri − rj) ⋅ J(ri − rk)
∣ri − rj ∣2∣ri − rk∣2

= e4

4π2k2

N

∑
i=1,j≠i,k

(ri − rj) ⋅ (ri − rk)
∣ri − rj ∣2∣ri − rk∣2

=
N

∑
j,k=1

H(rj , rk),

H(r′, r′′) = e4

4π2k2

N

∑
i=1

(ri − r′) ⋅ (ri − r′′)
∣ri − r′∣2∣ri − r′′∣2

Again if we invoke randomness assumptions on ri the sum can be approximated by the
integral (53).

We just derived effective Coulomb interaction. It generates effective long-range attrac-
tion between oppositely signed charges and repulsion between equally signed one. This in
turn is responsible for formation for the mass gap in the interacting theory.
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4 Vortices

When a superconductor cools to its superconducting state any external magnetic field is
expelled from the body of the sample. This is called the Meissner effect. The heuristic
reason for this is that “magnetism and superconductivity are natural enemies”: Cooper
pairs, mentioned briefly in Section 3.2, are formed by electrons with their spins anti-
parallel, while an outside magnetic field aligns the electron spins parallel to one another.
If the energy of the magnetic field is not sufficient to bring the superconductor to non
superconducting state, we observe expulsion of magnetic field from the sample. If the
energy passes a certain threshold the sample acquire electric resistance.

In fact there is a third possibility - impurities are generated in the body of the sample
where magnetic field is not zero. These impurities are one-dimensional objects. They are
called vortices. The geometric shape Lv that underlies a vortex v is a line or a closed loop.
Vector potential, A, that generates the magnetic field is smooth outside Lv, but (in our
approximation) has a singularity on it. B = ∇⃗×A is proportional to delta-function δL with
support on L. The vector-valued coefficient of proportionality is called vorticity of v.

Vortices also appear in the context of fluid dynamics and aerodynamics. The most
common vortex is a dust-devil. The quantity similar to A in this case is velocity of the
stream of particles of dust. Vorticity B(x) is the angular speed of rotation of a small
sample near the point x.

We are interested in vortices that appear in two-dimensional films that were used for the
study of quantum Hall effect. As the dimension has been reduced by one, vortices in this
context are point-like impurities. Vortices move around and have their own dynamics. In
this respect they are similar to quasi-particles like Cooper pairs. One substantial difference
between a vortex and a Cooper pair is that negative charge density drops at the vortex.
In this sense it is similar to a hole in a semi-conductor.

Statistical properties of dynamics of vortices as functions of external magnetic field can
be extracted from correlators of a field theory similar to anyons. The remarkable fact is
that the quantum theory of vortices is dual to theory of anyons.

4.1 Example of a simplest pair of dual theories

First we have to explain what dual means (see Witten’s lecture in [7] for details). Instead
of giving a rigorous definition let us go over a simple pair of dual theories, which are
sigma-models with values on a circle.

Lets look at a classical situation first, where we have a field σ(x, y) that satisfy Laplace
equation ∆σ = ∇⃗⋅∇⃗σ = 0. The vector (∂xσ, ∂yσ) is denoted by A. Of course −∂yA1+∂xA2 = 0
because A is a gradient vector field that comes from potential σ. We use J (33) to define
B = J∇⃗σ = (−∂yσ, ∂xσ). Remarkably B is also gradient vector field: −∂yB1 + ∂xB2 =
−∂y(−∂yσ) + ∂x(∂xσ) = 0, since σ satisfies the Laplace equation. We conclude that B is
a gradient ∇⃗φ of some potential φ. From this we see that the theory of Laplace equation
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in two dimensions has two equivalent descriptions: one in terms of the field σ, the other
in terms of the dual field φ. This is not very surprising because if we set z = x + iy then
the function of complex argument f(z) = σ(z) + iφ(z) becomes holomorphic. The above
relation between σ,φ is a Cauchy-Riemann equation for f .

The quantum picture is much more surprising. We assume that the field σ is quasi-
periodic

σ(x + 1, y) = σ(x, y) + 2πRn1, σ(x, y + 1) = σ(x, y) + 2πRn2, R > 0, n1, n2 ∈ Z (54)

We define an action by the formula S(σ) = 1
4π ∫

1
0 ∫

1
0 (∂xσ)2 + (∂yσ)2dxdy. We would like to

think about a square [0,1] × [0,1] with identified opposite sides as a torus T 2 and a circle
of radius R as an interval [0,2πR] with identified ends. Condition (54) is equivalent to the
statement that σ defines a map of T 2 to a S1 of radius R.

It is not convenient to keep R inside of quasi-periodicity condition (54). To get rid of
it we rescale σ by R. This way we get

σ(x + 1, y) = σ(x, y) + 2πn1, σ(x, y + 1) = σ(x, y) + 2πn2. (55)

Once we fixed points ri, i = 1, . . . ,N we can define correlators by means of functional
integral

⟨exp(ik1σ1)⋯ exp(ikNσN)⟩σ ∶= ∑
n1,n2∈Z

∫ exp(ik1σ(r1))⋯ exp(ikNσ(rN)) exp (−S(σ))Dσ

S(σ) = R
2

4π
∫

1

0
∫

1

0
(∂xσ)2 + (∂yσ)2dxdy

We define almost the same theory whose field is φ. It satisfies the same quasi-periodicity
conditions (55). The Lagrangian is S(φ) = 1

4πR2 ∫ 1
0 ∫

1
0 (∂xφ)2 + (∂yφ)2dxdy. The first fact

is that ⟨⟩σ = ⟨⟩φ (vacuum expectation values of both theories coincide). This is not quite
obvious because the coupling constant in the first action is ∼ 1/R2 whereas in the other it
is ∼ R2. It is an indication that theories on circles of radius R and 1/R coincide. In order
to formulate what correlator in φ theory corresponds to ⟨exp(ik1σ1)⋯ exp(ikNσN)⟩σ we fix
polar coordinates about points ri. We are going to use special field φ for computation of
the correlator. At a point ri, which we assume is equal to (0,0) the function φ(ρ, θ) ∼ θki
as ρ→ 0. This way exp(iφ) is a function with a singularity at ri. When θ makes one loop
about ri exp(iφ) makes ki turns about zero. We denote by exp(iφ)ki the procedure that
modifies the set of all φ in the outlined above way. Then

⟨exp(ik1σ1)⋯ exp(ikNσN)⟩σ = ⟨exp(iφ)k1⋯ exp(iφ)kN ⟩φ

This is a statement of T -duality in the simplest form. We see that operator corresponding
to observable exp(ik1σ(r)) gets transformed into disorder operator exp(iφ)ki . It is bizarre,
indeed, to see an example of observable like exp(iφ)ki that doesn’t take any value on the
field.
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4.2 Particle-vortex duality in 3 dimensions

This type of duality is based in generalization of ideas of T -duality to three dimensions.
We had been studying in Section 2.4 a gas of N particles γi three-dimensional space-

time. Later we sent N to infinity and passed to a model with continuous particle density.
It is convenient to start and formulate the theory directly in terms of particle density φ.
The field-theoretic Lagrangian in this case will be L(φ, a) = m

2 (∇⃗φ + ea)2 + k
2a ⋅ ∇⃗ × a. In

it we are supposed to use Minkowskian dot-product. Instead, we Wick rotate all the fields
and end up with Euclidean dot-product.

In fact there is whole universe of field theories whose Lagrangian is close to the written
presented above and which exhibit duality. In contrast with T -duality even basic examples
are not self-dual. It means that doesn’t preserve the field content. On one side of duality
all theories contain a scalar field ψ, which is responsible for the density of particles. On
the other side of duality a theory contains a vector potential A. In some occasions ∇⃗ ×A
is supported in a space-time trajectory and A can be interpreted as a vortex. In general,
however, it is a continuous superposition of vortices and its tornado-shape is smeared. Dual
theories can contain more fields like Chern-Simons field and interactions (potentials).

Let us see the pattern of duality in case of free fields in classical theory. Lagrangian
of the vector (abelian gauge) field A is ∣∇⃗ × A∣2. Equation of motion is ∇⃗ × ∇⃗ × A = 0. I
would like to extract the dual field φ from this equation. To do this I denote B = ∇⃗ ×A.
Condition ∇⃗ ×B = 0 is equivalent (in three dimensions) that B is a gradient vector field.
We see that (at lest locally) there is a field φ such that B = ∇⃗φ. Note since B = ∇⃗ × A
then ∇⃗ ⋅ B = ∇⃗ ⋅ ∇⃗ × A = 0. But 0 = ∇⃗ ⋅ B = ∇⃗ ⋅ ∇⃗φ = ∇2φ. We conclude that ψ satisfies
three-dimensional Laplace equation, which is an equation of motion for Lagrangian ∣∇⃗φ∣2.

Duality holds on the quantum level. In order to formulate it we restrict ourself with
φ(t, x, y) that satisfy quasi-periodicity conditions (55) for all three variables without inte-
grality assumptions on n1, n2, n3.

Vector field A satisfies two quasi-periodicity conditions:

∇⃗ ×A(t + ε1, x + ε2, y + ε3) = ∇⃗ ×A(t, x, y), εi = 0,±1

Fluxes ntx, nxy, nyt of ∇⃗ ×A through faces of the cube [0,1] × [0,1] × [0,1]
(opposite faces are identified) are integers.

(56)

There is equality of functional integrals

∫ exp(− Λ

4π
∫ ∣∇⃗φ∣2dtdxdy)Dφ =

= ∑
ntx,nxy ,nyt∈Z

∫ exp(− 1

4πΛ
∫ ∣∇⃗ ×A∣2dtdxdy)DA

(57)

where Λ is a coupling constant. Computations of correlators can also be carried through.
In particular if γ is a curve and we impose on vectors {A} condition that A is a sum A0+A1
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of a vortex A0 with vorticity k along γ and a field A1 with smooth ∇⃗ ×A1 along γ. Then

∫ exp(∫
γ
kφdτ − Λ

4π
∫ ∣∇⃗φ∣2dtdxdy)Dφ =

= ∫ exp(− 1

4πΛ
∫ ∣∇⃗ × (A0 +A1)∣2dtdxdy)DA1

Here is another example of a simple duality discussed in [8]. One of the theories is the
so called XY model.

S(φ,A) = ∫ d3x ∣(∂µ − iAµ)φ∣2 − V (φ) (58)

Its dynamical field is φ and Aµ is a parameter. It is dual to the the theory with action

S = ∫ d3x ∣(∂µ − iaµ)Φ∣2 − Ṽ (Φ) + 1

2π
εµνρAµ∂νaρ (59)

This is the Abelian-Higgs model. Its dynamical fields are a scalar Φ. aµ is also a parameter
which is a background gauge field.

Its coupling to the currents in the two theories reveals that the particle density of φ in
(58) is equated to the flux density f/2π = da/2π in 59. This is the essence of particle-vortex
duality. This is an explanation of particle-vortex duality according to [8].

Similar duality exists for Dirac fermion with the action

S(ψ,A) = ∫ d3x iψ̄γµ(∂µ − iAµ)ψ

It is believed that it is dual to Quantum Electrodynamics in three dimension with one
fermionic field Ψ, and one dynamical abelian gauge field aµ. As before Aµ is a parameter.

S = ∫ d3x iΨ̄γµ(∂µ − iaµ)Ψ + 1

4π
εµνρAµ∂νaρ

Inspired by these formulas the authors of [8] proposed a duality that manifests in equalities
of partition function

Zfermion(A) = ∫ exp(i∫ (ψ̄γµ(∂µ −Aµ)ψ −
1

4
A ⋅ ∇⃗ ×A)dtdxdy)Dψ =

∫ exp(∫ i(∣(∂µ − aµ)φ∣2 +
1

2
a ⋅ ∇⃗ × a + 1

2
a ⋅ ∇⃗ ×A)dtdxdy)DφDa =

Zscalar+flux

which could be interpreted as three dimensional bosonization because it relates the theory
of fermion ψ to bosons φ and aµ. In the above formula ψ is a complex fermion, A is a
background vector (abelian gauge field), φ is a scalar field, a is an abelian gauge field. The
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term 1
4A ⋅ ∇⃗×A (half of Chern-Simons action) was included in Zfermion(A) in order to com-

pensate gauge anomaly. This anomaly typically appears in the process of computation of
Pfaffian of Dirac operator from the kinetic term of fermion Lagrangian. The field a appears
in Zscalar+flux in order to emulate objects whose correlators have fermionic properties with
respect to permutations. We obtain it in a fashion familiar to example (57). Instead of
integrating over the smooth fields a at points (tixiyi) we assume that a has singularities at
these points. Let us assume for simplicity that (ti, xi, yi) = (0,0,0). Then ∇⃗×a approaches
to (16) as (t, x, y) → (0,0,0). Let Mi be modification rule at (ti, xi, yi) of the described
kind. M stands for monopole. ψ stands for evaluation of ψ at (ti, xi, yi). Conjecturally
3-dimansional fermion-vortex duality(and bosonisation) shows up in identity

∫ ψ1⋯ψN exp(i∫ (ψ̄γµ(∂µ −Aµ)ψ −
1

4
A ⋅ ∇⃗ ×A)dtdxdy)Dψ =

∫ M1⋯MN exp(∫ i(∣(∂µ − aµ)φ∣2 +
1

2
a ⋅ ∇⃗ × a + 1

2
a ⋅ ∇⃗ ×A)dtdxdy)DψDa

valid for arbitrary A. Note that the vortices (or monopoles) that appear here are instan-
taneous in time.

5 Topological insulators and superconductors

5.1 Back to fermions

Three dimensional action ∫ d3x iψ̄γµ(∂µ − iaµ)ψ for fermions that has appeared in Section
4.2 in relation to fermion-vortex duality can be augmented by four-dimensional action:

S = ∫ d2+1x [iψ̄γµ(∂µ − iAµ)ψ] −
1

4e2 ∫ d3+1xF 2
µν . (60)

In the action above the Dirac fermion is supported on 2+1 dimensional surface in 3+1
dimensional space-time. The gauge field Aµ lives on the 3+1 dimensional space-time and
fermions interact with Aµ through the restriction on the surface.

Son in [10] came up with an idea of how effective action of the dual theory might look
like. According to him it is

Seff = ∫ d2+1x(iψ̄γµ(∂µ + 2iaµ)ψ +
1

2π
εµνρAµ∂νaρ) −

1

4e2 ∫ d3+1xF 2
µν + . . . . (61)

In the above action ψ is a Dirac composite fermion quasiparticle, aµ is an emergent gauge
field and Aµ is an external electromagnetic field with field strength Fµν = ∂µAν − ∂νAµ.

Son showed that this theory has a close relation to theory of anyons with ν = 1
2 = e2

2πkh̵ .
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Seiberg and Witten proposed the low energy effective action for the composite fermion
to be

Seff = ∫ d2+1x(iψ̄γµ(∂µ + 2iaµ + iAµ)ψ −
1

2π
εµνρAµ∂νaρ −

1

4π
εµνρAµ∂νAρ)

− 1

4e2 ∫ d3+1xF 2
µν + ... .

(62)

If the particle and vortex scalars are made up of two fermions, and the fermionic actions
(interacting with electromagnetism) are (60) and (62), the corresponding boundary scalar
actions for the composite scalars, must be

STI = ∫ d2+1x [−1

2
∣(∂µ − iqAµ)Φ∣2 − V (∣Φ∣2) − 1

4
F 2
µν + ...] , (63)

where q = 2, for the composite scalar of two Dirac fermions, and for the low energy ef-
fective (boundary) action of the composite (and electromagnetically neutral) scalar of two
composite fermions,

STSC = ∫ d2+1x [−1

2
∣(∂µ + 2iaµ)Φ̃∣2 − V (∣Φ̃∣2) + 1

2π
εµνρaµ∂νAρ −

1

4
F 2
µν + ...] . (64)

The relation between these two actions is exactly the particle-vortex duality. Here is how
[8] explains it. First we write complex Φ as a product of absolute value of ∣φ∣eiθ. Then we
solve the equation ∇⃗V = 0. We choose v to be one of the solutions and replace φ in the
above action by v. This way we get a simplified action. We assume that absolute value of
φ is fixed at a value v that minimizes the potential V , we get the first order action,

SP = ∫ d2+1x [ 1

2v2
ξ2
µ − ξµ(∂µθ − qAµ)] , (65)

in terms of an auxiliary field ξµ. In order to exhibit particle-vortex duality we decompose
θ into a periodic part and a singular part that is responsible for winding:

θ = θsmooth + θvortex . (66)

We integrate out θsmooth and we get a constraint on ξ:

ξµ = εµνρ∂νaρ . (67)

If we substitute ξµ back into equation (65) we get:

SP = ∫ d2+1x [− 1

4v2
f2
µν + εµνρ∂νaρ(∂µθvortex − qAµ)]

= ∫ d2+1x [− 1

4v2
f2
µν + 2π aµj

µ
vortex −AµJµ] ,

(68)
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where the vortex current is

jµvortex =
1

2π
εµνρ∂ν∂ρθvortex , (69)

and the current is Jµ = qεµνρ ∂νaρ. We have a description in terms of To complete the
description, which is now in terms of vortices, coupled to the new gauge field aµ, as evi-
denced by the presence of the vortex current in the action, one needs to introduce another
(vortex) scalar field Φ̃ that couples directly to aµ. Finally then, the description in the
particle-vortex dual theory is via the action

SV = ∫ d2+1x [− 1

4v2
f2
µν −

1

2
∣(∂µ − i2πaµ)Φ̃∣2 − V (∣Φ̃∣) −Aµ(qεµνρ∂νaρ)] , (70)

which is nothing but the action (64) after a rescaling of aµ by 2π. This establishes our
claim then, that (63) and (64) are particle-vortex dual.

Appendix

A Quantum symmetries

Recall the setup of quantum mechanics. Ingredients that define a system is a Hilbert
space of states L and a Schrödinger operator H. An element of the Hilbert space ψ
is called a states or a wave function. Given a states ψ and a complete set of states
{ψ1, . . . , ψn . . . ,}(mathematically they form an orthogonal basis of L ) we can compute
probability pn to find ψ in the state described by ψn as

pn =
∣⟨ψ,ψn⟩∣2

⟨ψ,ψ⟩⟨ψn, ψn⟩
. (71)

From this formula it is clear that the probability doesn’t change if we multiply ψ and each
of ψn on nonzero complex numbers. This is why it is reasonable not to distinguish ψ and
cψ as they carry the same physical information. We will refer to ψ defined up to a factor
as a physical state.

Let G be a group. We say that G acts on the Hilbert space L if for each g ∈ G there is a
unitary operator T (g) ∶ L→ L, which means ⟨T (g)ψ1, T (g)ψ2⟩ = ⟨ψ1, ψ2⟩ for any ψ1, ψ2 ∈ L.
The operator T (g) must commute with the Hamiltonian H: T (g)H = HT (g). This is the
condition that T (g) is the symmetry of the system. Physically unitarity means that T (g)
preserves probabilities computed by (71). One more condition on T (g) is the compatibility
with the group law:

T (g1g2) = T (g1)T (g2). (72)
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We say that G acts projectively on the Hilbert space L if (72) is replaced by

T (g1g2) = cg1,g2T (g1)T (g2) cg1,g2 ∈ C× (73)

C× stands for the set of nonzero complex numbers. Observe that though T (g1g2)ψ and
T (g1)T (g2)ψ are distinct, they differ by a multiplicative factor. They define the same
physical state. Thus (73) is the condition of compatibility with the group law, written in
the language of physical states. The numbers cg1,g2 are not arbitrary:

T (g1g2g3) = cg1,g2g3T (g1)T (g2g3) = cg1,g2g3cg2,g3T (g1)T (g2)T (g3) =

T (g1g2g3) = cg1g2,g3T (g1g2)T (g3) = cg1g2,g3cg1,g2T (g1)T (g2)T (g3)

So
cg1,g2g3cg2,g3 = cg1g2,g3cg1,g2 (74)

We say that subgroup H ⊂ G is a symmetry of the state ψ if T (h)ψ = χ(h)ψ,h ∈ H.
Here χ(h) are nonzero complex numbers. The numbers χ(h) has to be compatible with
ch1,h2 :

T (h1h2)ψ = χ(h1h2)ψ = ch1,h2T (h1)T (h2)ψ = ch1,h2χ(h1)χ(h2)ψ

or
ch1,h2 = χ(h1h2)χ(h1)−1χ(h2)−1, h1, h2 ∈H

We will denote that space of states with symmetry group H and character χ by LH,χ.

Example Symmetric group Sn on n letters permutes elements of [1..n]. A transposition

( 1 2 . . . n − 1 n
i1 i2 . . . in−1 in

) will be shorthanded to (i1, i2, . . . , in−1, in). For example, we

denote ( 1 2 3 4 5
2 5 4 1 3

) by (2,5,4,1,3). Elementary transpositions σi, i = 1, . . . , n−1 are

(1, . . . , i + 1, i, . . . , n). One can visualize a permutation by a diagram.For example:

1 2 3 4 5

1 2 3 4 5

⇒(2,5,4,1,3)

(75)

The labelling on the diagrams are obviously redundant and will be dropped.The composi-
tion of permutation corresponds to concatenation of diagrams, left permutation corresponds
to the top diagram: Permutation σi correspond to the diagram
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. . .

. . .

. . .

.

. . .

. .

=(3,2,1)(3,1,2) = (1,3,2) ⇒

. . . . . .σi
i

⇒

The group Sn is generated by σi in a sense that any permutation σ is a product of
σi. Elements σi satisfy Coxeter relations σiσi+1σi = σi+1σiσi+1, σiσj = σjσi, ∣i − j∣ ≥ 2 and
σ2
i = 1.

=
=

σi+1

σi

σi

σi+1

σi+1

σi

σj σi

σjσi

=
σi

σi

There is a theorem that states that all other relations between σi follow from Coxeter
relations.

Given a Hilbert space L we can form a tensor product L ⊗⋯⊗ L = L⊗n. Its elements
are linear combinations of Ψi1,...,in = ψi1 ⊗⋯⊗ψin . The inner product is defined by the rule

⟨Ψi1,...,in ,Ψj1,...,jn⟩ = ⟨ψi1 , ψj1⟩⋯⟨ψin , ψjn⟩

The hamiltonian is H is the sum of elementary Hamiltonians Hi = 1 ⊗ ⋯ ⊗ H
i
⊗ ⋯ ⊗ 1

Symmetric group acts by the formula

T (σ)Ψi1,...,in = Ψσ(i1),...,σ(in)

Here is how this specializes to the case of a free particle on two-dimensional space
R2. Wave-function ψ is a complex-valued function in two-variables ψ(x, y). The Hamil-

tonian H is − ∂2

∂x2
− ∂2

∂y2
. The space L is {ψ(x, y)∣ ∫ ∫ ∣ψ(x, y)∣2dxdy < ∞}. The space

L⊗n is the space of square-integrable functions in x1, y1, . . . , xn, yn. Ψi1,...,in is the product

ψi1(x1, y1)ψi2(x2, y2) . . . ψin(xn, yn). The Hamiltonian Hi = − ∂2

∂x2i
− ∂2

∂y2i
. The group Sn acts

by the formula

T (σ)Ψ(x1, y1, . . . , xn, yn) = Ψ(xσ1, yσ1, . . . , xσn, yσn)
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A.1 Symmetric states

Suppose we are interested in the states which are symmetric with respect to the whole
group Sn. In order order to classify such states we have to fix the function χ(g). In our
case the constants cg,g′ are equal to one. Thus χ(g) must satisfy

χ(gg′) = χ(g)χ(g′)

Such functions are called characters. Sn supports only two characters: there is a trivial
character χ(g) = 1 and there is the sign character:

sign(σ) =
P (xσ(1), . . . , xσ(1))
P (x1, . . . , xn)

, P (x1, . . . , xn) = ∏
1≤i<j≤n

(xi − xj)

If σ = σi1⋯σik , then sign(σ) = (−1)k. There is a standard terminology related to this
construction. A state Ψi1,...in satisfies Bose statistics if

T (σ)Ψi1,...in = Ψσ(i1),...,σ(in) = Ψi1,...in

A state Ψi1,...in satisfies Fermi statistics if

T (σ)Ψi1,...in = Ψσ(i1),...,σ(in) = sign(σ)Ψi1,...in

How to set cg,g′ to one There is a mathematical trick that allows to get rid of the
constants cg,g′ in the formula (73). The price you have to pay is the increase in the size of
the group. Here is the construction: the group G̃ is the set of pairs {(α, g)∣α ∈ C×, g ∈ G}.
with multiplication rule

(α, g)(α′, g′) ∶= (αα′c−1
g,g′ , gg

′)

Equation (74) guarantees that the group law satisfies associativity. Its unit is (1,1) and
the inverse to (α, g) is (α−1cg,g−1 , g

−1). Define a representation of G̃ by the rule T (α, g)ψ =
αT (g)ψ. We see that in

T (α, g)T (α′, g′)ψ = T (α, g)(α′T (g′)ψ) = αα′T (g)T (g′)ψ

T ((α, g)(α′, g′))ψ = T ((αα′c−1
g,g′ , gg

′))ψ
= αα′c−1

g,g′T (gg′)ψ
= αα′c−1

g,g′cg,g′T (g)T (g′)ψ
= αα′T (g)T (g′)ψ

cg,g′ cancels out. In the following we will always work (if necessary) with the group G̃.
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Free particle on a circle-another example of system with symmetries The
Hilbert space of this system L(R,2π-periodic)consists of 2π-periodic functions on the real

line R with coordinate θ. the Hamiltonian is − d2

dθ2
. Another model for this space is the

space of functions L(S1) on S1 = {z ∈ C∣∣z∣2 = 1}. The isomorphism is defined by the
formula f(z)→ f(eiθ).

We can think about 2π periodic functions on R as states symmetric with respect to the
group of integers 2πZ = {2πn}:

L(R,2π-periodic) = L(R)2πZ

The character χ in this case is trivial. Unitary characters (∣χ(g)∣2 = 1) of the group 2πZ
have the form

χ(2πn) = e2πinα, α ∈ R
An interesting case is α = 1/k. States symmetric with respect to this character are quasi-
periodic.

(T (g)f)(θ) = f(θ + 2π) = e2πi/kf(θ), g = 2π

Such states are genuinely periodic with respect to translation on 2πk units:

L(R)2πZ,χk ⊂ L(R)2πkZ,1

I would like to identify L(R)2πkZ,1 with functions on the circle S1 by the map θ → eiθ/k =
z. Multiplication on e2πi/k defines a rotation. Under the map θ → eiθ/k this rotation
corresponds to the shift θ → θ + 2π. As (e2πi/k)k = 1 the element e2πi/k generates a finite
cyclic group Zn. We identify

L(R)2πZ,χk = L(S1)Zn,χk = {g(z)∣∣z∣ = 1, g(e2πi/kz) = e2πi/kg(z)}

The spaces of functions L(R)2πZ, L(R)2πkZ are based on the circles S1
a, S1

b , but these are
different circles: We have map S1

b → S1
a. p ∶ eiθ → ekiθ. In terms of the complex coordinate

z it is given by the formula p ∶ z → zk. If you take a function f ∈ L(R)2πZ and compose it
with p, the result will be 2π/k-periodic and lie in L(R)2πkZ. The map has a property that
any point z′ ∈ p−1(z) contains k pre-images. These are z1/k, e2πi/kz1/k, . . . , e2πi(k−1)/kz1/k.
This is an example of a covering map.

Another example of a covering map is θ → eiθ. Pre-image of z ∈ S1 consists of point
−i log z + 2πn. Observe that e2πi(l)/k and 2πn in formulas for covering maps have already
appeared as symmetries.

A.2 Topological construction of coverings and group actions.

In the last example we saw that if we have a space X with a group action and a character
χ of the group we can generate L(X)G,χ of states that have G as a symmetry group. In
this section we discuss how topology can help to construct such actions.

Let X be a subspace in Rn or Cn defined by equations or inequalities.
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Examples of spaces A circle S1 = {(x, y) ∈ R2∣x2 + y2 = 1} = {z ∈ C∣∣z∣2 = 1}. Another
example is the configuration space

Cn = {z = (z1, . . . , zn)∣z ∉ ∪1≤i<j≤n∆i,j}, ∆i,j = {z = (z1, . . . , zn)∣zi = zj}

C1 = C,C2 = {(z1, z2)∣z1 ≠ z2},C3 = {(z1, z2, z3)∣z1 ≠ z2, z1 ≠ z3, z2 ≠ z3}

A path in the space is a continuous function f ∶ [0,1] → X. A closed path is an f such
that f(0) = f(1). For example e2πit,0 ≤ t ≤ 1 defines a closed path in the circle.

We say that two paths f1 ∶ [0,1] → X and f2 ∶ [0,1] → X are homotopic if there is a
continuous function g(t, q),0 ≤ t, q ≤ 1 such that g(t,0) = f1(τ), g(t,1) = f2(τ). Fix a point
x0 ∈X. The set of homotopy classes of paths that start and end at x0 is a group π1(X,x0).
The group law is defined by concatenation of paths:

f1 ∗ f1(τ) =
⎧⎪⎪⎨⎪⎪⎩

f1(2t) if 0 ≤ t ≤ 1/2
f2(2t − 1) if 1/2 ≤ t ≤ 1

We define the universal covering space as a set of pair

X̃ ∶= {x ∈X,g ∶ [0,1]→X ∣f(0) = x0, g(1) = x, g(τ) is defined up to a homotopy}.

The group π1(X,x0) acts on X̃: f × (x, g) = (x, f ∗ g). This way we get a space with a
group action. The is forgetful map p(x, g) = x

The universal cover of S1 Fix a point x0 = 1 a path from z = e2πiθ ∈ S1 to 1 up to a
homotopy is characterized by its winding about 0 ∈ C. An examples of nonhomotopic paths
is f(τ) = e2πi(θ+n)t,0 ≤ t ≤ 1. Pair 0 ≤ θ < 1, n ∈ Z defines a point θ + n on the universal
cover which must be equal to the real line R. Preimage p−1(1) = {n} = Z by construction
coincides with the fundamental group π1(S1,1).

Quotient There are some interesting modifications of the universal cover X̃. Let ρ ∶
π1(X,x0)→ G be a homomorphism of groups We define XG as the quotient space
π1(X,x0)/X̃ ×G. The element h ∈ π1(X,x0) acts by the formula

h(x̃, g) = hx̃, ρ(h)g

If ρ is onto then
XG = Kerρ/X̃.

A.3 Braid group

We begin by taking a layer L = {(x, y, z) ∈ R3∣0 ≤ x3 ≤ 1}, and in it we place n strands of
string, subject to the following conditions:
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1. No part of any strand lies outside the layer.

2. Each strand begins on the top face of the layer, and ends on the bottom face.

3. No two strands intersect.

4. As we traverse any strand from the top face, we are always moving downwards. This
means that no strand has any horizontal segment, or any segment that loops up.

Given an n-braid β (in the layer) we say it is equivalent to another n-braid β′ if the strands
of β can be perturbed to the strands of β′ without doing any of the following:

1. Moving any part of any strand out of the layer.

2. Cutting any strand.

3. Moving any endpoint of any strand.

We can also multiply two n-braids β and β′ by joining the bottom of β to the top of β′. By
doing this we create a new n-braid which we shall denote by ββ′ (we assume that the set of
(x, y) coordinates of the upper ends of stands coincide with the similar set for lower ends).
In the end of this operation we will have to appropriate shift and rescaling in z-direction.
Here is a picture of a braid on 5 strands.

This picture is a two-dimensional image (xz-projection) of the strand. It bares an
obvious similarity with the diagram describing a permutation (75). Though both diagrams
are flat the difference is that the second carries information about under and over crossing
of strands. The braid group Bn on n strands can be defined as an abstract group by
relations similar to Coxeter relations. The generators are τi, i = 1, . . . , n. Relations are
τiτi+1τi = τi+1τiτi+1, τiτj = τjτi.

=
=

τi

τi+1

τi

τi+1

τi

τi+1

τi

τj

τj

τi

Analytically a braid is defined by a collection of function (xi(τ), yi(τ), z(τ) = 1− t), i =
1, . . . , n fi ∶ [0,1]→ L ⊂ R3. A function (x1(τ), y1(τ), . . . , xn(τ), yn(τ)) = (Z1(τ), . . . , Zn(τ))
represents a path in R2 × ⋯ × R2. By definition of the braid Zi(τ) ≠ Zj(τ). Thus
(Z1(τ), . . . , Zn(τ)) defines a closed path in Cn/Sn and an element of its fundamental group
π1(Cn/Sn, x0). In fact this correspondence identifies π1(Cn/Sn, x0) and Bn.
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We see that the universal covering C̃n/Sn = C̃n is equipped with the action of the
braid group. There is a forgetful homomorphism m ∶ Bn → Sn, Kerm = π1(Cn, x0). By
definition of universal cover C̃n/Kerm = C̃n. There are some other interesting choices
of homomorphisms. Consider a group Gn generated by gi subject to relations gigi+1gi =
gi+1gigi+1, gigj = gjgi, g2

i = g2
j = a. Let ρ be a homomorphism Bn → Gn such that ρ(τi) = gi.

The quotient Kn ∶= C̃n/Kerρ is equipped with the action of Gn. In particular the group Z
generated by z acts on Kn. We have Kn/Z = Cn.

The space Kn has an explicit description. The function A ∶ C× → S1 ⊂ C× is defined by
the formula z → z/∣z∣. The space Kn is a subspace in the product Cn ×R:

Kn = {(z1, . . . , zn, τ)∣(z1, . . . , zn) ∈ Cn, τ ∈ R,
P (z1, . . . , zn) = eiτ}

(76)

where
P = A( ∏

1≤i<j≤n

(zi − zj)2) (77)

An element al ∈ Z acts by (z1, . . . , zn, τ) → (z1, . . . , zn, τ + 4πl). In order to define the
action of Gn on Kn we observe that P is defined on Cn/Sn. We associate with any element
β = (Z1(τ), . . . , Zn(τ)) ∈ π1(Cn/Sn) = Bn an integer l(β)/(2π): the number of times
P (Z1(τ), . . . , Zn(τ)) winds about zero. In particular l(τi)/(2π) = 1 Then

gi(z1, . . . , zi, zi+1, . . . , zn, τ) = (z1, . . . , zi+1, zi, . . . , zn, τ + 2π) (78)

Any function ψ(z1, . . . , zn, τ) can be interpreted as a multi-valued function of (z1, . . . , zn)→
{ψ(z1, . . . , zn, τ0 + 2πl)}. Here τ0(z1, . . . , zn) is one of the solutions of P (z1, . . . , zn) = eiτ .

Let us consider an example of such function τ → Eν(τ) = ei(1−ν)τ . This is a quasi-
periodic function

Eν(τ + 2π) = e2πi(1−ν)Eν(τ). (79)

As a multivalued function on Cn it is equal to P (z1, . . . , zn)1−ν . Equations (78,79) imply
that giP (z1, . . . , zn)1−ν = e2πi(1−ν)P (z1, . . . , zn)1−ν More general anyonic multivalued wave
function ψ1−ν(z1, . . . , zn) must come from single-valued function on Kn and satisfy

giψ1−ν(z1, . . . , zn) = e2πi(1−ν)ψ1−ν(z1, . . . , zn)

Note that the fraction of such two functions is a symmetric function in (z1, . . . , zn). Thus

ψ1−ν(z1, . . . , zn) = φ(z1, . . . , zn)P (z1, . . . , zn)1−ν (80)

and φ(z1, . . . , zn) is symmetric
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B On solutions of equation dω = δ

Let R be the vector with coordinates (x, y). In this section we verify that the function
the vector–valued function (a(x, y), b(x, y)) = B×R

R2 is a solution of a pair of differential
equation:

∂ya − ∂xb = −2πδ2(x, y), ∂xa + ∂yb = 0 (81)

δ2(x, y) = δ(x)δ(y) is the two-dimensional δ-function.
It is convenient to think about (a, b) as components of a differential 1 - form ω =

adx + bdy. Equation that involves δ-function becomes

dω = (dx∂x + dy∂y)(adx + bdy) = −(∂ya − ∂xb)dxdy = δdxdy

Let us verify this identity in polar coordinates. In rectangular coordinates we have

B = (0,0,1),R = (x, y,0), F = R

R2
, ω = (B × F ) ⋅ dR

In this formula × stands for the vector product. We have

ω = xdy − ydx
x2 + y2

(82)

In polar coordinates x = r cos(θ), y = r sin(θ) the differentials transform as

dx = dr cos θ − dθr sin θ, dy = dθr cos θ + dr sin θ

We omit straightforward computation which gives

ω = dθ

As the de Rham differential doesn’t depend on system of coordinates we conclude that
dω = (dr∂r + dθ∂θ)dθ = 0. It remains to check that dω(0,0) = ∞ and we have a true
delta-function. To check this we are going to use the definition of delta-function:

∫ ∫
R2
f(x, y)δ(x, y)dxdy = f(0,0)

In the formula f is an arbitrary smooth function which is zero outside the disk D of large
radius. We have to check that

2πf(0,0) = ∫ ∫
R2
fdω = ∫ ∫

D
fdω

By Stocks theorem

∫ ∫
D
d(ωf) = ∫

S1
ωf = 0 (83)

48



if the radius of the disk D is sufficiently large (in this case the function f restricted on its
boundary will be zero). By using an identity

f(dω) = d(fω) − (df)ω
and (83) we conclude that

∫ ∫
D
fdω =∫ ∫

D
−dfω = −∫ ∫

D
(dr∂r + dθ∂θf)dθ

= − ∫ ∫
D
∂rfdrdθ − ∫ ∫

D
(∂rf(r cos(θ), r sin(θ))drdθ

= − ∫
2π

0
f(r cos(θ), r sin(θ))∣R0

=∫
2π

0
f(0,0) = 2πf(0,0)

Divergence ∂xa + ∂yb is equal to (2xy)/(x2 + y2)2 − ((2xy)/(x2 + y2)2) = 0
Here is a procedure that enables us to construct a more general solution of the same

pair of equations. Recall that de Rham operator d satisfies d2 = 0. Pick a function g(x, y).
Then ω + dg still satisfies d(ω + dg) = δ + d2g = δ. Divergence ∇(ω + dg) = 0 + ∇(dg) is
equal to ∆g. ∆ is a Laplace operator. A function g is harmonic if ∆g = 0. Any harmonic
function g in two dimensions is a sum Re(s1(z)+s1(z̄)), where s1(z), s1(z) are holomorphic
functions. In fact the general solution of (81) is adx + bdy = ω + ∂xgdx + ∂ygdy where g is
harmonic.

Suppose we would like to find a solution of a more general equation

∂ya − ∂xb = −2πh(x, y), ∂xa + ∂yb = 0. (84)

We can use ω for this purposes. As h(R) = ∫ ∫R2 δ2(R −R′)h(R′)dx′dy′ we can write

2πhdxdy =2π∫ ∫
R2
δ2(R −R′)h(R′)dx′dy′dxdy

=(dx∂x + dy∂y)∫ ∫
R2
ω(R −R′)h(R′)dx′dy′

(85)

The one-form that encodes the functions a and b is ∫ ∫R2 ω(R−R′)h(R′)dx′dy′. One has to
be careful with this construction - if, for example, the function h is constant, the integral
diverges. It converges if h decay rapidly.

We can, however, turn the theorem into a definition. This means that if we find a
solution dω′ = hdxdy (up to ambiguities discussed above) we can postulate it to be the
value of the integral. For example if h = 1 then ω′ = (−ydx + xdy)/2 satisfies

dω′ = 1dxdy. (86)

In addition ∇ω′ = 0. ω′ is a unique solution of (86) up to addition of a gradient of harmonic
function and a good candidate for definition of right hand side of (85) with h = 1.

Remark 1 Observe that idθ is a logarithmic gradient of the function eiθ. In rectangular
coordinates eiθ is equal to x+iy

√
(x2+y2)

. In complex notations eiθ = z
∣z∣ , where z = x + iy.
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C Gaussian integrals

Pick a symmetric n × n matrix aij . It defines a function a(x) = ∑ni,j=1 aijx
ixj on Rn. Let

assume that a(x) ≥ 0 and a(x) = 0 only if x = (x1, . . . , xn) is zero. We would like to
compute an integral ∫Rn exp(−a(x)/2)dx. This can be done through the series of steps.

c = ∫
∞

−∞
exp(−x2)dx =

√
π

Indeed

c2 =∫
∞

−∞
exp(−x2)dx∫

∞

−∞
exp(−y2)dy = ∫

R2
exp(−x2 − y2)dxdy

=∫
2π

0
∫

∞

0
exp(−ρ2)ρdρ = −2π exp(−ρ2)/2∣∞0 = −2π(−1/2) = π

With a help of change of variables x =
√

2/by we transform the integral

∫
∞

−∞
exp(−bx

2

2
)dx = ∫

∞

−∞
exp (−y2)

√
2/bdy =

√
2π

b

We now know that if bij is a diagonal matrix diag(b1, . . . , bn) then

∫
Rn

exp(−b(x)/2)dx =
n

∏
i=1
∫

∞

−∞
exp(−bix

2
i

2
)dxi =

n

∏
i=1

√
2π

bi
=

√
2π

n

√
det b

To integrate a general quadratic function we can use diagonalization technique. Indeed
first we find the spectrum λ1, . . . , λn of b by solving PB(λ) = det(bij − λδij) = 0. There is
an orthogonal matrix cij whose columns are made of normalized eigenvectors of b. The
change of variables

xi =
n

∑
j=1

cijyj (87)

transforms b(x) → b(c(y)) = ∑ni=1 λiy
2
i . The matrix c satisfies 1 = det(id) = det(cct) =

(det c)2. Thus det c = ±1. It is convenient to work with matrices c whose determinant is
one. If det c = −1 we can always compose it with a matrix diag(1, . . . ,1,−1). The new
matrix c′ will still satisfy b(x)→ b(c′(y)) = ∑ni=1 λiy

2
i but det(c′) = (−1)(−1) = 1. After the

change of variables (87)

∫
Rn

exp(−b(x)/2)dx = ∫
Rn

exp(−b(cy)/2)det cdy =
n

∏
i=1

√
2π

λi
=

√
2π

n

√
det b
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We used that 1 det b1 = det ctbc = det(diag(λ1, . . . , λn)) =∏n
i=1 λi. Now it is easy to compute

Fourier transform of exp(−b(x)/2). Introduce an abbreviation p ⋅ x = ∑nk=1 pkx
k

∫
Rn

exp(−b(x)/2 − ip ⋅ x)dx =∫
Rn

exp(−b(x + ia−1p)/2 − b−1(p)/2)dx

= exp(−b−1(p)/2)∫
Rn+ib−1p

exp(−b(y)/2)dy

= exp(−b−1(p)/2)∫
Rn

exp(−b(y)/2)dy

= exp(−b−1(p)/2)
√

2π
n

√
det b

(88)

In the proof I used identities

b(x + ia−1p) =bkl(xk + ia−1,ksps)(xl + ia−1,ltpt)
=bklxkxl + ibklxkb−1,ltpt + ibklb−1,kspsx

l − bklb−1,kspsb
−1,ltpt

=bklxkxl + 2ixkpk − b−1,stpspt and bklb
−1,ks = δls, bklb

−1,ksb−1,lt = b−1,st

and the fact that analytic exp(−b(y)/2) decay rapidly at infinity in the complex domain
and exp(−b(y)/2) has no singularities. This enables me to deform the domain of integration
from Rn + ib−1p to Rn. Inverse Fourier transform is

1

(2π)n ∫Rn
exp(−b−1(p)/2 + ipx)

√
2π

n

√
det b

dp = exp(−b(x)/2)

In particular in one dimension

1√
2πb

∫
∞

−∞
exp(−p2/2b + ipx)dp = exp(−bx2/2)

From this we see that as b → 0 the Fourier transform of exp(−bx2/2) approaches to Dirac
δ-function. This is a general fact: in the case b(x) ≥ 0 but det b = 0 Fourier transform of
exp(−b(x)/2) becomes a product of δ-functions in the direction of null-space Ker b of b.
In the following we are going to decompose Rn into Ker b + Ker ⊥ b. Fourier transform of
degenerate b will be

constδ(p) exp(−b−1(p′)/2) p ∈ Ker b, p′ ∈ Ker ⊥b. (89)

For convergence of Fourier transform we needed condition b(x) ≥ 0. The final answer does
not need this condition for its formulation. Thus we postulate 89 to be Fourier transform
for nonpositive b(x).

Choose a basis {e1, . . . , ek} for Ker ⊥b and {ek+1, . . . , en} for Ker b. In the basis {e1, . . . , en}
the matrix of b has the block form (B 0

0 0 ). b−1 can be extended to an operator with matrix

(B−1 0
0 0

). In fact we can also use

g = ( B−1 C
Ct D

) (90)
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in computations of 89 as long as p′ ∈ Ker ⊥b, for the blocks C,Ct,D will make no contribu-
tions. Note that b ⋅ g = ( 1 BC

0 0 ). To verify the las equation it suffice to check

p′1 ⋅ b ⋅ g ⋅ p′2 = p′1 ⋅ p′2 (91)

D Elements of second quantization formalism

Second quantization formalism was designed to describe quantum mechanics of systems
with variable number of particles. Even though the number of anyons N remain constant
in our theory it is convenient to use this formalism. As we are interested in fermionic
system (see previous section why) we are going to briefly remind the fermionic version of
the formalism.

We assume that the Hilbert space of one particle is the space of functions {ψ(q)∣q ∈
Rn, ∫ ∣ψ(q)∣2 dV (q) <∞} A wave function in multi-particle Hilbert space is

ψ = {ψ0, ψ1(q1), ψ2(q1,q2), . . .} (92)

All ψn is anti-symmetric functions. By definition

(ψ,ψ) = ∣ψ0∣2 +
∞

∑
n=1
∫ ∣ψn∣2 dV (q1) . . . dV (qn)

Fix a function λ(q). We use λ to define two operators Ψ(λ),Ψ†(λ). Creation operator
Ψ†(λ) takes the function ψk and create a wave-function in k + 1 variables by the formula

(Ψ†(λ)ψk)(q1, . . . ,qk+1) ∶=
1√
k + 1

k

∑
i=0

(−1)ikλ(qσi(1))ψk(qσi(2), . . . ,qσi(k+1))

σ is a cyclic permutation (1,2 . . . , k + 1). The other operator decreases the number of
variable (this is why it is called annihilation operator) acts by the formula

(Ψ(λ)ψk)(q1, . . . ,qk−1) ∶=
√
k∫

Rn
λ(q)ψk(q,q1, . . . ,qk−1) dV (q)

Ψ(λ) acts on ψ0 by zero. Operators Ψ(λ) for different λ anti-commute

Ψ(λ1)Ψ(λ2) +Ψ(λ1)Ψ(λ2) = 0. (93)

Indeed

Ψ(λ1)Ψ(λ2)ψk =
√
k
√
k − 1∫

Rn
∫
Rn
λ1(q)λ2(q′)ψk(q′,q,q1, . . . ,qk−2) dV (q) dV (q′) =

−
√
k
√
k − 1∫

Rn
∫
Rn
λ1(q)λ2(q′)ψk(q,q′,q1, . . . ,qk−2) dV (q) dV (q′) =

−
√
k
√
k − 1∫

Rn
∫
Rn
λ2(q)λ1(q′)ψk(q′,q,q1, . . . ,qk−2) dV (q) dV (q′) = −Ψ(λ2)Ψ(λ1)ψk
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In the second line we pick up minus sign because skew-symmetry of ψk. In the third line
we make a change of variables q→ q′ q′ → q.

Operators Ψ(λ) and Ψ†(λ) are adjoint. We have to verify that (Ψ(λ)ψk, ψ′k−1) =
(ψk,Ψ†(λ)ψ′k−1):

(Ψ(λ)ψk, ψ′k−1) =

=
√
k∫ (∫ λ(q)ψk(q,q1, . . . ,qk−1) dV (q))ψ′k−1(q1, . . . ,qk−1) dV (q1) . . . dV (qk−1)

We change indices: variables q,q1, . . . ,qk−1 will be denoted q1,q2, . . . ,qk.We continue:

=
√
k∫ ψk(q1,q2, . . . ,qk)λ(q1)ψ′k−1(q2, . . . ,qk)dV (q1) . . . dV (qk)

If we apply a a power σi of cyclic permutation σ = (1,2 . . . , k) to variables of
ψk(q1,q2, . . . ,qk) the function up to a sign (−1)(k−1)i stays invariant. We continue:

=
√
k

k

k

∑
i=1

(−1)(k−1)i∫ ψk(qσi(1),qσi(2), . . . ,qσi(k))λ(q1)ψ′k−1(q2, . . . ,qk) dV (q1) . . . dV (qk)

= 1√
k

k

∑
i=1

(−1)(k−1)i∫ ψk(q1,q2, . . . ,qk)λ(qσ−i(1))ψ′k−1(qσ−i(2), . . . ,qσ−i(k)) dV (q1) . . . dV (qk)

= ∫ ψk(q1,q2, . . . ,qk)
⎛
⎝

1√
k

k−1

∑
i=0

(−1)(k−1)iλ(qσi(1))ψ′k−1(qσi(2), . . . ,qσi(k))
⎞
⎠
dV (q1) . . . dV (qk)

= (ψk,Ψ†(λ)ψ′k−1)

From this we immediately obtain

Ψ†(λ1)Ψ†(λ2) +Ψ†(λ2)Ψ†(λ1) = (Ψ(λ2)Ψ(λ1) +Ψ(λ1)Ψ(λ2))† = 0 (94)

Next we are going to verify that

Ψ(λ1)Ψ†(λ2) +Ψ†(λ1)Ψ(λ2) = id∫
Rn
λ1(q)λ2(q) dV (q) (95)
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Ψ(λ1)Ψ†(λ2)ψk =
√
k + 1√
k + 1

∫ λ1(q)(λ2(q)ψk(q1,q2, . . . ,qk)+

+ (−1)kλ2(q1)ψk(q2, . . . ,qk,q)+
+ (−1)2kλ2(q2)ψk(q3, . . . ,qk,q,q1) +⋯) dV (q)

=ψk ∫ λ1λ2 dV (q)+

+ (−1)kλ2(q1)∫ λ1(q)ψk(q2, . . . ,qk,q) dV (q)+

+ (−1)2kλ2(q2)∫ λ1(q)ψk(q3, . . . ,qk,q,q1) dV (q) +⋯

=ψk ∫ λ1λ2 dV (q)+

+ (−1)k+k−1λ2(q1)∫ λ1(q)ψk(q,q2, . . . ,qk) dV (q)+

+ (−1)2k+k−2λ2(q2)∫ λ1(q)ψk(q,q3, . . . ,qk,q1) dV (q) +⋯

=ψk ∫ λ1λ2 dV (q)−

− 1√
k
((−1)2(k−1)λ2(q1)∫

√
kλ1(q)ψk(q,q2, . . . ,qk) dV (q)+

+ (−1)3(k−1)λ2(q2)∫
√
kλ1(q)ψk(q,q3, . . . ,qk,q1) dV (q) +⋯)

=ψk ∫ λ1λ2 dV (q) −Ψ†(λ2)Ψ(λ1)ψk

A very useful choice of λ(q) is a δ-function δn(q−r). Denote Ψ(δn(q−r)) by Ψ(r) and
Ψ†(δn(q − r)) by Ψ†(r). Obviously Ψ†(λ) and Ψ(λ) are superpositions Ψ(r) and Ψ†(r):

Ψ†(λ) = ∫
Rn

Ψ†(q)λ(q) dV (q), Ψ(λ) = ∫
Rn

Ψ(q)λ(q) dV (q)

Operators Ψ†(q) and Ψ(q) satisfy

Ψ(q′)Ψ†(q) +Ψ†(q)Ψ(q′) = δn(q − q′)
Ψ†(q)Ψ†(q′) +Ψ†(q′)Ψ†(q) = 0

Ψ(q)Ψ(q′) +Ψ(q′)Ψ(q) = 0

(96)

These formulas reduce to (93),(94),(95) after multiplication on λ1(q) and λ2(q′) and inte-
gration.
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