
In the Driver’s Seat: Counterdiabatic Driving to
Optimize Bacterial Infection and Cancer

Treatments

An honors thesis presented for the degree of Bachelor’s of Science

Jacob Marglous 5

Department of Physics
Brown University

Thesis Advisor: Professor Daniel Weinreich
Concentration Advisor: Professor James Valles

Abstract 10

Evolution of drug resistance poses a challenge to the successful treatment of in-
fectious diseases and cancer because variants of bacterial pathogens and cancers
that are resistant to front-line treatments tend to emerge rapidly. In response,
clinicians can develop multistep evolutionarily-informed treatments that pro-
mote drug susceptibility. However, the efficacy of such treatments has been 15

limited by the stochasticity of evolution and lack of a priori knowledge of the
possible evolutionary paths a population may take. Recent work has established
that increased control over an evolving population can be achieved via counter-
diabatic driving, a physical technique originally developed to maintain quantum
systems in a ground state as their environment is manipulated in finite time. 20

In the evolutionary context, this has translated to maintaining a population as
close as possible to the equilibrium distribution of genotypes by manipulating
applied drug dosages. Here, I build on this previous work by adding temper-
ature as a second parameter for counterdiabatic driving protocols. Ultimately,
this work will hopefully lead to more efficient and successful treatments against 25

evolving diseases.
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1 Introduction 50

The power of evolution is evident in the vast diversity of life on Earth. The

“blind watchmaker” is responsible for the emergence of living forms over mil-

lions of years from single-celled prokaryotes to the vast and constantly changing

variety recognizable now. Tendency toward diversity has been called biology’s

”first law” [28], and evolution by natural selection, which acts upon that diver- 55

sity, ”perhaps biology’s only guiding principle” [3]. British naturalist Charles

Darwin famously stated his law of natural selection in his 1859 manuscript ”On

the Origin of Species” [10]. Fundamentally, the theory of natural selection states

that traits emerging randomly confer fitness effects to individuals in a popula-

tion. Individuals with higher fitness can produce more offspring, resulting in an 60

increase in frequency of fitness-conferring traits over the entire population.

This power means that evolution can also pose a danger to human health on

shorter time scales. The well-reported and growing problem of antibiotic resis-

tance is fundamentally a problem of evolution. When a course of antibiotics is

not prescribed correctly or not completed as prescribed, individual pathogens 65

that happen to be resistant to the treatment by virtue of some mutation or

other natural variation gain a relative fitness benefit from the treatment as they

can continue to reproduce. Eventually this results in the entire population of

bacteria developing resistance to the treatment. Pesticide resistance is a sig-

nificant problem in agriculture, with costs of xx per year [source]. Increasing 70

prescription of antibiotics have also raised concerns about bacterial antibiotic

resistance in human pathogens. A majority of World Health Organization mem-

ber regions have reported at least 50% resistence in common bacterial strains

like Escherichia coli, Staphylococcus aureus, and Streptococcus pneumoniae [40],

while a clinical class of ”reserve” antibiotics has been set aside for use only in 75

last-resort circumstances, to preserve their effectiveness in the face of growing
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resistance [39].

Cancer, too, is fundamentally a disease of evolution. Tumours are highly

heterogenous, and the cancer genome is extremely unstable [19] [30]. As a

result, cancers generate a large number of variants that serve as fodder for 80

natural selection. A large majority of cancer deaths result from metastasis

of tumors from their original location to new tissues, which occurs when the

cancer acquires, via mutation, biomarkers that allow it to seed in those new

locations.[14] This high mutation rate makes treating cancer very challenging,

as treatments often achieve remission but are unsuccessful at killing all the 85

cancer cells in the body. The remaining treatment-resistant cells proliferate,

resulting in recurrences of the disease. [23]

In a more emergent example, the recent COVID-19 epidemic has brought

evolutionary questions into the forefront of public interest. High global case

counts of coronavirus disease provide many replication cycles for the virus to 90

generate mutations [7]. Once fitter variants emerge in the population, they gain

a selection advantage over the remainder of the viral population by virtue of

their enhanced transmissibility and quickly become dominant, and could even

potentially evade currently available vaccines. [15]

An array of evolutionarily-informed treatments have emerged to improve 95

treatment outcomes for such evolving pathogens. Populations will always tend

towards resistance against a treatment, but clinicians can turn this tendency to

their advantage by applying a well-chosen sequence of treatments to the newly-

resistent population. That is, clinicians may hope that developing resistance to

one drug may induce susceptibility in a second (or third, etc.). For example, 100

to maximize treatment efficacy against cancer, clinicians have developed dosage

plans utilizing combinations of multiple drugs [34].

Evolutionarily-inspired treatments have been explored experimentally in vitro
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by testing bacterial cultures for resistance to pairs of sequentially applied an-

tibiotics. [32]. It was found that a large majority of drug pairs promote cross- 105

resistance, rather than drug susceptibility, so naively chosen multi-drug combi-

nations are unlikely to result in successful treatment in the long-term.

The first reason for this is biochemical: there are a limited number of aspects

of bacterial cell biology that are not conserved in humans and therefore make

good potential antibiotic targets. For example, many drugs inhibit growth by 110

targeting the bacterial cell wall [8]. If a bacterial population has developed a

mechanism of resistance to one cell wall-targeting antibiotic, it is likely that

this alternative mechanism will not be disrupted by a second cell wall-targeting

antibiotic either.

The second reason is the stochasticity of evolution: because random muta- 115

tions provide the diversity that natural selection acts upon, evolution is fun-

damentally a random process. Experimentally, it has been observed that even

among susceptibility-promoting pairs of drugs, the desired effect of sequential

dosing is not guaranteed.[31]. This is because the population can evolve along a

number of genetic pathways which are chosen from essentially at random. One 120

could imagine that a first drug acts upon some aspect of a pathogen’s biology

by inhibiting a particular essential protein. There is some set of mutations

in the gene encoding that protein that confers resistance to the drug. Any of

those mutations could be present in a portion of the population being treated,

and would equivalently become common throughout the entire population via 125

natural selection as the treatment continues. However, only a subset of the

mutations conferring resistance to drug 1 also confer resistance to drug 2, so

cross-susceptibility and cross-resistance are not deterministic relationships in

general.

By attempting to control bacterial [20] [42] [25] and cancer cell [4] [1] popula- 130
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tions via evolutionary trade-offs, these works have attempted to expand extant

knowledge of possible evolutionary pathways toward control of the patheways

themselves. However, the stochasticity of evolution has continued to limit their

efficacy. Recent efforts have attempted to extend this evolutionary control of a

population to every point throughout a treatment using counterdiabatic (CD) 135

driving [21]. CD driving is a technique to maintain a quantum system at its

ground state throughout a change in its environment applied over finite time,

but can also be applied to classical stochastic systems. Applied to models of

biological evolutionary systems, it can also be used to derive optimal treatment

protocols that maintain the population at equilibrium genotype distributions 140

throughout treatment. Iram et al. used as proof-of-concept a population of 16

yeast genotypes evolving under application of a single drug. In this work, I seek

to extend their results by working towards CD driving protocols to maintain

at equilibrium a more complex system of 32 bacterial genotypes evolving under

two control parameters: antibiotic concentration and temperature. 145

This thesis will consist of three main parts. First, I will present a basic

overview of mathematical models of biological evolution, and of counterdiabatic

driving. Then, I will detail how we developed a mathematical model of the

bacterial population in question from experimental data. Finally, I will present

results from numerical and simulation-based approaches to understand the evo- 150

lutionary dynamics of this system. While we have not yet been able to derive a

counterdiabatic driving protocol for this system, we hope to continue this work

in the future, and also hope that more general counterdiabatic driving proto-

cols will pave the way for more directly clinically relevant improvements to this

technique in the future. 155
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1.1 Fitness Landscapes and the Wright-Fisher Model

A mathematical formalism for the ideas sketched above begins with the concept

of a fitness landscape, first introduced by Sewell Wright in 1932 [41]. The fitness

landscape exists in a space of all available genotypes (i.e. all the possible variants

in the population), such that genotypes more easily accessible to each other via 160

mutation are closer to each other. For example, two variants separated from

each other by one mutation should be adjacent, while variants separated by

several mutations are further away. Then, fitness (or growthrate) of each of the

variants in a given environment is represented by height of a fitness function

at each point in the sequence space. The result is a rugged function with hills 165

at high-fitness alleles, separated by valleys of low fitness. A population can

be represented by a single point in the sequence space by taking a weighted

average of the genotypes in the population. As fitter mutants inevitably emerge

and become more common due to random variation and natural selection upon

them, populations tend to climb up hills on fitness landscapes. 170

A population’s movement on a fitness landscape can be represented by a

Wright-Fisher model, first described by Wright and R.A. Fisher in 1931 [2].

In the simplest version of the Wright-Fisher (WF) model that ignores selection,

reproduction is simulated by randomly selecting (with replacement the members

of the population at generation t + 1 from the members of the population at 175

generation t. That is, for the two-genotype case (individuals are denoted by a

genotype that is either i or j),

Pij =

(
N

j

)
(
i

N
)j(1− i

N
)N−j (1)

Where the number of individuals at generation t is N , i is the number of

allele A in generation t, j is the number of allele A in generation t+ 1, and Pij

is the probability of the count of allele A changing from i to j. Because the 180
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transition probability Pij for generation t does not depend on values of j for

any generation besides the one immediately before it, Wright-Fisher evolution

is a Markov process. It can be shown that the expected value of j at each time

point is simply the initial number of A in the population, and that over many

time steps the variance around this expectation will reduce to 0. Also note that 185

this model does not allow for population growth: for any j(t), i(t) = N − j. [26]

The model can be generalized to include selection by biasing the selection to

favor fitter alleles. Additionally, when the population includes more than two

alleles {A1, A2, . . . Am}, the frequencies of alleles in the population is represented

by a vector,

~x =



x1

x2

. . .

xn


And Pmn becomes a Markov transition matrix where off-diagonal entries Pij

are the probability of offspring transitioning from parental allele m to offspring

allele n, and the diagonal entries Pii are the probabilities of offspring keeping

the same allele as their parents. 190

1.2 The Langevin equation and the Fokker-Planck approx-

imation in one dimension

When population size is sufficiently large and mutation rate sufficiently small,

changes in gene frequencies across generations can be approximated as contin-

uous, and the Wright-Fisher model becomes a continuous Markov process. The 195

Langevin equation provides an update formula for continuous random variables.

In one dimension, the standard form Langevin equation is (2):
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x(t+ dt) = x(t) +A(x(t), t)dt+D1/2(x(t), t)N(t)(dt)1/2 (2)

Where X is a continuous Markov random variable, A(X, t) and D(X, t) are

smooth functions, N(t) is a unit normal random variable with the property that

N(t) is independent of N(t′) for t 6= t′. This is a generalization of the familiar 200

update formula for X from deterministic one-dimensional calculus that

x(t+ dt) = X(t) +A(x(t), t)dt (3)

Where

A(x(t), dt) =
dx

dt
|t

That is, the additional term introduces indeterminacy to the update formula

for X via the normal distribution. [16] Paul Langevin initially used his equation

to describe the velocity of diffusing particles. Newton’s second law for such a

particle states that

m
dV (t)

dt
= −γV (t) + F (t)

Where the right-hand side of the equation is the sum of forces experienced by

the particle. −γV (t) is a drag force with γ the drag coefficient, and F (t) is a

randomly fluctuating force representing the tendency of diffusing particles to

spread via Brownian motion (i.e. via a continuous random walk). Compar- 205

ing this specific case with the general form of the Langevin equation, A(x, t)

be named the drift function, representing a global shift in the position of the

population of particles, and D(x, t) as the diffusion function, representing the

population’s increasing dispersal with time.

The forward Fokker-Planck equation describes the density function of the 210
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random variable x:

∂

∂t
P (x; t) = − ∂

∂x
[A(x, t)P (x; t)] +

1

2

∂2

∂x2
[D(x, t)P (x; t)] (4)

And the reverse Fokker-Planck equation states that:

− ∂

∂t0
P (x, t|x0, t0) = A(x0, t0)

∂

∂x0
P (x, t|x0, t0) +

1

2
D(x0, t0)

∂2

∂x20
P (x, t|x0, t0)

(5)

While these equations appear complicated, a helpful derivation is given in [36].

In a foundational paper published in 1955, Motoo Kimura derived expres-

sions for A(x, t) and D(x, t) for the Wright-Fisher model in one dimension (i.e.

with two competing genotypes, so one degree of freedom.) In his formulation,

the drift function is:

A(x; t) = sx(1− x)

Where x(t) is the frequency of allele 1, and s is a selection coefficient, or rescaled

fitness value. More specifically, in this case it is half the difference in fitness

between allele 1 and allele 2. For the diffusion function,

D(x; t) =
x(1− x)

2N

Where N is the number of individuals in the population. So, the forward Fokker-

Planck equation becomes [24]: 215

∂

∂t
P (x; t) = −s ∂

∂x
x(1− x)P +

1

4N

∂2

∂x2
x(1− x)P
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1.3 The Langevin equation and the Fokker-Plank approx-

imation in multiple dimensions

Now, instead of a single random variable x, consider a continuous Markov pro-

cess where the state of the system at each time point is represented by a vector

of M random variables

~x(t) =



x1(t)

x2(t)

. . .

xM (t)


The Langevin equation becomes [17]

xi(t+ dt) = xi(t) +Ai(~x(t), t)dt+

M∑
j=1

bij(~x(t), t)Nj(t)(dt)
1
2 (6)

This updating formula requires a set of M A functions and M2 b functions.

Again, the element of stochasticity enters only in the final term of the equation. 220

If each of the M2 functions bij go to 0, then the result is a more familiar

set of coupled first-order ordinary differential equations, so this equation can

be interpreted as a stochastic generalization of the more familiar deterministic

result. In this case, the probability density function of the state of the system as

it evolves is now represented by multivariate Fokker-Planck equation. Following 225

the derivation in [17], the multivariate forward Fokker-Planck equation is:

∂P (~x, t|~x0, t0)

∂t
= −

M∑
i=1

∂

∂xi
[Ai(~x, t)P (~x, t| ~x0, t0)]+

1

2

M∑
i=1

∂2

∂x2i
[Di(~x, t)P (~x, t| ~x0, t0)]

+

M∑
i,j=1[i<j]

∂2

∂xi∂xj
[Cij(~x, t)P (~x, t|~x0, t0)]

(7)
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The multivariate backwards Fokker-Planck equation is:

−∂P (~x, t|~x0, t0)

∂t0
=

M∑
i=1

Ai(~x0, t0)
∂

∂x0i
[P (~x, t|~x0, t0)]

+
1

2

M∑
i=1

Di(~x0, t0)
∂2

∂x20i
[P (~x, t|~x0, t0)]

+

M∑
i,j=1[i<j]

Cij(~x0, t0)
∂2

∂x0i∂x0j
[P (~x, t|~x0, t0)]

(8)

At each time step, each element of the vector ~x is changed by an increment

δxi(dt; ~x, t) = xi(t+ dt)− xi(t). (9)

Where δxi is a random variable. The M Ai values are means of δxi for each i:

〈δxi(dt; ~x, t)〉 = Ai(~x, t)dt, i = 1, ...,M (10)

The M Di values are the variances of δxi for each i: 230

var[δxi(dt; ~x, t)] = (〈δx2i 〉 − 〈δxi〉2) = Di( ~x, t)dt; i = 1, ...,M (11)

And the 1
2M(M + 1) Cij values are covariances of δxi and δxj , where i and j

index different elements of the vector.

cov[δxi(dt; ~x, t), δxj(dt; ~x, t)] =
1

2
〈δxiδxj〉−〈δxi〉〈δxj〉 = Cij(~x, t)dt; i < j = 1, ...,M

(12)
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1.4 The Wright-Fisher model in multiple dimensions

When the population includes more than two alleles {A1, A2, . . . AM}, the fre-

quencies of alleles in the population is represented by a vector,

~x(t) =



x1

x2

. . .

xM−1


The WF model is generalized to this case by expanding Pij , which becomes

a Markov transition matrix where off-diagonal entries Pij are the probability 235

of offspring transitioning from parental allele i to offspring allele j, and the

diagonal entries Pii are the probabilities of offspring keeping the same allele

as their parents. The 2 genotype model had one degree of freedom and was

modelled by a one-dimensional Langevin equation; here, the m genotype model

has m−1 degrees of freedom, so it is modelled by an m−1-dimensional Langevin 240

equation. (The frequency iM can always be trivially obtained by computing

1−
∑M−1
i=1 xi.)

We can simplify the multivariate Fokker-Planck equations by defining a dif-

fusivity matrix that includes both variances of each dxi and covariances of dxi

and dxj . Dij(~x) is an M − 1×M − 1 matrix with entries

Dij =
〈δxiδxj〉 − 〈δxi〉〈δxj〉

2

Then, the forward Fokker-Planck equation (7) becomes

∂

∂t
p(~x, t) = −

M−1∑
i=1

∂

∂i
vi(~x;λ(t))p(~x, t) +

M−1∑
i=1

M−1∑
j=1

∂

∂i

∂

∂j
Dijp(~x, t)) (13)

13



Note that here we have replaced Ai with vi to denote that this term repre-

sents the velocity of the population as it evolves toward fitter genotypes. This 245

first term also depends on experimental parameters λ; for example, these could

be temperature or drug concentration. The experimental parameters can be

controlled and can vary with time; thus, they are also called control parame-

ters. The first term of the Fokker-Planck equation includes this λ-dependence

because the average direction of δxi over the entire ensemble of possibilities is 250

determined by its fitness at the given control parameters. The second term does

not include a λ-dependence because it describes the stochasticity of evolution.

That is, fitness-increasing and fitness-decreasing mutations are equally likely to

arise, so on short time scales an evolutionary process is essentially random.

More specifically,[5] 255

vi(~x;λ(t)) =

M−1∑
j=1,j 6=i

mijxj + gij(~x)sj(λ(t)) (14)

and

Dij(~x, t) =
gij(~x)

2N
(15)

Where m is an M ×M mutation rate matrix with off-diagonal entries mij equal

to the probability of an individual mutating from i to j, and diagonal entries mii

equal to negative of the total probability of mutating away from i (see Appendix

2). The matrix g has off-diagonal elements gij = −xixj and diagonal elements 260

gii = −xi(1−xi). sj is an entry in a vector of selection coefficients of length M−

1; as in the original description by Kimura, the selection coefficients are simply

rescaled growthrates, so each genotype’s selection coefficient corresponds to its

fitness and its contribution toward the mean velocity of the overall population

distribution. 265

This equation can also written in a simpler form by combining v and D into
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a single Fokker-Planck operator L(λ(t)):

∂

∂t
p(~x, t) = L(λ(t))p(~x, t) (16)

From this form, it is simple to see that there is an equilibrium probability distri-

bution associated with the operator L, and therefore with the control parameters

λ(t). This equilibrium distribution is denoted as ρ. 270

0 = L(λ(t))ρ(~x, t) (17)

The equilibrium probability distribution of the genotype vector can be ap-

proximated as a multivariate normal distribution.With this approximation and

a continuity argument governing how the equilibrium probability distribution

can change in successive time steps (see [21]), the following equation including

first moments of the distribution can be defined: 275

0 ≈
M−1∑
µ=1

miµΣjµ(λ(t)) +

M−1∑
k=1

[x̄i(λ(t)δik − x̄i(λ(t))x̄k(λ(t))]sk(λ(t)) (18)

Where δik is the Kronecker delta. This equation can then be solved for all

i, i = 1, ...M − 1 to obtain the equilibrium distribution for any landscape.

1.5 Fitness Seascapes and treatment paths in parameter

space

I would now like to explore more deeply two ideas which I previously presented: 280

the fitness landscape and the dependence of the Langevin and Fokker-Planck

equations on experimental control parameters, denoted by λ. The connection

between the two is simple: For some values of control parameters (i.e. drug con-
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centration or temperature), each genotype in a population will have some growth

rate, or fitness. These fitnesses are what give shape to a fitness landscape, and 285

also what determine the location of the equilibrium genotype distribution in

genotype space.

However, over the course of a clinical treatment of a bacterial infection, the

control parameters are not static: one can imagine that the concentration of

drug seen by bacteria in the bloodstream might begin at 0, before the infection 290

is treated. Then, it might increase steadily as the patient starts a prescribed

course of antibiotics before leveling off at a high steady-state concentration.

(One could also imagine that it might fluctuate, dipping between daily doses or

if a patient skips a dose). Because the control parameters change continuously as

a function of time, the landscape the population evolves on and the equilibrium 295

distribution of the population do as well. The result is that a static landscape

of fitness hills and valleys at every time point becomes a dynamic seascape of

moving fitness crests and troughs.[29]

If a population is allowed to evolve on a single landscape for infinite time, it

will eventually reach the equilibrium distribution. The time required to reach 300

equilibrium can be long because populations evolve on the time scale of gener-

ations: it takes some time for weaker mutants to die out and allow fitter ones

to emerge as more frequent. Additionally, fitness landscapes can be complex,

and mutations, both fitter and less fit, emerge randomly, so it can take many

generations for populations to find peaks of fitness landscapes.[22] 305

In the case of a treatment protocol and a population evolving on a fitness

seascape, the situation is even more dire. Not only is there a delay associated

with the evolution of the population on the landscape at each time step of the

protocol, but the landscape itself changes, resulting in an even larger lag.
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1.6 Counterdiabatic driving of a Wright-Fisher popula- 310

tion

A quantum system can exist only in discrete eigenstates which are determined

by the conditions of the system. For example, a particle in a box, whose wave-

function is represented by Schrödinger’s equation, is constrained to specific en-

ergy states determined by the width of the well. If the width of the well is 315

changed, the wavefunction initially in the ground state will decompose into a

superposition of higher-energy wavefunctions. The quantum adiabatic theorem

states that to maintain a quantum system at the ground state throughout such

a change in environmental conditions, the change must be applied infinitely

slowly. 320

Counterdiabatic (CD) driving is a technique developed to evolve a quantum

system at ground state without requiring infinite time.[12][13][18]Though suc-

cessful for quantum systems [6][9], it is also possible to apply this technique

to stochastic classical systems due to similaritities between the Fokker-Planck

equations which govern such systems, and the Schrodinger equation.[27]. 325

In the case of an evolutionary system, sketching the desired behavior of a

CD driving protocol is simple. Rather than considering a FP operator that

determines the behavior of an actual probability distribution in time (13), we

consider a modified FP operator L̃, dependent on the control parameters and

their rate of change, which determines the behavior of the equilibrium distribu- 330

tion:

∂

∂t
ρ(~x;λ(t)) = L̃(λ(t), λ̇(t))ρ(~x;λ(t)) (19)

For a given ”naive” drug treatment, determining the form of L̃ is a two-step

process. Here and elsewhere in this thesis I rely heavily on the work of Iram et

al., to whom I am greatly indebted. First, a change in the vector of selection

coefficients δ~s(t) necessary to maintain the population as close to equilibrium 335
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as possible is calculated. Then, the perturbation in the original treatment plan

necessary to produce those selection coefficients is determined.

Note that in (13) the variance term is not dependent on the control pa-

rameters; the CD protocol can only be implemented by modifying the selection

coefficients by changing the control parameters, so the variance term is the same 340

in L̃ as in L. The difference between the two operators is in the modified velocity

terms ṽi:

ṽi(~x;λ(t), λ̇(t)) = vi(~x;λ(t)) + gij(~x)δs̃j(~x;λ(t), λ̇(t) (20)

The whole modified Fokker-Planck equation is:

∂

∂t
ρ(~x;λ(t)) = −

M−1∑
i=1

∂

∂i
ṽiρ+

M−1∑
i=1

M−1∑
j=1

Dijρ (21)

Where I’ve left out the dependencies on ~x, λ and λ̇ for clarity. This can be

rewritten as 345

∂

∂t
ρ(~x;λ(t)) = Lρ−

M−1∑
i=1

ρgijδs̃j (22)

And ρ is the equilibrium distribution of L, by definition Lρ = ∂
∂tρ = 0, so

∂

∂t
ρ(~x;λ(t)) = −

M−1∑
i=1

ρ(~x;λ(t))gij(~x)δs̃j(~x;λ(t), λ̇(t)) (23)

So the δ~s that satisfies this equation (and a continuity requirement) is the

counterdiabatic driving protocol required, in terms of selection coefficients.

The second step is to convert this perturbation of selection coefficients to a

perturbation of the path through the parameter space. This is a system-specific 350

question which we have not yet considered for our model, but the supplementary

information of [21] includes a helpful discussion as well as a couple of examples.
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2 Methods and Results

2.1 Constructing a smooth bivariate fitness function

β-lactam antibiotics like penicillin are broken down by a bacterial protein named 355

β-lactamase. Resistance to such antibiotics emerges via a series of 5 point

mutations in the β-lactam-encoding gene: four in the coding region of the gene,

and one upstream of the coding region, which influences gene transcription. A

β-lactamase resistance landscape thus contains 25 variants, resulting from the

5 locations being either wild-type (WT) or mutant.[38] 360

My efforts on this project begin with growth rate data on the variants of

E. coli that make up this landscape. For convenience, and following previous

authors, I have adopted a five-bit notation, in which a WT state is assigned a

0 and a mutant a 1. For example, the wild-type genotype is denoted 00000,

and the fully-mutant genotype 11111. There is a finite mutation rate that sets 365

distances in sequence space: a single organism will acquire one mutation faster

than it acquires two. Using the bit notation, we can diagram the distances

between any pair selected from the 32 alleles in sequence space (figure 2.1)

In this drug-resistance model system, a useful measure of fitness is the min-

imum concentration of antibiotic required to stop a colony of a given variant of 370

the bacteria from reproducing. This measure is called the minimum inhibitory

concentration (MIC). A previous member of the Weinreich lab measured MIC

for several replicates of populations of each of the 32 alleles at 6 temperatures

(20, 25, 30, 35, 37, and 41◦C). (Table 4.1)

Our goal was to explore counterdiabatic driving on a fitness seascape in which 375

temperature and drug concentration were both available as control parameters,

building on previous work which used drug concentration alone. [21] To obtain

fitness as a smooth function of both temperature and drug concentration, we

first sought fitness functions for each of these control parameters separately,
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Figure 1: Bit representation of a 32-genotype landscape. This is the organization
of the system in sequence space; a landscape could be visualized by plotting the
fitness of each allele above its place on this map.

beginning with concentration. MIC is a limited measure of fitness because it 380

is simply the single minimum concentration value for which there is no growth

rate. Our first task was therefore to fit these MIC values to a fitness function.

Iram et al., which has served as a model for us throughout the project, used a

fitness seascape created by fitting growth rates of variants of the malaria parasite

with increasing drug concentration to a logistic curve. This matches matching 385

the intuition that growth rate will be relatively unaffected by very small con-

centrations of drug and then quickly decline near a critical concentration. The

Hill function [33]

g(x) =
gdrugless

1 + e
IC50−x

c

(24)

Takes three parameters: the drugless (maximum) growth rate gdrugless, the

IC50, which is the drug concentration that inhibits 50% of bacterial growth 390
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(another fitness measure analagous to the MIC), and c, which defines the slope

of the curve at the IC50. Noticeably, none of these parameters are directly

available to us from the E. coli growth data, and while the MIC represents a

concentration for which there is no growth, in the Hill function g only asymp-

totically approaches 0. So, our first step is to argue that at the experimentally 395

defined MIC there is most likely a small amount of growth that still occurs, and

that we can therefore re-define the MIC as the IC95 – i.e. the drug concentra-

tion that inhibits 95% of growth. With a few lines of algebra, we can obtain a

new Hill function taking IC95 as a parameter instead of IC50 (see the appendix

for the full but very simple derivation). 400

g(x) =
gdrugless

1 + 19e
IC95−x

c

(25)

We were unable to address the other two parameters through the data as

directly. First, we elected to set the gdrugless to the same value for all of the al-

leles. This is somewhat of a flaw in our model. Lack of a general trend between

fitness in the presence and absence of drug is somewhat supported by the pre-

vious fitting efforts which were the model for this work [33]. There is no easily 405

detectable pattern between high-drug-concentration fitness and gdrugless; how-

ever, there differences in gdrugless between alleles do exist. Further, additional

research efforts in a different E. coli drug-resistance system suggests the exis-

tence of “adaptional tradeoffs” – that is, that fitness in a stressful environment

is often negatively correlated with fitness in an non-stressful environment.[11] 410

For the final parameter c, given the lack of better options, we simply elected

to fill in our model with the same value used in the previous efforts [33],

c = −.6824968, which was constant across alleles. Because in this project

we were not yet seeking to develop actionable treatment plans for E. coli but

rather simply to extend counterdiabatic protocols to support a second control 415
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parameter dimension of temperature in addition to concentration, we felt that

this approximation was justified.

Figure 2: (a) Logistic fitness function of drug concentration, fitted to an ex-
perimental MIC. (b) Ratkowsky 3 fitness function of temperature. (c) 6 logis-
tic fitness functions of drug concentration for allele 31 at the 6 experimental
temperatures. Drugless growthrates are set by the Ratkowsky 3 model. (d)
Interpolated smooth bivariate fitness function for allele 31 to fill in the missing
fitness values in (c).

From an evolutionary perspective, places were fitness curves of different vari-

ants cross are particularly interesting because they are the place in parameter

space where transitions between favored alleles occur. However, with the same 420

drugless growth rate and same c, there are no such crossovers in our model

along a single-temperature slice of the parameter space. An interesting future

direction would be to test the drugless growth rates of each genotype to improve

the realism of the model.

Turning our attention to temperature, we reviewed the available published 425

functions of bacterial growth rate as a function of temperature. In the food

sciences literature [43] we found a useful model, called the Ratkowsky 3 model,
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that describes an increase in growth rate from a minimum growth-supporting

temperature to the biological temperature of 37◦C, followed by a more rapid

decline to a maximum growth-supporting temperature, which matches the shape 430

one would intuitively expect for such a function. The Ratkowsky model [35]

g(T ) = [b3(T − Tmin)]2 ∗ (1− exp[c3(T − Tmax)]) (26)

takes 4 parameters which have been fitted to growth curves for Lactobacillus

plantarum, another species of bacteria. Again, in the absence of results directly

relevant to our variants of E. coli, we chose to fill in our model with these fitted

constants as-is: b3 = .0410, c3 = .161Tmin = 3.99, Tmax = 43.7. We used this 435

function to set the maximum growth rate for the Hill function of growth rate as

a function of drug concentration at each of the six experimental temperatures,

for each of the 32 tested alleles. This resulted in six parallel quasi-experimental

fitness-concentration curves for each of the alleles (figure 2.1). Then, to obtain

a smooth fitness function of concentration and temperature G(T, [drug]), we 440

applied interpolation tools from the SciPy toolkit to fill in the missing values.

[37]

We defined fitness as a relative growth rate advantage over a reference al-

lele, for which we selected allele 31 (11111). That is, for allele i, the selection

coefficient si is 445

si(T, [drug]) =
growthratei(T, [drug])

growthrate31(T, [drug])
− 1 (27)

The subtraction simply changes the reference w31 from 1 to 0. With this,

we successfully converted the available experimental data to a smooth fitness

function of temperature and drug concentration for each allele. At low concen-

trations, fitnesses for each allele are very similar, but as concentrations increase,
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Figure 3: Smooth bivariate fitness functions of drug concentration and temper-
ature. log[drug] is shown on the x axis and temperature on the y. Scale of the
heatmap is the same as in (Figure 2.2). Purple dots indicate the locations of
the MICs used to build the model.

interesting differences begin to emerge. Notably, for several alleles there are 450

multiple fitness peaks and valleys in the temperature dimension, suggesting in-

teresting opportunities for driving protocols that exploit these features to favor

certain alleles over others.

2.2 Drawing treatment plans and calculating equilibrium

distributions 455

With the construction of the fitness seascape complete, we can now consider a

variety of treatment regimens in the form of pathways through the parameter

space. For the moment I’ll consider a simple case, in which temperature is

increased as a function of time while concentration is held constant. As we

make a treatment plan by drawing a path through the parameter space, we can 460

pull out a selection coefficient at each point on the path for each allele.

We can then use those selection coefficients to calculate the equilibrium

distribution associated with the control parameters at each time step. There
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Figure 4: A path through the parameter space. (a) a temperature treatment at
constant drug concentration is drawn through the parameter space as a series
of green dots. (b) The temperature of the treatment is plotted as a function of
time. (c) Selection coefficients of the 32 alleles are plotted at sampled points on
the treatment path.

is no closed form of the equilibrium probability distribution for many alleles.

Therefore, to calculate equilibrium frequencies for each time step, we solved 465

(18) numerically. (As a reminder, this equation was derived by approximating

the population as a multivariate normal distribution in sequence space and then

specifying regularity conditions.) The numerical calculation was performed by

a solver in Python included in the SciPy ”optimize” library. After making a

guess at the initial distribution manually, the solver was run at each time step, 470

updating the guess genotype frequency vector for the solver to look near at each

step with the solution for the previous step.

We were challenged by practical difficulties in the solution of this equation.

(18) is underdetermined, and the solver returned unwanted negative genotype

frequencies at places in treatment protocols where changes in the control param- 475

eters were most rapid. We attempted a number of approaches to produce more

accurate answers, including running an agent-based simulation for long times on

the landscape of the time step (see next subsection) and using the endpoint of

the simulation as the guess solution for the solver. The most successful approach
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was to increase the density of points along the treatment pathway in parameter 480

space which were sampled for the equilibrium calculation. More frequent sam-

ples reduced the distance in sequence space between successive instantaneous

equilibria, enabling the solver to more effectively locate the desired frequencies.

Reducing the size of the genotype space also increased the effectiveness of the

solver. (figure 2.2). However, this is somewhat unsatisfying, as we hope to 485

calculate equilibria for all genotypes in the system.

Figure 5: Troubleshooting the numerical equilibrium calculation. (a) For 32
genotypes, the solver returns negative genotype frequencies. (b) Effect of dimen-
sionality on the solver: the solver returns more reasonable genotype frequencies
for the same seascape when only 8 genotypes are considered. (c) Increasing
sampling density improves the solver’s accuracy: decreasing the time between
samples of the control parameter path results in more reasonable answers. Left
is a time difference of 1 unit; right is a time difference of .5 units.

2.3 Agent-based simulation to determine behavior of pop-

ulations under treatment plans

Iram et al. used counterdiabatic driving to minimize the lag between the

numerically-calculated equilibrium distribution evolving under a drug concen- 490

tration ramp, and the actual frequency distribution of the population. Because
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we were unable to generalize their simulation to support a 32-genotype system

as well as their 16-genotype one, we used their simulation, written in C++, as

a template for a new agent-based simulation in Python that can support any

number of genotypes. Due to the increased computational cost of doubling the 495

number of genotypes in the simulation, we also attempted to optimize the ef-

ficiency of the model. The model, run for M time steps, takes as inputs the

initial populations of each of the N genotypes, an NxM selection matrix s con-

taining columnwise the fitnesses of each of the alleles, an intrinsic birthrate b0,

a deathrate d, and a carrying capacity p0. The values sij of the selection matrix 500

are calculated by defining the drug concentration and temperature as a function

of time, and evaluating the interpolated fitness function for each allele at each

time step.

The simulation works as follows: at each time step, each individual has a

probability of dying d, and a probability of producing a single offspring b. d is 505

a constant and b is defined for each allele and each time step of the simulation.

If the total population of the system is greater than p0, b = 0. Otherwise, the

birthrate is biased by the fitness of the individual’s genotype: b(i) = b0(1 + si).

Transitions between genotypes are written into the simulation via mutations in

the offspring: An offspring will most likely belong to the same genotype as its 510

parent. However, there are small and equal probabilities that it will mutate to

any of the genotypes directly adjacent to it in genotype space.

The main computational cost in the original simulation were the two inde-

pendently drawn random numbers to determine whether each individual died,

and then whether they gave birth, at each step of the simulation. In the origi- 515

nal simulation, a random number-generating function was called twice for each

member of the population at every time step. However, we found that it was

faster to generate two vectors of random numbers of length equal to the total
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Figure 6: An agent based model of a population evolving on a seascape. (a) A
flowchart of the ABM (reproduced from [21]. (b) A representative iteration of
the ABM for the 32 genotype E. coli model on the temperature ramp in (figure
2.2). Only the trajectories of the fittest 5 alleles are plotted.

population size (one for births, and one for deaths) at each time step, and then

call an element of those vectors to determine the behavior of each individual at 520

each time step. Additionally, time-intensive loops were minimized by calculat-

ing both whether an individual will give birth, and if it gives birth, what the

genotype of its offspring will be, in the same loop. Anecdotally, this optimiza-

tion reduced the time required to run the simulation from about 90 minutes to

about 15. 525

We first tested the accuracy of this simulation by using it to simulate over

the paths on the 16-genotype seascape published Iram et al., and comparing its

output to that of the simulation in that paper which it was based upon. As

shown in (fig), it displays remarkable fidelity to the original agent-based model.

As a second test, we developed toy fitness landscapes with single clearly- 530

fittest alleles that changed abruptly, to assess the model’s ability to recognize

these fittest mutants. The simulation quickly and correctly identified these

mutants, with the time between successive selective sweeps increasing with the

distance in sequence space between the successive favorites, as expected. We

then turned our attention to the precision of the simulation for our dataset by 535
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Figure 7: Validating the ABM. (a) Comparing the results of the ABM written
in Python to the C++ ABM in [21]. (b) Testing the ABm on a simplified
landscape where only one allele has a nonzero fitness at every timepoint. (c) 10
iterations of the ABM on the same constant landscape produce similar results.

considering the evolution of the population under constant conditions. We would

expect that with sufficient time, the distribution would favor the fittest allele. In

successive iterations of the simulation from the same initial genotype frequencies,

the results were satisfyingly consistent. Additionally, simulations beginning

from a different, and vastly distant, frequency distribution also converged to 540

the same expected values.

Throughout this work, we consider the large population, frequent mutation

regime (µN > 1). Specifically, in this simulation we consider populations on

the order of 105 − 106, and a total mutation rate (that is, the likelihood that

an offspring will belong to a different genotype than its parent) of µ = .01). So, 545

at every time step a large number ( 103 − 104) of mutations will be generated.

There are only 32 alleles which can be mutated into, so we expect that the
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time required for the simulation to explore the sequence space sufficiently to

recognize fittest alleles is low. This is supported by our controls.

We hope to follow Iram et al. and use the simulation to compare the real 550

behavior of a population on a path through the control parameter space to its

equilibrium distributions. However, these efforts are on hold as we have been

unable to obtain reliable equilibrium calculations for the whole system.

3 Discussion and Conclusion

Anti-drug resistance is a challenging problem facing clinicians treating bacterial 555

or viral infections and cancer. Resistance is driven by the high reproduction

rates of these pathogenic cells, which contributes to a high degree of genetic

diversity that enables these pathogenic populations to efficiently “find” fitter

genotypes and evade treatment. Previous work has suggested that this problem

of of evolution can be turned on its head by identifying treatment regimens that 560

promote cross-susceptibility rather than cross-resistance. That is, taking the

evolution of treatment resistance as a given, we can design multi-component

treatment schedules in which early development of resistance to one portion

of the treatment leads to susceptibility to another. We could even imagine a

“susceptibility-inducing cycle” of several components in which resistance to A 565

induces susceptibility to B, any surviving B resistors are susceptible to C, and

any surviving C resistors are more susceptible to A.

Evolution-inspired treatments offer a number of intriguing possibilities for

novel therapies. For example, the current standard of care for many cancers is

to treat with the maximum tolerable dose (MTD) of available chemotherapy. 570

However, this treatment plan frequently results in resistant tumor populations

emerging in the form of recurrent disease. It also comes at great cost to the
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patient, in the form of side effects from high-dose chemotherapy. Using knowl-

edge of cross-susceptibility and the range of evolutionary responses a cancer

population could make to drug exposure, treatments could be designed with 575

the goal not to eliminate the cancer, but to maintain the population in a drug-

susceptible state. In this manner, cancer could be reimagined as a chronic, but

not life-threatening, disease requiring consistent, manageable, low-side-effect

treatment.[23]

Understanding the in- and out-of-equilibrium dynamics of a pathogenic pop- 580

ulation is a crucial prerequisite for the implementation of an evolutionarily-

motivated treatment plan. To take advantage of cross-susceptibility, one needs

to be certain that the population has actually equilibrated to the first treatment

before the second drug is applied. However, in general, given the stochastic na-

ture of evolution, it could take a population a very long time to actually reach 585

equilibrium. In fact, following the mathematical formalism described in the in-

troduction (starting with the multivariate Langevin equation, whose probabil-

ity distribution is given by a Fokker-Planck equation) we see that the adiabatic

theorem states that we would have to change the control parameters infinitely

slowly to keep the population at equilibrium throughout the treatment. 590

The advantage of counterdiabatic driving in any context (evolutionary or

otherwise) is that it bypasses the adiabatic theorem, minimizing the difference

between the equilibrium and actual distributions without requiring infinite equi-

libration. The goal of this project was to explore whether adding an additional

control parameter in the form of temperature would either increase the effec- 595

tiveness of driving (i.e. maintain the population even closer to equilibrium) or

provide new opportunities for control – that is, to enable driving to distributions

dominated by different genotypes. The second goal is particularly useful, as one

can imagine that a clinician may wish to drive a pathogenic population toward
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a particular susceptible allele (or alternatively, away from a particularly dan- 600

gerous allele), but using only a single control parameter, there may be nowhere

in the one-dimensional parameter space where that allele is favored. Increasing

the dimensionality of the parameter space increases the likelihood that there is

some location where a desired allele will be favored at equilibrium – and then,

a counterdiabatic driving protocol will reduce the time required to reach that 605

spot.

We have thus far been unable to actually derive or demonstrate a counter-

diabatic driving protocol over the two-dimensional sequence space, in large part

because we have struggled to accurately calculate equilibrium distributions to

compare our simulation to. In a less rigorous sense, I think this challenge reflects 610

a fundamental struggle at the heart of this research problem in that computa-

tional approaches to problems in evolution reflect the computational behavior

of evolving populations. It could be said that populations search for maxima of

fitness functions algorithmically [22]. A fitter individual has a high likelihood of

producing (similar and perhaps even more fit) offspring, while a less-fit individ- 615

ual has a smaller but still non-zero likelihood of reproducing, in the same way

a Metropolis algorithm searching for the minimum of an energy function will

accept an energy-decreasing step with a high probability, and accept other steps

with a small non-zero probability. In this work, I tried, and failed, to support

the finicky numerical solution to the equilibrium frequencies at each time step 620

of the simulation by simulating for a long time at the landscape of that time

step, and inputting the final distribution of that simulation to the solver as an

improved guess. This strategy failed because it was challenging to determine

whether the population had truly equilibrated, or was simply stuck waiting for

a mutationally distant but favored allele to gain a large enough population to 625

produce a selection sweep. Running the simulation for long enough to essen-
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tially guarantee that the population would truly equilibrate for each time step

was practically infeasible, but if I was able to run the simulation for infinite time

on the landscape of each time step of the treatment schedule, I should be able

to find the equilibrium frequency. I visualize this as simulating the equilibrium 630

frequencies along the dimension of the treatment schedule by simulating many

times in a perpendicular dimension at each time step.

Developing strategies to resolve this computational complexity is a primary

goal for the future of this project. It may be possible to derive reasonable

equilibrium distributions for populations with more mutants using the same nu- 635

merical techniques applied here, with a number of modifications. It is currently

infeasible to reduce the distance between the treatment time steps for which

equilibrium distributions are calculated enough for the solver to be effective.

Nonethless, we hope to more fully test the parameters of the solver and achieve

success on this aim. Alternatively, it may be possible to develop a “smarter” 640

solving algorithm that detects unreasonably large changes in genotype frequen-

cies between successive time steps and reduces the distance between successive

samples of the treatment path only for such stress points, on an as-needed basis.

And finally, while this approach has not worked to date, it may still be possi-

ble to deploy long-term simulations on a static landscape for time steps that 645

are particularly challenging to characterize. If the simulations are applied only

to time steps where they are necessary, they could be run for long enough to

produce more useful predictions to the solver.

Alternatively, because the frequency of the genotypes in the system at each

time point is updated by a Markov process, it may be possible to set aside the 650

equilibrium distribution calculation described here and instead calculate equi-

librium distributions from the stationary distribution of the Markov transition

matrix at each time step. Indeed, the simulations already include as input
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a transition matrix for each individual (see appendix). Without taking selec-

tion into account, because each individual behaves independently, the transition 655

matrix for the entire population should be related to this individual transition

matrix in a simple manner. It should also be possible to work out via birthrates

how incorporating fitness would modify this population-level transition matrix,

in a manner analogous to the way fitness biases the birthrate of each mutant

in the agent-based simulation. It would be worthwhile to explore whether such 660

a transition matrix would even be guaranteed to have a stationary distribution

at each time step, and if so, whether the stationary distributions match those

given by the moment-closure numerical approach.

Regardless, once the calculation of equilibrium distributions is more com-

pletely worked out we will be able to more systematically compare equilibrium 665

distribution to simulation results and hopefully demonstrate a lag between them,

in the manner of Iram et al. Then, we could potentially work toward the stated

aim of this project, to demonstrate that a set of modified selection coefficients

derived via counterdiabatic driving forces the simulated population distribution

as close as possible to the equilibrium one. 670

Beyond completing the initial aims of this project, there are many additional

future directions to consider. Counterdiabatic driving is far from any clinical

practicality for a number of reasons. First, implementing a CD protocol requires

a high degree of power over the values of the control parameters at every point

in time. In a clinical context, where these parameters may fluctuate significantly 675

due to a multitude of factors (dehydration, nutrition, disease progress, simple

movement, etc.), it is hard to imagine ever attaining a useful level of control.

However, an intriguing result reported by Iram et. al. was that even a sub-

optimal counterdiabatic driving protocol which took the same shape as the

original counterdiabatic protocol but with a constraint on the maximum value 680
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of the control parameter (suggestive of a patient’s maximum tolerable dose) was

effective at reducing lag from the equilibrium qenotype distribution at every time

point. There is also additional ongoing research which seeks to model evolution

of pathogenic populations under “real-life” pharmacodynamics including missed

treatment doses and varying dosing schedules. Combining these avenues of work 685

may enable counterdiabatic predictions that also provide useful clinical bounds

on the maximum variance in the control parameters which still leads to the

desired outcome.

These are challenges in real-life adherence to counterdiabatic driving pre-

scriptions. However, there are also many opportunities for development of more 690

accurate fitness functions themselves. To date this project has focused on fit-

ness of a simplified bacterial population in which growth rate depends only on

the control parameters. However, the ultimate goal of this project would be

to optimize treatments for bacterial infections and cancer in real patients. In

these cases, fitness would be a much more complicated function of position: for 695

example, cancer cell fitnesses vary throughout the tumor. A proper counter-

diabatic driving protocol in this case would have to somehow find the optimal

drug concentrations at multiple locations in the body, or at several places in

the bloodstream. Also, tumors often include several cell subtypes that engage

in cooperation to support the growth of the tumor by promoting blood flow, 700

nutrient acquisition, etc. A more realistic set of fitness functions could per-

haps incorporate optimal treatment options to balance the fitnesses of multiple

cancer cell subtypes, so that a counterdiabatic driving protocol could optimize

treatment on a seascape of tumor fitnesses, rather than cell fitnesses.

Additionally, the particular focus of this work on driving across a parameter 705

space of temperature and a single drug was driven by the available data and a

desire to begin explore counterdiabatic driving in a multi-dimensional parameter
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space. A useful extension of this work would be to replace temperature with a

second drug, or even to add additional parameter dimensions to see if this opens

up opportunities to drive even closer to the equilibrium distribution at every 710

time step, or new opportunities to design more optimal paths in the parameter

space.

Setting aside these theoretical developments, the work presented here and

in Iram et. al makes predictions that can be tested experimentally. It would be

interesting to apply counterdiabatic driving protocols to real bacterial popula- 715

tions, take frequent samples for sequencing, and observe if experimental results

match the theoretical predictions for the equilibrium frequencies at each time

step. I would predict that inability to exactly regulate the control parameters

experimentally will result in an inability to completely replicate the equilibrium

frequencies of the population throughout the entire experiment. However, even 720

an approximation of a counterdiabatic driving protocol would likely represent

an improvement over a naive protocol.

Ultimately, I hope that counterdiabatic driving will become one element of a

new vanguard of evolutionarily-inspired treatments for bacterial infections and

cancer. While much work remains to be done before these ideas are ready to 725

test in the clinic, a new quantum-inspired evolutionary biology seems to be just

on the horizon.

4 Appendices

4.1 Appendix 1: Measured MICs for E. coli mutants
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Allele 20◦C 25◦C 30◦ C 35◦C 37◦C 41◦C
00000 11.3 5.65 2 0.175 0.09 0.015635
00001 724.45 256.125 256.125 2 1 0.175
00010 11.3 8 4 0.125 0.125 0.02
00011 724.45 256.125 512.25 64.03 90.55 5.65
00100 22.65 11.3 11.3 0.175 0.25 0.09
00101 4098 2049 2897.7 362.2 45.3 1.4
00110 16.01 11.3 16.01 0.25 0.25 0.125
00111 8096 4098 4098 1448.7 1024.5 362.2
01000 16.01 5.65 5.65 0.09 0.125 0.045
01001 1024.5 724.45 724.45 128.06 181.1 5.65
01010 8 4 2.85 0.09 0.125 0.175
01011 1448.7 724.45 724.45 181.1 362.2 45.3
01100 128 32.015 32.015 1 1.4 0.5
01101 8096 2897.7 4098 1448.7 724.5 90.55
01110 45.3 22.65 22.65 0.705 45.3 0.25
01111 8096 8096 4098 2049 2049 512.25
10000 16.01 8 5.65 0.09 0.125 0.0625
10001 362.2 362.2 256.125 2.85 1 0.25
10010 11.3 8 5.65 0.09 0.125 0.25
10011 724.45 362.2 512.25 128.06 64.03 16.01
10100 22.65 16.01 22.65 0.355 0.25 0.09
10101 4098 2049 4098 181.1 4 2
10110 16.01 11.3 16.01 0.25 0.355 0.175
10111 4098 2897.7 4098 1448.7 1024.5 724.45
11000 11.3 8 8 0.25 2.85 0.0625
11001 1448.7 724.45 724.45 181.1 32.015 4
11010 11.3 5.65 5.65 0.25 0.125 0.09
11011 2049 1024.5 1448.7 362.2 181.1 90.55
11100 64.03 22.65 64.03 1 1 0.25
11101 4098 4098 8096 2049 1024.5 128.0625
11110 32.015 16.01 45.3 1 0.705 0.5
11111 4098 2897.7 4098 2049 1448.7 1448.7

Table 1: MICs for 32 E. coli alleles at 6 temperatures.
MICs are cefoxatime concentrations in µ g/mL. Bit notations are mutant (1)

or wild-type (0) at, left to right, M4205A, A42G, E104K, M182T, G238S.
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4.2 Appendix 2: Mutation rate matrix for 8 genotypes 730

-9E-03 3E-03 3E-03 0 3E-03 0 0 0
3E-03 -9E-03 0E+00 3E-03 0 3E-03 0 0
3E-03 0 -9E-03 3E-03 0 0 3E-03 0

0 3E-03 3E-03 -9E-03 0 0 0 3E-03
3E-03 0 0 0 -9E-03 3E-03 3E-03 0

0 3E-03 0 0 3E-03 -9E-03 0 3E-03
0 0 3E-03 0 3E-03 0 -9E-03 3E-03
0 0 0 3E-03 0 3E-03 3E-03 -9E-03

4.3 Appendix 3: Derivation of Logistic Fitness-drug con-
centration curve from MIC

The original MIC equation from [33] is (24):

g(x) =
gdrugless

1 + e
IC50−x

c

(28)

If the MIC is redefined MIC = IC95, g(MIC) = .05gdrugless:

.05 =
1

1 + e
IC50−IC95

c

IC50 = c ln 19 + IC95

g(x) =
1

1 + eln 19+
IC95−x

c

g(x) =
1

1 + 19e
IC95−x

c

(29)

735
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[27] Ignacio A. MartÃnez et al. “Engineered swift equilibration of a Brownian 885

particle”. en. In: Nature Physics 12.9 (Sept. 2016), pp. 843–846. issn:
1745-2473, 1745-2481. doi: 10 . 1038 / nphys3758. url: http : / / www .

nature.com/articles/nphys3758 (visited on 11/25/2020).

[28] Daniel W. McShea and Robert N. Brandon. Biologyâs First Law. url:
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