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Abstract 

 Large eddy simulations, forced with realistic wind stresses at several wave ages, were 

used to investigate the scaling of peak buoyancy flux with mixed layer depth, for several 

definitions of mixed layer depth.  The mixed layer depth defined by the minimum buoyancy flux 

corresponded to a slightly nonlinear scaling (r2 = 0.929), with a steeper slope than that found by 

Grant and Belcher (2009).  In the low wind limit, however, the data followed this slope fairly 

well, suggesting that different scaling laws are required for different wind strengths, since the 

rate of production of potential energy increases relative to rate of turbulent kinetic energy 

production at higher wind speeds. Using the base of the buoyancy flux as the mixed layer depth 

yielded a tight linear and, thus, predictable scaling relationship (r2 = 0.980).  This definition may 

prove more useful for scaling purposes in models that do not resolve these small-scale turbulent 

features. 

Introduction 

    Motivation 

At the ocean’s surface, wind, surface cooling, breaking waves, and other turbulent 

processes induce mixing and convective overturning (Haney, 2015).  This mixing takes place in 

a thin layer of relatively uniform density, temperature, and salinity called the mixed layer.  

Typical mixed layer depths range globally from tens to hundreds of meters and exhibit both 

diurnal and seasonal cycles (Garwood, 1974; Cronin and Sprintall, 2000).  Since the mixed layer 

is the interface between ocean and atmosphere, as well as the surface ocean and deep ocean, it 

controls the exchange of momentum, moisture, and gasses like CO2 at these boundaries.  For 

example, because of the equilibrium required between the temperatures of the sea surface and the 
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air sitting above it, the mixed layer regulates the latent, sensible, and radiative heat fluxes 

between the ocean and the atmosphere (Haney, 2015).  

 Additionally, the ocean mixed layer influences biological productivity through nutrient 

and light availability, because the advection of water parcels governs the movement of organisms 

such as phytoplankton.  A deeper mixed layer may expose organisms to additional nutrient 

sources and increase productivity, but it may also pull organisms beneath the euphotic zone, 

where light cannot penetrate, thus preventing photosynthesis and decreasing productivity 

(Sarmiento and Gruber, 2013).  The biological impact of the mixed layer also factors into climate 

change, since photosynthetic organisms consume carbon while living, then export this carbon to 

the deep ocean by sinking when they die.  This can be considered a long-term sink of carbon, 

since the time scales governing the thermohaline circulation that returns water from the deep 

ocean back to the surface extend up to 1000 years (Sarmiento and Gruber, 2013).   

Since the mixed layer plays such a significant role within the Earth system, it is desirable 

to understand the physical processes that control its properties.  Currently, grasping the dynamics 

that influence the mixed layer is of particular interest, since rising global temperatures and 

climate change have emerged as significant threats to the future habitability of the planet.  One 

mechanism that strongly affects mixed layer properties is turbulent mixing resulting from 

unstable Langmuir circulation.  Langmuir circulation, illustrated in figure 1, is characterized by 

an array of vortices, termed Langmuir ‘cells’, alternating in sign and oriented with their 

horizontal axes downwind (Thorpe, 2004).  While this kind of turbulent mixing occurs on small 

scales compared to typical ocean scales, it influences mixed layer dynamics enough to have a 

potentially significant impact on global scale dynamics (Belcher et al., 2012; D’Asaro et al., 

2014; Li et al., 2015).   
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Figure 1. Illustration of the mean flow in idealized Langmuir circulation.  The wind creates parallel divergent 
zones of upwelling. In between these zones, the water converges and downwells.  The wind-driven mean flow 
is directed downwind. (Tejada-Martinez et al., 2011). 

 
At the moment, Langmuir turbulence is absent from general circulation models (GCMs).  

An inclusion of a turbulence parameterization may improve GCMs’ agreement with ocean 

observations and move modelers a step closer towards accurately predicting future climate 

scenarios.  Several recent studies have used large eddy simulations (LES) to develop scaling 

laws between the parameters that force turbulence (e.g. wind) and proxies for the strength of the 

turbulent response (e.g. vertical kinetic energy) (Grant and Belcher, 2009; Harcourt and 

D’Asaro, 2008; Van Roekel et al., 2012).  For this study, LES simulations were performed using 

parameters derived from Harcourt and D’Asaro (2008), monochromatic waves, and the Coriolis 

parameter set to zero.  One main goal was to reproduce a previous scaling law determined by 

Grant and Belcher (2009) relating mixed layer depth with a scaling velocity and the minimum 

buoyancy flux.  However, exactly how the mixed layer depth should be determined is unclear.  

Cronin and Sprintall (2000) define it as the depth at which the temperature is 0.5°C cooler than 

the surface temperature; this definition is more helpful from an observational standpoint, since it 

is easy to measure.  Grant and Belcher (2009) define it as the depth corresponding to the 
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minimum of the vertical buoyancy flux profile – a description related more to the turbulent 

dynamics of the surface ocean.  However, this definition ignores the potential variations in the 

overall shape of the buoyancy flux profile, which could influence whether entrainment of deeper 

water across mixed layer base is quantified accurately.  Therefore, this study also introduces a 

new definition of mixed layer depth, defined as the depth corresponding to the base of the 

buoyancy flux profile.  From a conceptual standpoint, this new definition focuses on identifying 

the maximum possible depth to which turbulence can extend, while also embodying Grant and 

Belcher’s concept of the depth at which turbulent transport is most important. Scaling was 

applied using this new definition and the accuracy compared with the previous scalings. 

 

    Theory 

       I. Stokes drift 

The Langmuir cells illustrated in figure 1 come about through the interaction of vorticity 

and Stokes drift of surface waves (Van Roekel et al., 2012).  The Stokes drift velocity can be 

derived starting from Lagrangian and Eulerian velocities. For a particle that started at position x0, 

the Lagrangian (uL) and Eulerian (uE) velocities are related to each other at time t by the equation 

(Garrett, 2004): 

uL (x0, t) = uE x0 + uL (x0, t ')
0
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∫ dt '
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where parentheses denote the position and time at which the velocities are evaluated.  The Stokes 

drift velocity is the difference between the mean Lagrangian flow velocity (of a single water 

parcel) and Eulerian flow velocity (at a fixed point).  Conceptually, it is the average velocity that 

a specific water parcel experiences as it travels with the overall fluid flow.  The Stokes drift 
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velocity can be derived using the barotropic, inviscid, irrotational, incompressible flow solutions 

to deep water gravity waves (monochromatic): u = ∂φ
∂x

 and w = ∂φ
∂z

 with potential velocity 

φ = Aω
k
ekz sin(kx −ωt) .  Here, A is the wave amplitude, k is the wavenumber, and ω is the wave 

frequency.  These deep-water waves follow the dispersion relation 𝐶! =   
!
!
  (also equation 18 

in the Model Description and Setup section).  Averaging equation (1) in time, expanding for 

small intervals in space, and assuming that uL ≈ uE yields the following relation (Garrett, 2004; 

Haney, 2015): 

uS = uE dt ⋅∇uE
0

t

∫
     (2)

 

 The brackets denote the average, taken over a time longer than the wave period but shorter than 

the period over which the current changes (Haney, 2015).  Evaluating equation (2) using the 

specific flow solutions given above yields the following equation for Stokes drift at a depth z 

(note that z is negative below the surface):  

     us z = 𝜔kA!𝑒!!"      (3) 

The exponential component of equation (3) can also be written as exp(z/Ds), where Ds is the 

Stokes e-folding depth. 

       II. Langmuir Turbulence    

The turbulent Langmuir number, introduced by McWilliams et al. (1997) is an important 

nondimensional parameter for characterizing Langmuir turbulence.  It is defined as  

     (4) 

where Us denotes the surface Stokes drift, u!(0), and u*, the surface friction velocity, is given by 

Lat =
u*
US
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     (5) 

Here, τ represents the wind stress at the surface of the ocean, and ρ0 is the mean density of the 

water.  Therefore, the Langmuir turbulent number evaluates the relative strength of wind versus 

waves: small Lat << 1 indicates that wave effects dominate wind effects, inducing high 

turbulence (Haney, 2015).  

       III. Reynolds decomposition  

The velocity and temperature/buoyancy fields can be separated into large-scale and 

small-scale components (Reynolds, 1895): 

u =U +u '  
          v =V + v '      (6) 

w =W +w '  
T = T +T '  

 
where (u, v, w) corresponds to flow in the (x, y, z) directions and z is negative below the ocean 

surface.  In these equations, the large-scale component, denoted by an overbar, is the mean 

quantity, while the primed term signifies the fluctuations about the mean.  In this study, 

horizontal averages over the domain and averages over a sliding window of time will define the 

meaning of variables with overbars.  These components satisfy the following spatial averaging 

conditions: 

      

1
Ni, j

u(z)
i, j
∑ =U      (7) 

 

         
u '(z) = 0

i, j
∑

     (8) 
 
where i and j are the horizontal (x, y) indices over which the averaging takes place and Ni,j 

denotes the total number of grid cells in the horizontal plane at depth z.  Any solitary fluctuating 

u*= τ
ρ0
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component averages to zero, but average of the product of two fluctuating components is 

nonzero.  Thus, finding the product of two fluctuating components requires subtracting the mean 

from the total as follows: 

                 !
!!,!

(𝑢 − 𝑈)! =!,! 𝑢′! = 𝜎!!    (9) 

Calculation of the variance of the vertical velocity, 𝑤′!, is simplified by the fact that the mean 

vertical flow equals zero, so that w = w’.  Another quantity of interest for this study, the buoyant 

production (see the Turbulent kinetic energy budget section below), is calculated as 

       !
!!,!

𝛼𝑔𝑤(𝑇 − 𝑇)! =!,! 𝑤′𝑏′    (10) 

where α is the fluid’s thermal expansion coefficient, g is the acceleration due to gravity, and b is 

the buoyancy. 

       IV. Turbulent kinetic energy budget 

 The turbulent kinetic energy (TKE) is defined as !
!
𝑢′! + 𝑣′! + 𝑤′! .  For horizontally 

uniform conditions and assuming that the rate of change of TKE with time is zero, the TKE 

budget can be written as (Grant and Belcher, 2009): 

       !(!"#)
!"

= −𝑢!𝑤′ !!
!"
− 𝑣!𝑤′ !!

!"
− 𝑢!𝑤′ !!!

!"
+ 𝑤!𝑏! − !

!"
𝑤!𝐸! + !

!
𝑤!𝑝! − 𝜖 = 0     (11) 

where 𝑈  and 𝑉  denote the mean flow in the 𝑥  and 𝑦  directions, and are also taken to be, 

respectively,  parallel and perpendicular to the surface wind stress; overbars denote averages; ρ is 

the fluid density; E’ is synonymous with TKE; and Stokes drift is parallel to the surface wind 

stress.  The first two terms are shear production terms, which transfer kinetic energy from the 

mean flow to the turbulent flow through the current shear.  The third term is the Stokes 

production term, which functions similarly to the shear production terms but through the Stokes 
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shear.  The fourth term, 𝑤′𝑏′, is the buoyant production (also called the buoyancy flux), which 

either generates TKE with a corresponding loss of potential energy (negative 𝑤′𝑏′) or generates 

potential energy and destroys TKE (positive 𝑤′𝑏′) through buoyancy forces. The fifth term 

expresses the transportation of TKE within the fluid through turbulent fluctuations in vertical 

velocity and pressure.  The final term, 𝜖, is the dissipation rate resulting from molecular 

viscosity. 

Grant and Belcher (2009) showed that the Stokes shear dominates the generation of TKE 

at the surface and sources the TKE for the vertical component of current.  They further showed 

that the vertical component of the transport term, responsible for delivering the Stokes shear-

produced TKE from the surface to lower depths, is much greater than the horizontal component 

when wave effects are included (as opposed to shear turbulence alone; Grant and Belcher, 2009).  

Noting these TKE budget balances, Grant and Belcher (2009) suggested a velocity and length 

scale for the TKE resulting from Langmuir turbulence that depends on the Stokes shear term, 

𝑢′𝑤′ !!!
!"

.  The following is a brief explanation of their derivation of these length and velocity 

scales. 

Grant and Belcher (2009) designated the mixed layer depth, defined as the depth at which 

the buoyancy flux reaches a minimum, as the relevant length scale, since the transport of TKE 

from the surface extends all the way through the mixed layer (Grant and Belcher, 2009).  At the 

surface, 𝑢′𝑤′ is determined by the wind stress (τ), so this term can be represented by u*2 (from 

equation 5).  Similarly, averaging !!!
!"

 , derived from the Stokes e-folding depth (DS) version of 

equation (3), over the mixed layer (h) yields: 
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       1
h

∂uS
∂z

dz
h

0

∫ =
US

hDS

DSe
z/DS

h

0

≈
US

h
              (12) 

where the final simplification is made by assuming that the Stokes e-folding depth is much 

smaller than the mixed layer depth.  Combining these two results, Grant and Belcher (2009) 

suggest that the Stokes shear production term can be represented by (u*2US)/h, which can be 

separated into the aforementioned length scale and the velocity 

        wL
* = (u*2US )

1 3      (13) 

According to Grant and Belcher (2009), the term 
!!
∗!

!
 quantifies the rate of generation of TKE.  

Thus, plotting it against the buoyancy flux should reveal the relationship between the generation 

of TKE and the generation of potential energy.  The buoyancy flux is associated with the 

entrainment of cold water into the mixed layer and, consequently, has the potential to deepen 

(and cool) the mixed layer significantly.   

Model Description and Setup 
 

The LES model used for this study was first developed at NCAR (Moeng, 1984) and 

adapted by McWilliams et al. (1997) to include Stokes drift.  The model uses spatially filtered 

CL equations (McWilliams et al., 1997): 

∂ρ
∂t
+uL ⋅∇ρ = SGS

     (14)
 

         ∇⋅u = 0       (15) 

 

∂u
∂t
+ (ω + fẑ)×uL = −∇π −

gρ ẑ
ρ0

+ SGS
   (16)
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where the Lagrangian velocity uL = u+uS , the Eulerian vorticity is ω =∇×u , the Coriolis 

parameter is f, g is the acceleration due to gravity, ρ0 is a reference density, SGS stands for 

subgrid-scale terms representing processes unresolvable within the grid resolution, and π is the 

effective pressure, given by: 

   
π =

p
ρ0
+
1
2
uL

2!

"
#

$

%
&

     (17)
 

where p is the thermodynamic pressure. 

Harcourt and D’Asaro (2008) outlined a simulation set (∑1) for several wave spectrums 

of different wave age in combination with a series of realistic wind stresses.  This simulation set 

forms the basis for the model parameters used in this study.  Values of Us were taken directly 

from the simulation set and corresponding values of u* were calculated by choosing a constant 

Lat = 0.3 in equation (4).  This is the typical value found through ocean observations and 

corresponds to fully developed waves (Thorpe, 2004; Haney, 2015).  To reiterate, the range of u* 

used within this study, approximately 0.009 – 0.05 m/s, results from inputting Harcourt and 

D’Asaro’s surface Stokes drift values into equation (4) and fixing Lat at 0.3.  The World 

Meteorological Organization’s Guide to Wave Analysis and Forecasting uses a reference surface 

friction velocity of 0.01 m/s for U10 ≈ 8 m/s (Bouws, 1998). This agrees with the lowest wind 

case of this study’s simulations and its corresponding u*. The Stokes e-folding depth, Ds, was 

calculated from the non-dimensional parameter 2kpDs provided by Harcourt and D’Asaro using 

the relation  

Cp =
g
kp      (18)

 

where Cp and kp are, respectively, the phase speed and the wavenumber of the peak wave in the 

spectrum.  This study simulates monochromatic waves rather than a spectrum, so Cp and kp were 
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treated as the phase speed and wavenumber of this monochromatic wave (for implications of 

using a wave spectrum versus monochromatic waves, see Webb and Fox-Kemper, 2011 and 

2015).  See the Appendix for the complete table of simulation parameters. 

All simulations used a 128 x 128 x 126 meter grid with 2-meter resolution. The Coriolis 

parameter was set to zero for simplification and minimal computation time, since the Coriolis 

force introduces inertial oscillations, and the averaging time over which turbulence statistics take 

place must be subsequently large. Thus, the simulations correspond to an arbitrary location along 

the equator. Temperature was initialized with a simple function that decreases linearly with 

depth, and no surface heat flux or cooling was applied. The initial horizontal velocity fields were 

set zero, with contributions coming only from Stokes drift forcing, then randomly perturbed in 

order to initiate turbulence.  For each simulation, wind and waves were aligned. 

Since LES was initialized with arbitrary conditions, it was necessary to account for a 

spin-up period at the beginning of each simulation during which the system evolved into a fully 

turbulent state.  Other types of models, such as terrestrial biosphere models that simulate carbon 

cycles and vegetation growth, have relatively clear spin-up conditions whereby the system 

reaches a steady state.  However, the very nature of turbulent flow as chaotic dictates that only a 

quasi-steady state can be achieved. This is particularly problematic when entrainment is 

involved, since this implies that the boundary layer defining the base of the mixed layer cannot 

be fixed: new water is being added continuously. The number of time steps required for each run 

were roughly approximated beforehand to minimize computation time while ensuring that the 

simulation spent enough time in a fully turbulent state to produce statistically robust averages of 

the turbulent characteristics. The ratio of mixed layer depth to surface friction velocity  

yields an approximate measure for the mixing time required to bring the system from its 

HML
u*( )
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initialized state into a turbulent state, since it is reasonable to assume that this ratio is 

proportional to the eddy turnover time.  This means that a simulation of lower wind speed 

requires more time to become fully turbulent.  A test run at the lowest simulation wind speed 

produced an average mixed layer depth (as defined by temperature) of about 20 meters.  Using 

this as the baseline mixed layer depth, the range of time scales for spin up calculated with the 

above ratio extended from about 2000 seconds at the lowest wind speed to 400 seconds at the 

highest.  It should be noted that the mixed layer deepens with higher wind speeds, suggesting 

that this approximation underestimates the higher wind spin up time; however, since the average 

mixed layer depth does not vary between simulations as drastically as u*, the time scale 

associated with the lowest wind simulation represents the upper bound on spin up time. 

The model uses time steps of variable duration in order to minimize numerical instability: 

as flow velocities increase, the time steps shorten.  This means simulations of higher wind stress 

or wave age are allocated shorter time steps. These variable time steps complicate the direct 

conversion of the above crudely estimated time scale into number of time steps.  The lowest 

wind case, corresponding to the largest time steps, yielded a range of increments from about 3.5 

to 6 seconds over the course of a test run.  A similar test run for the highest wind setting yielded 

time steps of 1 to 1.5 seconds, the lower bound for the entire simulation set.  The duration of the 

simulations was set to 5000 time steps, since this allows for the mixing time to repeat several 

times even when assuming the longest spin up time and the shortest time step.  Data files were 

output every fifty time steps for each run.  It should be noted that a more thorough analysis of the 

impact on data output frequency, specifically for higher frequencies (see figure 3 for a basic 

analysis of the impact of lower frequency data output), would be required to ensure that the 

results of the following section generalize. 
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Results 

 
Figure 2. Snapshot of a cross-section of x at time step 2050 for an example simulation (medium wind, medium 
wave age).  The background color indicates vertical velocity (w), and the superimposed contours denote the 
current parallel to the y-axis (v). Arrows indicate general flow patterns. It should be noted that the color bar 
applies only to the vertical velocity. Also note that the vertical scale does not extend to the domain boundary. 
Both velocities have units m/s. 

 Figure 2 depicts a cross-section of the domain, perpendicular to the x-axis, at a time by 

which several eddy turnovers have taken place, for an example simulation of medium wind and 

wave age. The background colors correspond to the vertical velocity, and the contours represent 

the horizontal current flow parallel to the y-axis. The characteristics of Langmuir circulation are 

evident in the upper 10 meters of the domain and especially clear between 60 and 100 meters 

across the front. Arrows are drawn for clarity, indicating the how the horizontal flow 

perpendicular to the wind stress and the vertical flow combine to form vortices of alternating 

sign.  However, this pattern is not uniform across the domain, and snapshots at different time 

steps (not shown) reveal that the vortices deform with time, changing shape, location, and 
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magnitude.  In short, it is clear that figure 1 is, in fact, an ideal case of Langmuir circulation, 

compared to the Langmuir turbulence exhibited in the LES output.  Consequently, it is necessary 

first to determine when the flow becomes fully turbulent and then to average the flow fields over 

a large enough interval of time to capture the turbulent statistics that reliably characterize the 

flow. 

The variance of vertical velocity, 𝜎!! , also a measure of vertical kinetic energy, can 

indicate the development of the turbulent quasi-steady state.  At the onset of each model run, 

energy is injected into the domain at the ocean’s surface through wind.  Through mixing, the 

energy propagates down, extending to greater and greater depths. This increases the total vertical 

kinetic energy, integrated over the water column, and influences the shape of the vertical 𝜎!!  

profile, since the depth corresponding to maximum 𝜎!!  also propagates away from the surface.  

Initially, these changes occur quickly and all in the same direction, moving energy steadily away 

from the surface.  After a certain amount of time, the changes observed in 𝜎!!  proceed at a slower 

rate and oscillate between increasing and decreasing the maximum value of 𝜎!! .  While the 

profile of 𝜎!!  continues to change, these conditions indicate that the system has reached a quasi-

steady state.  To assess whether the domain met these conditions in each simulation, 𝜎!!  was 

spatially averaged in the horizontal plane at each depth, producing a vertical profile every fifty 

time steps (corresponding to each data output file).  These vertical profiles were then averaged 

over several different time spans and compared in order to evaluate of the rate of change of 𝜎!!  

with time. 
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Figure 3. Example plot of the variance of vertical velocity, also a measure of vertical kinetic energy, for U10 = 
25.8 m/s and Cp/U10 = 0.8. The different colors and types of line indicate the output files over which the data 
averaging took place. For context, the 40th data file falls around the middle of each simulation, and the 100th is 
the final file. The final three curves were generated by averaging over every other data output file over the 
given range. 

 
Figure 3 provides an example of how the variance of vertical velocity evolves after spin 

up, when the system has become a fully developed turbulent flow field.  The curves of the plot 

indicate how the variance changes depending on the intervals over which data averaging took 

place. Even though the averaging ranges are fairly spread out, the variance curves are generally 

consistent with each other, with only a small amount of spread at the local maximums.  The red, 

green, and blue dashed curves were generated by averaging over non-overlapping, consecutive 

time intervals.  Thus, when read in order, these three curves give an idea of how the vertical 

velocity variance changes in time.  At the point of maximum variance, around a depth of 10 m, 

the green curve surpasses the blue slightly, indicating that the variance no longer increases 

monotonically.  Figure 3 also provides some validation for the arbitrary choice to analyze data 

every 50 time steps.  The curves generated by averaging over every other time step virtually 
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disappear behind the curves of corresponding ranges averaged over each time step.  This 

suggests that the specific choice of data output frequency should not affect the interpretation of 

results.  It should be noted, however, that the influence of data output frequency remains untested 

for frequencies higher than the output frequency designated for all simulations (e.g. it is 

unknown whether analyzing data every 25 time steps influences results). For the remainder of 

the analysis, all vertical profiles were obtained by averaging both spatially in the horizontal plane 

and temporally over data output files 60 – 100.  Error bars for all plots were generated through 

the calculation, at each depth, of the standard deviation of the spatially-averaged vertical profiles 

corresponding to each time step.  Thus, the error bars reflect variation in time rather than space. 

Figure 4 provides examples of mean temperature profiles and 𝑤′! profiles for several 

different simulations corresponding to Cp/U10 = 1.2 and a range of wind speeds U10 = 8.3, 14.8, 

25.8, 32.6 m/s.  The mean temperature plots indicate, as expected, that increasing the magnitude 

of surface winds deepens the ocean mixed layer (as defined by temperature) and decreases the 

sea surface temperature.  The shape of the profiles remains consistently elbow-like, exhibiting a 

nearly vertical line that extends down from the surface before decreasing sharply in a smooth 

bend.  Towards the bottom of the plot (note that this is not the bottom of the domain) profiles all 

meet along the linearly decreasing function with which temperature was initialized at the 

beginning of each simulation.  The 𝑤′! plots indicate that increasing wind stress increases both 

the width and amplitude of the vertical velocity’s variance and deepens the location of maximum 

variance.  Again, this agrees with expectations, since wind drives mixing, which increases 

vertical kinetic energy.  Below the depth of the peak value, the variance falls fairly quickly to 

about zero, indicating that mixing largely takes place at the surface and does not extend to the 

domain’s lower boundary. 
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Figure 4. Example plots of mean temperature (a) and 𝒘′𝟐 (b) for U10 = 8.3 m/s (green), 14.8 m/s (red), 25.8 m/s 
(blue), and 32.6 m/s (black), all with Cp/U10 = 1.2.  Error bars denote ±1σ.  Note that the temperature plot does 
not extend to the maximum depth.  

 
  Figure 5 plots several 𝑤′𝑏′ profiles corresponding to the same simulation cases as figure 

3, excluding the lowest wind case.  The negative values indicate that the surface mixing 

transports colder water upward and warmer water downward, increasing potential energy. The 

buoyancy flux curves follow similar trends to the 𝑤′! plots with increasing wind speed: the 

magnitude and depth of the minimum point increases, stretching both the amplitude and the 

width of the 𝑤′𝑏′ profiles.  The black crosses along the 𝑤′𝑏′ = 0 axis indicate the depth of the 

mixed layer, calculated as the depth at which the temperature becomes more than 0.5°C lower 

than the sea surface temperature.  Using this definition, it appears that increased wind forcing 

extends the base of the 𝑤′𝑏′ curve below the depth of the temperature-derived mixed layer.  The 

error bars around the base of the curves are particularly large, suggesting that this region 

undergoes even greater change over the averaging window than the peak point does.  It should be 

noted that the surface buoyancy flux should return to zero, though this is not the case in the 

presented curves.  The nonzero surface buoyancy flux is a result of the exclusion of unresolved 
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subgrid terms.  Since the subgrid terms are much smaller than the resolved products, they were 

neglected for the purposes of this study. 

 

 
Figure 5. Example plots of mean buoyancy flux, 𝒘′𝒃′ for U10 = 14.8 m/s (a), 25.8 m/s (b), and 32.6 m/s (c), all 
with Cp/U10 = 1.2 (the same conditions as in figure 3, excluding the smallest wind case).  Error bars denote 
±1σ. The ‘x’ positioned along the 𝒘′𝒃′ = 0 axis indicates the mixed layer depth, calculated from temperature. 
For each simulation, the buoyancy flux should go to zero at the surface, but is prevented from doing so by 
unresolved subgrid terms. 

 
 From figure 5, it is evident that the buoyancy flux curves are approximately triangle-

shaped.  Therefore, the area of a 𝑤′𝑏′ curve is well-represented, to a first-order approximation, 

by two triangles, one that spans the top half of the curve and one that spans the bottom half (see 

figure 5 for a schematic).  The vertices of these triangles overlap at the peak in buoyancy flux 

and the point at which the depth of the peak intersects the line x = 0.  The surface buoyancy flux 

was assumed to reach zero.  Equating the sum of these two triangles with the total area under the 
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curve (representative of the total rate of change of potential energy) yields an approximation of 

the buoyancy flux base, since the lower triangle depends on this depth: 

       !
!"
𝑃𝐸 = 𝑤′𝑏′𝑑𝑧!

! = !
!

ℎ ∗ 𝑤!𝑏!!"# + 𝐻 − ℎ ∗ 𝑤′𝑏′!"#        (19) 

where 𝑤′𝑏′!"# is the peak buoyancy flux, h is the depth of this peak, H is the depth of the base, 

and PE is the potential energy.  Simplifying this equation yields the following equation for H: 

        𝐻 =
! !!"(!")

!!!!!"#
          (20) 

The potential energy of each curve was calculated by the midpoint Riemann sum method, and 

then used to calculate H.  Figure 6 depicts a schematic of the triangles that approximate the 

curve’s area.  The depths h and H used to define the ideal triangles are indicated.  The value of H 

calculated using equation (20), however, corresponds to the black cross and falls somewhat 

lower than the ideal bottom triangle’s vertex.  This indicates that the triangles slightly 

underestimate the potential energy, which is plainly visible from figure 6. 

 

 
Figure 6. Example plot of the mean buoyancy flux, overlaid with a dotted schematic of the two triangles used 
to approximate the total potential energy. The labeled depths correspond to the peak in buoyancy flux (h) and 
the base of the buoyancy flux curve (H).  The base of buoyancy production calculated using this methodology, 
has been indicated by 'x'. The error bars denote ±1σ. 
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 Grant and Belcher (2009) found that w*L = (u*2Us)1/3 and the mixed layer depth, defined 

as the depth of the minimum in the buoyancy flux profile, are the velocity and length scales of 

Langmuir turbulence.  Three variations of this scaling are plotted in figure 7.  Figure 7a plots the 

buoyancy flux scaled by the same definition of mixed layer depth that Grant and Belcher (2009) 

used.  Figure 7b presents a scaling using a temperature-based definition of mixed layer depth, 

where the temperature is lower than the sea surface temperature by 0.5°C.  Figure 7c defines 

mixed layer depth as the base of the buoyancy flux curve (H).  Linear fits have been 

superimposed on each graph.  The mixed layer depth defined using the minimum buoyancy flux 

yields a slightly non-linear relationship (r2 = 0.929) compared to the temperature and base depth 

definitions (r2 = 0.977 and 0.980, respectively). 

 

 
Figure 7. Minimum buoyancy flux scaled by w*L3 and the mixed layer depth for three different definitions of 
mixed layer depth: (a) depth corresponding to minimum 𝒘′𝒃′, (b) depth where T < Tsurface - 0.5°C, (c) depth 
corresponding to the calculated base of the 𝒘′𝒃′ curve.  Each point corresponds to a different simulation. 
Colors indicate wind speed, and marker shapes indicate wave age. The linear fits superimposed on the plots 
have slopes (from left to right) 0.095, 0.143, and 0.217 and r2 values of 0.929, 0.977, and 0.980.  

 
 The slopes of the lines are also somewhat different from each other. The mixed layer 

defined by buoyancy flux base yields the largest slope of 0.217, while the temperature-based 

mixed layer produces a slope of 0.143. Using the minimum buoyancy mixed layer definition 

yields the smallest slope of 0.095, but this is still approximately twice as large as the 0.045 slope 

Grant and Belcher (2009) found.  Since this study uses much larger wind stresses than Grant and 
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Belcher (2009), figure 8 zooms in closer to their range to allow for a better comparison.  The red 

box in the lower left corner indicates the limits of their equivalent plot, and the dotted line 

indicates the 0.045 slope they found.  Only one data point from this study falls within the red 

box.  However, the data points an order of magnitude away from the box still seem to follow the 

scaling found by Grant and Belcher (2009) rather than the steeper slope found over the complete 

range of data points. 

 

Figure 8. A comparison of the scalings derived from the mixed layer depth defined by the minimum buoyancy 
flux.  The blue line indicates the scaling result determined by this study (slope = 0.095). The dotted line 
indicates the scaling Grant and Belcher (2009) found (slope = 0.045), and the red box indicates the region in 
which their simulations were concentrated. Note that the axes have been multiplied by 109. 

 Grant and Belcher found that the ratio of 𝑤′𝑏′!"# to !!
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 remains constant over a range of 

turbulent Langmuir numbers. To test this, additional simulations were created for 0.1 ≤ Lat ≤ 0.9 

and applied to two wind cases, U10 = 14.8 and 28.2 m/s, at the highest and lowest wave ages (see 

Appendix).  These wind speeds span the majority of the range tested in the previous simulations.  

Due to time considerations, data output from these simulations was treated with the same 

averaging processes as outlined earlier.  It is possible that some of these simulations did not 
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lowest Lat cases yielded ‘S’ shaped 𝑤′𝑏′ profiles that became positive where they should have 

become zero.  The base of the 𝑤′𝑏′ profile extended all the way to the bottom of the domain in 

the largest Lat case.  Thus, results from the limits of the Lat range may not be trustworthy.  From 

observations, however, Lat typically falls within the range 0.2 – 0.5; the data from simulations 

corresponding to this shorter range are likely acceptable to analyze for the purposes of a rough 

approximation. 

 

Figure 9. These plots are equivalent to the result of dividing the y-axis by the x-axis in figures 7a and 7b, then 
organizing data points by turbulent Langmuir number. The colors correspond to Lat and the shapes indicate 
different combination of wind speed and wave age. 

 Figure 9 presents the results of the additional simulations with varied Lat.  Following 

results from Grant and Belcher (2009), figure 9a was expected to collapse into a horizontal line 

centered around 0.095, the slope of the fitted line in figure 7a.  This would indicate that the ratio 

of 𝑤′𝑏′!"#  to !!
∗!

!
 is independent of Lat.  Instead, figure 9a shows that this ratio increases 

consistently with increasing Lat.  Within the region of interest, the 0.2 – 0.5 range of Lat, the 

relationship between the ratio and Lat is fairly linear, with some vertical spread at each 

individual Lat representing the previously discussed effect of different wind speeds.  Figure 9b 

plots the same ratio against Lat, but uses the base of the buoyancy production curve as the mixed 

layer depth.  A similar linear trend results, but with slightly less vertical spread than in figure 9a.  
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This agrees with the previous finding (displayed in figure 7) that treating the base of 𝑤!𝑏!, rather 

than the depth of minimum 𝑤!𝑏!, as the mixed layer depth yields a tighter linear fit between 

𝑤′𝑏′!"# and !!
∗!

!
. 

Discussion 

The simulation conditions for this study differed immensely from those of Grant and 

Belcher (2009), who used a nonzero Coriolis parameter, higher vertical grid resolution, and 

surface friction velocities up to an order of magnitude lower than those in this study.  From this 

perspective, it is difficult to judge whether the disparity between this study’s results and Grant 

and Belcher’s is indicative of genuine changes in turbulent scaling over large ranges of forcing 

parameters, or whether this was a consequence of simulation design variation.  However, the fact 

that the lower range data points from this study appear to agree with the 0.045 slope specified by 

Grant and Belcher (2009) suggests that the two studies are, in fact, comparable and supports the 

possibility that the minimum buoyancy flux and the depth at which it occurs scale differently at 

higher winds. 

The linear fits plotted in figure 8 provide information about how the rates of production 

of potential energy and TKE are related to each other. According to Grant and Belcher (2009), 

the term !!
∗!

!
 represents the rate of production of TKE over the whole mixed layer.  The term 

𝑤′𝑏′!"# denotes the maximum rate of production of potential energy, which occurs through 

entrainment at the base of the mixed layer.  Since the buoyancy flux between the surface and the 

base of the mixed layer is approximately linear (see figure 5) and zero at the surface, the average 

value of the buoyancy flux over the mixed layer is !
!
𝑤′𝑏′!"#.  Thus, the linear fit found by Grant 

and Belcher (2009) and plotted in figure 8 indicates that potential energy is generated within the 
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mixed layer at approximately 2% of the rate of TKE generation.  In contrast, the fit determined 

by this study implies that this ratio is closer to 5%.  However, these calculated ratios are not 

necessarily helpful quantities, considering the non-linearity apparent in figure 7a.  Instead, figure 

7a suggests that the rate of production of potential energy increases relative to the rate of 

production of TKE with higher wind speeds.  Furthermore, figure 9a indicates that these ratios of 

energy production depend additionally on turbulent Langmuir number, whereas Grant and 

Belcher (2009) found that the ratios are independent of Lat in their low-wind simulations.  These 

results suggest that the scaling theorized by Grant and Belcher (2009) does not fully capture the 

effects of turbulence on energy production at the surface of the ocean. 

It is unclear exactly why this scaling fails to describe turbulent energy production in this 

study, yet works so cleanly in Grant and Belcher (2009); several possibilities, both individually 

and in conjunction with each other, may explain the disagreement.  First, it is possible that the 

two LES models, which would ideally yield the same results that are representative of reality, 

actually produce different results.  To test this hypothesis, the simulations specified within this 

study should be applied to the LES model utilized by Grant and Belcher (2009), or vice versa.  A 

similar problem may originate from issues with grid resolution.  The 2-meter vertical resolution 

used in this study (for comparison, Grant and Belcher (2009) used 0.8m vertical resolution) may 

be too coarse to capture finer details, such as the exponential decay of Stokes drift velocity and 

its impact on the Stokes current shear (and rate of generation of TKE across the first layer of grid 

cells).  This study did not test for any dependencies on grid resolution or domain size, but such 

sensitivity tests would be helpful to identify or dismiss grid domain design as an influence over 

results.  Other crucial model design elements, such as the value of the Coriolis parameter, may 

have contributed to differences between results.  Another possibility is that the scaling simply 
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does not work well for higher wind stresses, since Grant and Belcher (2009) forced simulations 

with only low values of u*.  Perhaps there is a hidden dependency on Lat that becomes visible 

with greater wind and correspondingly larger turbulent energy budgets.  Either of these 

explanations, if true, would indicate that Grant and Belcher’s proposed scaling is missing a 

crucial component and needs to be reexamined. 

Initial exploration of the length scale defined by the depth of the buoyancy flux curve’s 

base (H) offers some interesting results.  Inputting this length scale in Grant and Belcher’s 

scaling term !!
∗!

!
 in place of h produced a tighter linear fit across all wind speeds than the fit 

obtained using their originally defined mixed layer depth.  Since H is an empirically defined 

quantity, the linear relationship between 𝑤′𝑏′!"#  and !!
∗!

!
 does not have the theoretical 

significance with respect to turbulent energy budgets that Grant and Belcher (2009) attribute to 

!!
∗!

!
.  Nevertheless, the highly linear relationship suggests that H is a useful, potentially 

significant length scale.  Conceptually, H captures a different aspect of the shape of the 

buoyancy flux curve than h, since it describes the depth to which turbulence extends.  Although 

Grant and Belcher disregard this depth, H is intuitively important: one can imagine that the same 

depth-integrated amount of rate of potential energy generation, distributed differently through the 

water column, would result in interestingly different patterns of mixing.  Characterizing those 

differences is beyond the scope of this study, but presents a compelling question for future work. 

Conclusions 

 This study aimed to reproduce the scaling proposed by Grant and Belcher (2009) for a 

range of higher winds and found that the relationship between 𝑤′𝑏′!"# and !!
∗!

!
 becomes slightly 

nonlinear over larger ranges of u*.  Furthermore, a basic, preliminary analysis of additional 
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simulation cases indicate that the relationship between these terms depends on the turbulent 

Langmuir number, disagreeing with Grant and Belcher’s findings.  These results suggest that the 

proposed scaling may need reviewing; however, it is necessary to perform sensitivity tests to 

verify that grid resolution, data output frequency, and averaging windows did not affect the 

turbulent statistics.  Additionally, it is recommended that additional LES simulations are 

performed with a nonzero Coriolis parameter and low winds, to ensure that model differences 

did not influence results. 

 This study also introduced a new definition of mixed layer depth, H, defined by the base 

of the buoyancy flux curve.  Although this depth was calculated only to first-order 

approximation, it yielded a much tighter linear fit when substituted for mixed layer depth in the 

Grant and Belcher scaling terms.  This length scale may prove effective for purposes of 

parameterization, since linearity implies predictability and H yielded a linear fit over a large 

range of realistic u*.  Future work should focus on additional exploration of this depth.  The 

variables that control this depth are currently unknown, and this study did not attempt to identify 

them. Hypothetically, H could depend on 𝑤!∗ , N2 (buoyancy frequency, a measure of 

stratification), h, etc.  Investigating these dependencies could help improve parameterization of 

turbulence, but it may also lead to a deeper understanding of the mechanisms controlling 

entrainment at the base of the mixed layer. 

 Finally, the simulation design implemented for this study was overly simplistic.  Future 

simulations should investigate if and how these scalings change under the influence of 

complexities such as time-varied winds, the combined effects of wind and surface cooling, time-

varied Lat, a nonzero Coriolis parameter, a wave spectrum (rather than monochromatic waves), 

and the misalignment of Stokes drift and wind. 
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Appendix 
 
Table 1: Simulation parameters for Lat = 0.3. Note that Ds and u* have units [m] and [m/s], respectively. 
 

 
Cp/U10 Us/U10 U10 (m/s): 8.3 11.4 14.8 18.1 21.3 25.8 28.8 32.6 

 
0.6 1.24% Ds:  0.330 0.622 1.049 1.569 2.173 3.188 3.972 5.090 

 
 

 
u*: 0.009 0.012 0.016 0.020 0.024 0.029 0.032 0.036 

 
0.8 1.42% Ds: 0.575 1.085 1.829 2.736 3.789 5.559 6.926 8.875 

 
 

 
u*: 0.011 0.015 0.019 0.023 0.027 0.033 0.037 0.042 

 
1 1.53% Ds: 0.839 1.583 2.668 3.991 5.527 8.108 10.104 12.946 

 
 

 
u*: 0.011 0.016 0.020 0.025 0.029 0.036 0.040 0.045 

 
1.2 1.75% Ds: 1.249 2.356 3.971 5.939 8.225 12.067 15.036 19.266 

 
 

 
u*: 0.013 0.018 0.023 0.029 0.034 0.041 0.045 0.051 

 
 
Table 2: Simulation parameters for varied Lat. Note that u* has units [m/s]. 
 

 
Cp/U10 Us/U10 Ds[m], U10[m/s] Lat: 0.1 0.15 0.2 0.4 0.6 0.7 0.9 

 
0.6 1.24% 

Ds: 1.049 
u*: 0.0018 0.0041 0.0073 0.0294 0.0661 0.0899 0.1487 

 
U10: 14.8 

 
Ds: 3.972 

u*: 0.0036 0.0080 0.0143 0.0571 0.1286 0.1750 0.2893 

 
U10: 28.8 

 
1.2 1.75% 

Ds: 3.971 
u*: 0.0026 0.0058 0.0104 0.0414 0.0932 0.1269 0.2098 

 
U10: 14.8 

 
Ds: 15.04 

u*: 0.0050 0.0113 0.0202 0.0806 0.1814 0.2470 0.4082 

 
U10: 28.8 

 


