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The top quark is one of the most important Standard Model particles in probing new
physics beyond the Standard Model. Experimentally, this exploration can be done by
studying proton-proton collisions in the Large Hadron Collider with the Compact Muon
Solenoid (CMS) detector. There must, however, be a reliable method to identify top quarks
or their signatures in CMS data. As the top quark events of greatest interest are often
Lorentz boosted, they appear as jets in detector data and can be tagged using jet sub-
structure techniques. Increasingly, these top tagging techniques involve the use of deep
learning tools such as Deep Neural Networks (DNNs). In this study, we compare the top-
tagging performance of two CMS top-tagging neural networks, the Boosted Event Shape
Tagger (BEST) and DeepAK8, as well as a new DNN which takes as inputs the jet topo-
logical and kinematic BEST input variables and the particle-level features used as inputs
to DeepAK8. We find that this new network, PF+BEST, performs comparably to the two
established networks with significant promise for improvement and utility in future new
physics searches involving coupling to top quarks.
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Chapter 1

Introduction & Background

1.1 The Standard Model

In the field of elementary particle physics, the fundamental building blocks of the uni-
verse and their interactions are described through the Standard Model (SM) of particle
physics. According to the SM, there are three forces acting on these subatomic particles,
the strong force, the weak force, and the electromagnetic force, with each force propagated
by at least one spin-1 vector boson: the strong force is propagated by gluons (g), the weak
force is propagated by W and Z bosons (W+ , W−, and Z), and the electromagnetic force
is propagated by photons (γ). The fermions, or spin-1

2 particles, predicted by the SM in-
clude three generations of charged leptons (electron, e, muon, µ, and tau lepton, τ), which
interact through the electromagnetic and weak forces, three corresponding generations of
neutrinos, or uncharged leptons (νe, νµ, and ντ), which only interact through the weak
force, and three generations each of down-type (down, d, strange, s, and bottom, b) and
up-type (up, u, charm, c, and top, t) quarks, which interact through the strong, electro-
magnetic, and weak forces. Each fermion also has a corresponding antimatter particle, or
antiparticle, with opposite charge [1]. An antiparticle is denoted by a bar; for instance, a
top antiquark is denoted as t̄.

Until the late 2000s, these particles and forces composed the observable aspects of the
Standard Model. In 2012, however, two experiments situated on the Large Hadron Col-
lider (LHC) at the European Organization for Nuclear Research (CERN) found evidence
for an addition to the SM [2, 3]. The two experiments, A Large Toroidal LHC Apparatus
(ATLAS) and Compact Muon Solenoid (CMS), identified this signature as the Higgs bo-
son, a particle theorized to be included in the SM but not observed before that point. The
Higgs boson, unlike W and Z bosons, is a scalar boson and is significant because its inter-
actions with other elementary SM particles give them mass [2, 3]. A general overview of
the SM, including the Higgs boson, can be seen in Figure 1.1.
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FIGURE 1.1: An overview of SM particles, force carriers, and forces. Also pic-
tured is the graviton, a theorized carrier of gravitational force which currently

exists outside of the SM [4].

1.2 Physics Beyond the Standard Model and Top Quarks

While the discovery of the Higgs boson exhibited some sense of ongoing consistency be-
tween SM theoretical and observable physics, there are still inconsistencies between SM
theory and observation. These inconsistencies range from charge-parity violation in cer-
tain interactions, which leads to the asymmetry of matter and anti-matter in the universe,
to the exclusion of gravity from the SM and the lack of an explanation for so-called “dark
matter” and “dark energy,” entities which are evident from their cosmological effects but
not registered in SM theory or generally well-understood. Such physics topics are known
as physics Beyond the SM, or BSM physics.
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There are many models of BSM physics yet to be effectively interrogated by experi-
mentalists. A number of these models can be constrained or supported by evidence for
top quark production and decay. For instance, even though a Higgs boson had been the-
orized before its observation in 2012, its measured mass of 125.1 GeV is light – in com-
parison, the top quark is 173.1 GeV [3, 5]. The unnaturalness of observed particle mass
hierarchy leads to possibilities of new physics particles through a variety of theories. This
so-called hierarchy problem could, for instance, be solved by quantum field theory (QFT)-
based corrections to the mass of the Higgs boson [6]. These corrections all involve masses
heavier than the Higgs itself and arise from couplings of the Higgs boson to W± and Z
bosons, photons, the Higgs boson, and top quarks [6]. Such corrections, known as loop
corrections, can be seen in Figure 1.2.

FIGURE 1.2: Feynman diagrams showing the largest corrections to the Higgs
mass. These corrections arise from QFT-based "loop" corrections involving

top quarks, electroweak gauge bosons, and the Higgs boson itself [6].

Further suggestions for new physics models include those which suggest additional
sources of Electroweak Symmetry Breaking (EWSB), such as composite Higgs models
and the topcolor model with a Z′ boson, and involve new heavy particles which inter-
act strongly with top quarks [7]. EWSB mechanisms are responsible for the fact that
the electromagnetic force carrier, the photon, is massless while weak force carriers, W±

and Z bosons, are massive particles. As SM sources of EWSB do not completely explain
experimental results, it is important to probe additional methods of EWSB [8]. Other
BSM physics models which can be better understood by studying top quarks include the
Randall-Sundrum Kaluza-Klein model, which describes a new massive gluon which de-
cays to top quarks, and models such as two-Higgs-doublet models which extend the SM
Higgs doublet model [7]. These models, as well as the models implicated in EWSB mech-
anism searches described above, also all provide solutions to the hierarchy problem [7].
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1.3 LHC Physics and CMS

While it is helpful to understand the theories which could explain the inconsistencies be-
tween the SM and current observations, continuing observation and experimentation is
necessary in order to further constrain or support existing theories and to model indepen-
dent measurements which could guide future theories. The two most significant experi-
ments which can make the necessary measurements are the ATLAS and CMS experiments
on the LHC. Both ATLAS and CMS have the ability to detect leptons, hadrons, and pho-
tons resulting from the proton-proton (pp̄) collisions in the LHC. The two detectors are,
however, designed slightly differently, with the CMS detector able to achieve a higher en-
ergy resolution for electrons and photons and the ATLAS detector able to achieve better
charged particle momentum resolution [7]. Thus, each experiment has its advantages and
disadvantages. Their dual, yet separate, existence allows each collaboration to develop
unique experimental techniques and procedures to understand observable data and make
independent discoveries. The research reported in this paper is focused on data and tech-
niques specific to the CMS Collaboration.
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Chapter 2

The CMS Detector and Jet Detection

2.1 CMS Detector Overview

The CMS detector is located at one of the four pp̄ collision points in the 27-km-around
LHC [9]. The detector is 15 meters high, 21 meters long, and weighs 14, 000 tonnes. Its
detector components are arranged radially around the detector in layers and include sil-
icon trackers, a superconducting solenoid magnet, a crystal electromagnetic calorimeter
(ECAL), a scintillating hadron calorimeter (HCAL), and muon drift chambers. A diagram
of the detector can be seen in Figure 2.1.

Each layer plays a different and important role in detecting particles resulting from
pp̄ collisions. The superconducting solenoid magnet, from which CMS gets part of its
name, creates a magnetic field of 3.8 Tesla which bends the path of charged particles. As
particles bend in different directions based on the sign of their charge and lower momen-
tum particles bend less than their higher momentum counterparts, the solenoid’s bending
of charged particle trajectories assists in measuring particle charge and momentum. The
inner-most layer of silicon trackers is used to reconstruct the trajectory of the charged
particles bent by the solenoid magnet’s field. Next, the ECAL and HCAL measure the
energies of electrons and photons, and hadrons respectively. Finally, muons, which are
not stopped by either calorimeter, travel through the outermost layer of muon chambers,
which measure the muon’s momentum a second time (the initial measurement is done
by the silicon trackers) [9]. A cross section of the detector, including the way in which
different particles might interact with the detector, can be seen in Figure 2.2 [10].

It is also important to note that neutrinos, which interact solely through the weak force,
can only be “observed” in the CMS detector as missing transverse energy. It is, however,
impossible to definitively identify missing energy as a neutrino or neutrinos because there
are many theories which involve some sort of new particle which might appear as miss-
ing energy or which might itself decay to neutrinos. Thus, any missing energy found in
events expected to include neutrinos could either be neutrinos from a previously studied
interaction or related to new physics.
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FIGURE 2.1: An artistic representation of the CMS Detector and all of its sig-
nificant components. The detector is centered around the LHC beam line such
that most particles travelling outward from a pp̄ collision in the portion of
the LHC running through the center of the detector move radially outward
through the detector. A person is seen standing on the yellow platform for

scale [9].



Chapter 2. The CMS Detector and Jet Detection 7

FIGURE 2.2: A “slice” of the CMS detector showing each of the layers and
how five different classes of particles might move through the detector [10].
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Chapter 3

Identifying Top Quarks with CMS

3.1 tt̄ Production and Decay

In order to use top quarks to investigate different BSM physics models, it is first important
to be able to identify top quarks in detector data. A simple reconstruction of top quarks
from decay particles is difficult due to background quantum chromodynamics (QCD) in-
teractions, which have signatures similar to top quark “signal” events [11]. Top quark
production and decay in pp̄ collisions might be described by one of the following interac-
tions:

qq̄→ tt̄→ bW+b̄W− (3.1)

gg→ tt̄→ bW+b̄W− (3.2)

At the LHC, top pairs are most often produced through gluonic interactions. The W+

and W− in this decay can either decay leptonically to a charged lepton and a neutrino
or hadronically to two quarks. Thus, the entire final state consists of two b quarks and
four other quarks (fully hadronic decay); two b quarks, two other quarks, one charged
lepton, and one neutrino (semi-leptonic decay); and two b quarks, two charged leptons,
and two neutrinos (fully leptonic decay) [1]. A Feynman diagram of the semi-leptonic
decay channel can be seen in Figure 3.1.

Unfortunately, neutrinos cannot be definitively identified in CMS, as described in Chap-
ter 2.1. Thus, it is impossible to fully reconstruct top pairs (tt̄) which decay leptonically or
semi-leptonically. Due to this limitation and its implications in particular for new physics
searches, we chose to only study tt̄ events which decay hadronically to two b quarks and
4 other quarks [11].

In studying such hadronic tt̄ decays in the CMS detector, it is important to note that
all final state quarks, including the b quarks seen in Equations 3.1 and 3.2, are seen in the
detector as “jets” instead of distinct particles. This effect is due to gluonic interactions in
QCD described as color confinement which prohibit the observation of singular quarks or
gluons. Instead, quarks and gluons appear as hadrons, or bound states of multiple quarks
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FIGURE 3.1: A Feynman diagram of the lowest order showing production of
tt̄ event from a pp̄ collision such as those in the LHC. As one W boson decays
to two leptons and the other decays to two quarks, this decay, as classified by

its final state, is semi-leptonic [1].

and/or gluons. In high energy collisions such as the pp̄ collisions in the LHC, hadrons are
observed as a circular collection of energy signatures and, in the case of charged hadrons,
charge signatures in the detector which can be traced back to the primary interaction ver-
tex, forming a cone. This cone of particles arising from the hadronization of a quark is
known as a jet [7]. Thus, hadronic top decays in the CMS detector are observed as two b
jets and four other jets [1].

3.2 Boosted Top Decays

Hadronic top decays at low transverse momentum (pT) can be modeled as described
above as two b jets and four jets from the decay of the W boson [1]. For top decays re-
lated to couplings with heavy new physics particles, the pT of the top decays are high
enough that the event becomes Lorentz boosted, effectively collimating the decay and al-
lowing the top decay to present as a jet itself [1, 12]. A model of this process in different
pT regimes can be seen in Figure 3.2.

3.3 CMS Jet Reconstruction

There are three main layers of the CMS detector primarily concerned with the detection
and tagging of jets: the HCAL, the ECAL, and the silicon trackers [10]. The energy clus-
ters measured by the HCAL and ECAL are used to reconstruct jets [7]. This data can be
combined with charged particle trajectory information from the silicon trackers in order
to provide a rich reconstruction of the substructures of jets. In general, measurements
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FIGURE 3.2: A schematic showing the way in which the subjets of a top quark
decay merge with increasing pT. The ∆R ∼ 1.0 note refers to the jet angular
distance parameter. This schematic was created for LHC pp̄ collisions with

center of mass energy (
√

s) of 13 TeV [12].

from all detector layers can be combined and correlated in order to reconstruct final state
particle properties as part of a technique known as particle-flow (PF) reconstruction. PF
reconstruction allows physicists analyzing CMS data to better understand and utilize the
substructure of jets [10]. In this case, jets are clustered and reconstructed with the anti-
kt algorithm using a jet radius parameter R of 0.4 for so-called AK4 jets and a jet radius
parameter R of 0.8 for so-called AK8 jets [13, 14].

3.4 Top Tagging Through Jet Substructure

As many of the BSM physics searches are looking in regimes of high top pair invariant
masses (mtt̄) over 1 TeV, the resulting top decays are highly boosted and must be observed
as top jets. Thus, instead of looking for the jets of each separate top decay product, it is
necessary to probe the substructure of the boosted jet in order to identify it as a top jet
and, subsequently, a decaying top quark [7]. Specifically, jet substructure identification
techniques involve analyzing the subjets, or jet constituents, which make up the “main”
jet. By only considering subjets in particular ranges of kinematic variables, such as jet pT
and invariant mass, the top tagging algorithm can ideally distinguish between a “true” top
jet and a background event. A background event is, in this case, a non-top jet which could
be mistaken for a top jet. The main source of background for top jet tagging comes from
QCD multijet events. In addition to top jet classification, these jet substructure methods
are used for classifying signatures of boosted W, Z, and Higgs bosons [15].

As the CMS collaboration can simulate large numbers of realistic jet events which can
be labeled by their decay particle and described by the observable jet substructure fea-
tures, machine learning (ML) algorithms are commonly applied to jet substructure-based
tagging algorithms. These simulations allow for the use of ML techniques because they
can act as training and testing data sets so that a computer can “learn” how to identify
a top jet, for instance, in detector data. Simple neural networks, decision trees, and ran-
dom forests are examples of initial ML algorithms used in tagging algorithms. While
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these initial taggers might have relied on simple substructure variables such as the num-
ber of subjets and the invariant jet mass, physicists are now able to take advantage of
more advanced ML architectures. For instance, artificial neural networks (ANNs) and,
in particular, deep neural networks (DNNs) with multiple layers and inputs allow physi-
cists to take greater advantage of the richness of a jet’s substructure [16]. These taggers
range from those which have image-like jet representations as inputs to networks similar
to those used for traditional image classification, to networks which use jet constituent
variable-ordered representations of jets as inputs to networks similar to those used for
natural language processing [16].

3.5 Exploring ANN- and DNN-based Top Tagging in CMS

While there are many ways to use ANNs and DNNs to classify jets by their substructure,
it is important to better understand which inputs to these algorithms lead to the most
effective classification and which jet substructure variables can be learned by the network.
It is also important to recognize when a technique is taken too far and the true physics
is overlooked [16]. In this study, we compared networks using the inputs of two CMS
jet substructure-based tagging algorithms, the Boosted Event Shape Tagger (BEST), an
ANN, and DeepAK8, a DNN, as well as a new, third DNN tagger which trains on the
inputs of both BEST and DeepAK8, in the hopes of better understanding the classes and
combinations of inputs which allow for the most effective top tagger.

3.6 BEST

BEST is a boosted jet classification algorithm which employs a neural network. In general,
the algorithm boosts values derived from measurements of individual jet constituent par-
ticles into the rest decay frames of different massive particles. Heavy particles considered
include W±, Z, and Higgs bosons, and top quarks. As the masses of these particles have
been measured experimentally (mt = 173.1 GeV, mW = 80.4 GeV, mZ = 91.2 GeV, and
mt = 125.1 GeV), their four-vector pµ ≡ (~p, E) can be easily computed. For instance, the
four-vector of the top quark can be computed as:

p(t)µ = (~p, m2
t + p2). (3.3)

Such four vectors can therefore be used to find the boost vectors needed to transform the
jet constituent values from the boosted detector frame to a rest decay frame. By subse-
quently comparing the jet constituent values with the rest frames of these particles, the



Chapter 3. Identifying Top Quarks with CMS 12

tagger classifies a jet as originating from one of these particles or a background light-
flavor QCD jet. Thus, BEST can be useful in tagging a variety of heavy objects in addition
to boosted top jets [5, 17].

3.6.1 BEST Input Variables

The neural network which supports the BEST classifier takes in 59 separate jet constituent
observable quantities. All variables are listed in Table 3.1. The variables in the middle
three columns are boosted into each hypothesis rest frame, while all other variables are
based on the original detector-frame jet value [5]. Jet η, or pseudorapidity, is a value de-
rived from the polar angle of the jet in relation to the beam axis, with higher η values
indicating a smaller angle between jet and beam axis [1]. Jet τ21 and τ32 are values of
N-subjettiness, or the likelihood that a decay is two-pronged (i.e. for, W±, Z, and Higgs
bosons) or three-pronged (i.e. for top quarks) respectively [18]. The jet charge is found
from summing the charges of all jet constituents as weighted by pT. Sphericity and apla-
narity consider the momentum distribution of the jet constituents, isotropy measures the
uniformity of the jet constituents’ spatial distribution, and thrust is related to the maxi-
mum pT along a certain axis. The angular distribution of a group of jet constituents is
encoded in the Fox-Wolfram Moment variables, and longitudinal asymmetry contains in-
formation about the vector boosting the particles to a given rest frame. The masses listed
in the fourth column come from reclustering the jet constituents after boosting them to
a rested frame and considering the masses of different combinations of the first through
fourth leading jets [5]. The subjet CSV Values are from a tagging algorithm used to iden-
tify bottom quark subjets and the soft-drop jet mass is the mass of a jet after removing
mass derived from wide-angle radiation [19, 20]. For more information on the BEST input
observables, please refer to CMS AN-18-095 or the BEST group’s 2016 paper in Physical
Review D [5, 17].

3.6.2 BEST Neural Network Architecture

The version of BEST used in this paper had three 40-node, hidden layers and used a
rectified-linear activation function. It was trained with the scikit-learn Python package
using the MLPClassifier module on 500,000 events from samples of simulated AK8 jets
split between 6 training samples. The samples used were based on CMS Run II data and
were made in Spring 2016 and had a jet pT range between 500 GeV and 2 TeV. For more
information on the BEST neural network, its training, and its performance please refer to
CMS AN-18-095 or the BEST group’s 2016 paper in Physical Review D [5, 17].
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BEST Input Variables
Jet η Sphericity

(t,W,Z,H)
Fox-Wolfram Moment
H1/H0 (t,W,Z,H)

m12
(t,W,Z,H)

Subjet 1 CSV Value

Jet τ21 Aplanarity
(t,W,Z,H)

Fox-Wolfram Moment
H2/H0 (t,W,Z,H)

m23
(t,W,Z,H)

Subjet 2 CSV Value

Jet τ32 Isotropy
(t,W,Z,H)

Fox-Wolfram Moment
H3/H0 (t,W,Z,H)

m13
(t,W,Z,H)

Max Subjet CSV Value

Jet Charge Thrust
(t,W,Z,H)

Fox-Wolfram Moment
H4/H0 (t,W,Z,H)

m1234
(t,W,Z,H)

Jet soft-drop mass

Longitudinal Asym-
metry (t,W,Z,H)

TABLE 3.1: Table showing the input variables to the BEST algorithm. The
variables in the middle three columns are calculated in each of the rest frames
of the particles listed in parentheses, and all four calculated values are used

as inputs [5].

3.7 DeepAK8

The DeepAK8 classifier arose from an early exploration into the use of DNNs for jet tag-
ging. Like BEST, DeepAK8 can be used to classify heavy particle decays such as those
originating from t quarks and W±, Z, and H bosons against QCD background events.
The jets are labeled based on their substructure components including, in particular, any
number of b subjets. Furthermore, due the convolutional layers used in the architecture
of the DeepAK8 DNN, DeepAK8 is can be classified as a convolutional neural network
(CNN) [21, 22].

3.7.1 DeepAK8 Inputs

The input variables for the DeepAK8 neural network are features of the PF jet constituents.
PF candidates used include those which can be charged or neutral and particles from
reconstructed interactions subsidiary to the main decay (secondary vertices). In total,
inputs include no more than 100 inclusive PF candidates, no more than 60 charged PF
candidates, and no more than 5 secondary vertices. The inclusive PF candidates are sorted
by pT in descending order while the secondary vertices are ordered by the significance of
the impact parameters. Charged PF candidate features (36 overall), inclusive PF candidate
features (16 overall), and secondary vertex features (17 overall) used as inputs to DeepAK8
include angular, momentum-based, energy-based, and tracker-based features, and can be
seen in full in CMS-AN-17-188 [21].



Chapter 3. Identifying Top Quarks with CMS 14

3.7.2 DeepAK8 Neural Network Architecture

The version of DeepAK8 used in this paper used 3x1 convolutions to deal with the large
input size. Separate sets of convolutional layers were used for the inclusive PF candidates
(14 convolutional layers), charged PF candidates (14 convolutional layers), and secondary
vertices (10 convolutional layers), and were then joined together in one fully connected
layer. The activation function, as with BEST is a rectified linear activation function. A
schematic of the network can be seen in Figure 3.3. It was trained with the Adam opti-
mizer and implemented with the MXNet package. The samples used were of simulated
AK8 jets of pT greater than 300 GeV and based on CMS Run II data and were made in
Summer 2016. For more information on the DeepAK8 neural network, its training, its
samples, and its performance please refer to CMS AN-17-188 [21].

FIGURE 3.3: A diagram showing the architecture of the DeepAK8 neural net-
work [21].
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Chapter 4

Data and Sample Processing

4.1 tt̄ and QCD Datasets

Data collected by the CMS detector is distributed to users for analysis as MiniAOD (Minia-
ture Advanced Optical Disc) files in the Event Data Model (EDM) format [23]. As this
study was concerned with testing a new analysis tool, we used Monte-Carlo (MC) gener-
ated tt̄ and QCD event samples of the same MiniAOD file type.1 These datasets were cre-
ated in Spring 2017 using the POWHEG MC package for calculating jet production in pp̄
collisions and interfaced with the PYTHIA8 shower MC generator [24]. They were simu-
lated using GEANT detector simulator package assuming the Run II, Phase II CMS detec-
tor upgrade which is set to take data in 2023 during the running of the High-Luminosity
LHC (HL-LHC). Both datasets assumed

√
s of 14 TeV and estimated pileup events, or

other physics events with signatures which overlap with those of the particular event be-
ing simulated, to be 200 pileup events per event of interest. The tt̄ dataset only included
events with mtt̄ of at least 1500 GeV while the QCD dataset instead made cuts based on
pT and only included events with pT between 15 and 7000 GeV. Overall, the tt̄ dataset
consisted of 258 files and included a total of 1, 909, 854 events, taking up 490.9 GB of data,
while the QCD dataset consisted of 144 files and included a total of 935, 590 events, taking
up 334.5 GB of data.

4.2 tt̄ and QCD Sample Processing with LJMet

The MiniAOD data or MC sample files are not initially in a form conducive to analy-
sis. Instead, they must be processed into ROOT files containing a flattened “tree” with

1The tt̄ dataset used was:
\TT_Mtt1500toInf_TuneCUETP8M1_14TeV-powheg-pythia8\PhaseIITDRSpring17MiniAOD-
PU200_91X_upgrade2023_realistic_v3-v2\MINIAODSIM

The QCD dataset used was:
\QCD_Flat_Pt-15to7000_TuneCUETP8M1_14TeV_pythia8\PhaseIITDRSpring17MiniAOD-
PU200_91X_upgrade2023_realistic_v3-v1\MINIAODSIM



Chapter 4. Data and Sample Processing 16

LJMet Jet Cuts
Variable Cut Value
min jet pT 15.0 GeV
max jet η 3.0
min AK8 jet pT 400.0 GeV
max AK8 jet η 2.4
min AK8 jets 2 (QCD), 1 (tt̄)
min jets 1
max jets 4000
leading jet pT 15.0 GeV

TABLE 4.1: Table showing the jet cuts made when processing the initial
MiniAOD MC samples into ROOT files. The minimum number of AK8 jets
was different for the QCD and tt̄ files because we only looked at one lead-
ing jet for tt̄ samples, but we looked at leading and sub-leading jets in QCD

samples to increase statistics.

“branches” corresponding to analysis variables. One tool which can process these files in
this way is LJMet, an internal CMS program [23]. LJMet is advantageous due to its ver-
satility and the user’s ability to customize the settings and cuts so as to not only calculate
and populate specific variables into the final trees, but also make different variable-based
event selections during the process. For instance, the main cuts we made while processing
our sample datasets into ROOT files pertained to the jets in each event and can be seen
in Table 4.1. We also only accepted events in which both top decays were hadronic, thus
signifying a fully reconstructable tt̄ event.

In addition to the event selection jet cuts made through LJMet, we also used this tool
to save the input variables to the BEST neural network, which can be seen in Figure 3.1.
Furthermore, we used the calculation capabilities of LJMet to connect PF candidates saved
into the MiniAOD file to corresponding jet constituents. In this way, we were effectively
able to also save variables similar to some of those used as input features to the DeepAK8
neural network as well. For each jet constituent within each jet, we then saved the con-
stituent’s charge, pseudorapidity (η), pT, energy, and azimuthal scattering angle (φ). Fi-
nally, we saved the charge, η, pT, energy, and φ of each overall jet.

4.3 From ROOT Trees to DNN Inputs

The final step in preparing the MC samples for input into our DNN was converting the
ROOT trees in the ROOT files produced by LJMet into tensors in Hierarchical Data Format
(HDF5) files. This process also involved randomly combining and shuffling jets from tt̄
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events and QCD events. For the combined network of PF and BEST variable inputs, the
vectors created (one per jet) were one-dimensional and of size 5 ∗ 11 + 65 = 120. This
structure accounts for the 5 saved pieces of PF feature information (charge, η, pT, energy,
and φ) for the overall jet and up to 10 jet constituents. If fewer than 10 jet constituents
could be found in a given event, the additional places would be populated with 0s. The
additional 65 units of the input tensor account for BEST variables saved for each jet.

By keeping the leading and sub-leading jets from QCD events, we were able to use
449, 341 jets (with approximately equal numbers of tt̄ and QCD jets) to train, validate,
and test our neural network. Without the additional sub-leading QCD jets, only 277, 241
jets could be used. The final HDF5 input file for the network training on PF features and
BEST variables was 168 MB while the input files for training only on PF information or
only BEST variables were 85 MB each.
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Chapter 5

PF+BEST: A Hybrid Classifier

5.1 Initial Combination Approach

While the final process of combining the BEST and DeepAK8 neural networks is described
above, this procedure was the result of multiple attempts to incorporate the two networks.
Before settling on the approach documented here, we explored a few other avenues, such
as training one of the networks on both BEST and DeepAK8 input variables. The current
approach of creating a new DNN which considers BEST and DeepAK8 was chosen due
to the limitations of the BEST and DeepAK8 architectures in changing input formats and
subsequently retraining the networks. While this approach can also be improved, we be-
lieve it is the best way to initially explore the advantages and disadvantages of integrating
features of both the BEST and DeepAK8 taggers.

5.2 PF+BEST Network Architecture

The final combination of DeepAK8 and BEST, referred to as PF+BEST due to its input
variables including PF information and BEST kinematic and topological variables, was
in the form of a convolutional neural network with two, one-dimensional convolutional
layers, four “main” dense layers, and one final dense layer. The activation function used
was a rectified linear activation function until the final step, when a sigmoid activation
function was used to set the outputs between 0 and 1.

The PF+BEST network was trained on a total of 268, 800 jets, validated on a set of
89, 600 jets, and tested on a set of 89, 600 jets for a 3:1:1 training-validation-testing ratio.
There was no overlap between the training, testing, and validation sets. Further informa-
tion on the structure of the PF+BEST neural network can be seen in Figure 5.1.

PF+BEST was created, trained, and tested with the Keras Python library with a Ten-
sorFlow Python package backend [25, 26]. The scikit-learn Python package was used to
create Receiver Operating Characteristic (ROC) curves and calculate their Area Under the
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Conv1D
Filters: 16

Filter size: 1x11
Strides: 5

Conv1D
Filters: 16

Filter size: 1x6
Strides: 2

MAXPOOL 1D (2)

MAXPOOL 1D (2)

FLATTEN

DENSE (100 units)

DENSE (100 units)

DENSE (100 units)

DENSE (100 units)

DENSE (2 units) OUTPUT 
(top, QCD)

Four dense layers

Last dense layer

Two convolutional layers

PF candidate features + 
BEST jet kinematic and 
topological variables

FIGURE 5.1: A schematic showing the general architecture of the PF+BEST
neural network. This architecture was modified in a few tests, but this base
network, with two convolutional layers, four “main” dense layers, and one

final dense layer, was the primary structure used for training and testing.

Curve (AUC) scores. ROC curves and AUC scores can be used to understand the relation-
ship between the true and false positive rates of the classifier. Network training, testing,
and production of ROC curves was done remotely on graphics processing units (GPUs)
located at the Fermi National Accelerator Laboratory in Batavia, Illinois. PF+BEST net-
works and variations were trained for between 25 and 75 epochs. As each epoch took
between 60 and 120 seconds to train, network training time ranged from approximately
25 minutes to approximately 2.5 hours. The time taken to evaluate the trained networks
by running the testing datasets through them was approximately less than 2 minutes.
Finally, in order to avoid overtraining, the epoch used for testing was chosen based on
the best (largest) AUC score achieved before the AUC scores significantly leveled out, as
determined by the author.
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Chapter 6

Results

6.1 Initial PF+BEST and Increasing Statistics

The initial version of of PF+BEST was run on 277, 241 instead of the 449, 341 jets used in
final results. The differences in the ROC curves and AUC scores between these two sets
can be seen in Figure 6.1. It is important to note that these initial results trained and tested
on files with extra BEST-related input variables giving the number of jets in the frames of
the detector and t, W, Z, and H at rest, as well as jet mass and energy, for a total BEST
variable count of 73 instead of 65. These variables seem to have been left over in the BEST
files from LJMet for unknown reasons, but should not necessarily be part of the variables
on which a BEST-type network would be trained. While they were removed from training,
testing, and validation sets for subsequent versions of PF+BEST, our increase in sample
statistics occurred before this change and thus is represented in this initial form.

6.2 Input-Varying Versions of PF+BEST

While PF+BEST nominally includes PF candidate feature information and BEST kinematic
and topological jet variable information, we also trained identical networks only using our
PF candidate feature information (PF_CNN) or only our BEST kinematic and topological
jet variables (BEST_CNN). The ROC curves comparing these results with PF+BEST can be
seen in Figure 6.2.

6.3 Comparing PF+BEST, BEST, and DeepAK8

In addition to comparing the architecture of PF+BEST as trained on different subsets of
inputs, we can also compare the performance of PF+BEST to the BEST and DeepAK8
classifiers themselves. We also have included the BEST_CNN network from Figures 6.2,
which describes the output of the PF+BEST CNN network architecture with only BEST
variable inputs, in order to compare the original BEST to this BEST-like network. This can
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FIGURE 6.1: A comparison of ROC curves corresponding to versions of
PF+BEST trained, tested, and validated on different numbers of jets. The
PF+BEST network using a sample of 277, 241 jets was trained for 40 epochs
and evaluated at epoch 31 while the network using a sample of 449, 341 jets
was trained for 75 epochs and evaluated at epoch 57. The pT range included

is in units of GeV.

be seen in Figure 6.3 for the entire pT range of 400 GeV to infinity and in five pT ranges of
200 GeV each in Figures 6.4 (linear plots) and 6.5 (log-log plots).

6.4 Testing Different Architectures for PF+BEST

While PF+BEST was primarily used with the architecture described in Chapter 5, it was
also tested with two other architectures. First, the number of layers was cut in half, so only
the first convolutional layer and first two “main” dense layers were used. Additionally,
the number of layers was doubled such that four convolutional layers and eight “main”
dense layers were used. The four additional dense layers were identical to the original
dense layers, while the two additional convolutional layers had the same number of fil-
ters, but the filters were sized 1x3 (first additional layer) and 1x2 (second additional layer)
and each had strides of 1. The performance of these networks can be seen in Figure 6.6.
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(A)

(B)

FIGURE 6.2: Comparisons of ROC curves corresponding to versions of
PF+BEST, which was trained on PF information and BEST variables,
PF_CNN, which was trained on only PF information, and BEST_CNN, which
was only trained on BEST variables, on both linear (6.2a) and log-log scales
(6.2b). Apart from the dimensions of the input tensors (1x120, 1x55, and
1x65 respectively), all network architectures were identical. The PF+BEST
and BEST_CNN networks were each trained for 75 epochs and evaluated at
epoch 30 while the PF_CNN network was trained for 50 epochs and evaluated

at epoch 46. The pT range included is in units of GeV.
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(A)

(B)

FIGURE 6.3: Comparisons of ROC curves corresponding to PF+BEST,
BEST_CNN, BEST, and DeepAK8 on both linear (6.3a) and log-log scales
(6.3b). PF+BEST and BEST_CNN were each trained for 75 epochs and evalu-
ated at epoch 30 while BEST and DeepAK8 were trained independent of this
project by other authors as described in Chapter 3. The pT range included is

in units of GeV.
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(A) (B)

(C) (D)

(E)

FIGURE 6.4: Comparisons of ROC curves corresponding to PF+BEST,
BEST_CNN, BEST, and DeepAK8 on linear scales in five, 200 GeV-sized pT
ranges between 400 GeV to infinity. PF+BEST and BEST_CNN were each
trained for 75 epochs and evaluated at epoch 30 while BEST and DeepAK8
were trained independent of this project by other authors as described in

Chapter 3. The pT range included is in units of GeV.
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(C) (D)

(E)

FIGURE 6.5: Comparisons of ROC curves corresponding to PF+BEST,
BEST_CNN, BEST, and DeepAK8 on log-log scales in five, 200 GeV-sized pT
ranges between 400 GeV to infinity. PF+BEST and BEST_CNN were trained
for 75 epochs each while BEST and DeepAK8 were trained independent of
this project by other authors as described in Chapter 3. The pT range included

is in units of GeV.
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(A)

(B)

FIGURE 6.6: Comparisons of ROC curves corresponding to versions of
PF+BEST of varying neural network architectures on both linear (6.6a) and
log-log scales (6.6b). The original PF+BEST network (2 Conv1D + 4 Dense)
was trained for 75 epochs and evaluated at epoch 30 while the two other ar-
chitectures (1 Conv1D + 2 Dense and 4 Conv1D + 8 Dense) were both trained
for 25 epochs and evaluated at epoch 22. The pT range included is in units of

GeV.



27

Chapter 7

Discussion and Analysis

7.1 Evaluating PF+BEST

Overall, our inquiry into combining aspects of BEST and DeepAK8 to create a more ef-
fective DNN boosted top tagger gave encouraging results. We can see this by observing
the ROC curves and AUC scores of the different networks tested with the knowledge that
an AUC score of 1.0, representing a true positive rate of 1.0 for a false positive rate of
0.0, is the ideal AUC score. In this way, we can evaluate PF+BEST through variations
in networks based on statistics, inputs, and architectures, as well as in relation to BEST
and DeepAK8 over a full pT spectrum and over five pT bins. As this was a preliminary
study, we did not train each network multiple times and thus do not know definitively
the difference in AUC scores which would be statistically significant. This is definitely an
area which can be improved in future studies but, for this study, we note all differences
in AUC score with the knowledge that those under 1% (0.01) and especially those under
0.5% (0.005) may not be statistically significant.

7.2 Increasing Statistics

As seen in Figure 6.1, we were able to effectively increase our sample of jets by including
leading and sub-leading QCD jets in order to increase our statistics and the strength of
PF+BEST. By increasing the number of jets from 277, 241 to 449, 341, we were able to in-
crease the AUC score by over 0.02, though it is important to recognize that this particular
improvement was achieved when still using samples with the extraneous BEST-related
input variables described in Chapter 6.1. Furthermore, increasing sample statistics is also
helpful in preventing any overtraining of the neural network.
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7.3 Varying Inputs

In addition to successfully increasing statistics and identifying extraneous BEST-related
input variables, we were able to see that PF+BEST was more effective than identically
structured networks trained only on BEST input variables (BEST_CNN) or only on PF
level information we selected (PF_CNN), as seen in Figure 6.2. From Figure 6.2a, we can
clearly see that the AUC scores of PF+BEST and BEST_CNN, 0.9743 and 0.9713 respec-
tively, easily surpass the PF_CNN AUC score of 0.8311.

The weakness of PF information only is expected due to the fact that PF+BEST and,
thus, PF_CNN, only trained on five PF candidate features. The efficacy of DeepAK8 on
which this project was predicated were the result of many more candidate features. It is
interesting, however, that BEST_CNN performs so similarly to PF+BEST, with a differ-
ence in AUC score of only 0.003, which could only be due to statistical fluctuations. The
difference between the two networks can be seen more closely in Figure 6.2b, in which it
is clear that BEST_CNN has a higher true positive rate at lower false positive rates, which
is desirable, but that PF+BEST steeply increases such that at higher true positive rates, its
false positive rate is slightly lower than that of BEST_CNN, leading to its overall higher
AUC score. The differences between BEST_CNN and PF+BEST are further discussed in
the following section, Chapter 7.4.

From these observations of Figure 6.2 as a whole, it is clear that training on so few
PF features does not significantly help the accuracy of PF+BEST versus BEST_CNN. The
slightly higher AUC score of PF+BEST, however, might suggest that training PF+BEST on
a greater number of PF features in future studies could increase the difference in perfor-
mance of PF+BEST versus BEST_CNN.

7.4 Direct Comparisons of PF+BEST, BEST_CNN, BEST, and
DeepAK8 in Full pT Spectrum

PF+BEST also performed comparably to BEST and DeepAK8 in direct comparisons to
these two networks. In particular, we can see from Figure 6.3 that both PF+BEST and
BEST_CNN performed better than BEST and only slightly worse than DeepAK8, with
AUC scores of 0.9743, 0.9713, 0.9427, and 0.9827 respectively, over the full pT spectrum of
400 GeV to infinity.

While PF+BEST, DeepAK8, and BEST_CNN all seem relatively comparable in Figure
6.3a, however, it is interesting to look at the log-log plot of Figure 6.3b, which shows that
PF+BEST once again has the lowest true positive rate at very low false positive rates, but
goes on to increase dramatically such that its overall AUC score is the second highest of
the four represented. Furthermore, it is BEST and DeepAK8 which have the highest two
true positive rates at the lowest false positive rates. It will be important in future studies
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and testing of PF+BEST to investigate why these differences, only apparent in the log-
log ROC curve graphs, occur between PF+BEST and BEST_CNN, and more established
networks such as DeepAK8 and BEST.

Furthermore, one caveat that should be recognized in the direct comparisons of these
networks is that both BEST and DeepAK8 were trained on slightly different samples, both
with less pileup than the PF+BEST samples [5, 17, 21, 22]. The networks were still all
tested in the PF+BEST samples referenced in Chapter 4.1, but the fact that they were
trained on different sets may explain, for instance, why BEST performed worse than the
other two networks. Alternatively, BEST’s worse performance as compared to PF+BEST
and BEST_CNN may be due to the simpler, non-convolutional architecture of BEST as
compared to these two networks [5, 17].

7.5 Direct Comparisons of PF+BEST, BEST_CNN, BEST, and
DeepAK8 in Varying pT Bins

In addition to comparing PF+BEST, BEST_CNN, BEST, and DeepAK8 over the entire pT
spectrum studied, it is important to see if there are any differences in the way in which
the networks compare in smaller pT ranges, as seen in Figures 6.4 and 6.5. Overall, the
performance of PF+BEST was best in the 600 to 800 GeV range, as seen most clearly in
Figure 6.5b. In this pT range, the AUC score for PF+BEST was only 0.0028 lower than that
of DeepAK8, and its initial true positive rate was second highest only to DeepAK8.

The other interesting result in these plots was the superiority of PF+BEST in relation
to BEST_CNN in high pT ranges. This is clear from the decrease in BEST_CNN’s AUC
score from 0.9521 in the 1000 to 1200 GeV pT range to 0.9159 in the highest pT range of
1200 GeV to infinity, while PF+BEST’s AUC scores only decreases from 0.9598 to 0.9438
between these two pT ranges. Prior to that last bin, the performance of BEST_CNN was
very comparable to PF+BEST, which was still generally better than BEST, though in the
last pT bin BEST_CNN seemed to act much more similarly to BEST than PF+BEST. The
lower AUC scores for BEST on its own at higher pT values may be related to the fact that
BEST was trained on samples which only went up to pTs of 2 TeV while the other networks
were not trained on samples with upper pT limits [5, 21]. The fact, however, that the per-
formance of BEST declines before the highest pT bin and that BEST_CNN’s performance
also seems to decline at higher pT values may be related to a lower efficacy in using solely
those variables to tag jets at higher pTs as opposed to using other or additional inputs like
DeepAK8 or PF+BEST. The superiority of DeepAK8 and PF+BEST in comparison to BEST
and BEST_CNN is therefore important to probe in further studies as many forms of BSM
physics might result in very high pT jets.
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7.6 PF+BEST with Varying Architectures

While we did not test a large variety of architectures for PF+BEST, we did test effectively
doubling and halving the number of hidden layers in PF+BEST, as seen in Figure 6.6. From
Figure 6.6a, it is virtually impossible to tell the differences between the three architectures.
Their AUC scores fall within 0.0012 of each other, with the “original” PF+BEST having an
AUC score of 0.9743, PF+BEST with additional layers having an AUC score of 0.9744,
and PF+BEST with fewer layers having an AUC score of 0.9732. From Figure 6.6b, we
can see the slightly higher true positive rate of PF+BEST with additional layers at the
lowest false positive rate, but the differences between the three networks are not truly
significant. It would, however, be interesting to look at these networks in different pT
ranges to see if performance changes based on pT bin. Furthermore, our variances in
architecture were very preliminary and could be significantly diversified by trying even
more layers, different proportions of convolutional and dense layers, different sizes of
dense layers, different filter numbers, filter size, and stride lengths for the convolutional
layers, and many additional variations. In this way, the testing of different architectures
is a particularly rich avenue of exploration for future studies of PF+BEST-like DNNs.
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Chapter 8

Conclusions and Moving Forward

8.1 Does PF+BEST have a future?

The initial goal of creating PF+BEST was to investigate DNN boosted top tagging tech-
niques which might act as alternatives to more established networks such as BEST and
DeepAK8. Overall, it was found that PF+BEST is comparable with these two established
networks and has the possibility, with further studies, to improve upon its performance
here and either become equal with or even surpass the performance of the two networks.
It should also be noted that PF+BEST is currently relatively simple, especially compared
to a network such as DeepAK8, which is important when considering the time and com-
puting resources necessary to run such a network on a large scale.

Furthermore, the fact that initial tests of PF+BEST was able to achieve these results for
files with pileup values of 200 is extremely significant. These pileup values are expected
at the HL-LHC and are 4 to 5 times higher than those seen during Run II of the LHC
between the years of 2016 and 2019. Unlike PF+BEST, the BEST and DeepAK8 networks
were trained on MC samples produced for Run II analyses and, therefore, were not trained
to be used on data MC samples with 200 pileup [5, 21]. Future top taggers must be able to
combat these challenging, high pileup regimes in order to identify top quarks in the HL-
LHC, making the efficiency and efficacy of PF+BEST exciting for the future of top tagging.
For these reasons, it is clear that the hadronic top tagging capacities of PF+BEST should
be further explored in future studies.

8.2 Next Steps for PF+BEST

It is first important to consider future developments of PF+BEST along avenues described
in Chapter 7. For instance, further increases in sample statistics, testing different DNN ar-
chitectures and adding more PF features as inputs could lead to significant improvements
of the network. Furthermore, explorations into differences in performance between BEST,
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PF+BEST, and DeepAK8 in different pT ranges could give further insight into improve-
ments on these networks. It would also be helpful in future studies to collaborate more
closely with the creators of BEST and DeepAK8 such that BEST, DeepAK8, and PF+BEST
can be all trained and tested on the same samples. Finally, while we have clearly estab-
lished the importance of top tagging, it would be interesting to try to extend PF+BEST
such that it, like current versions of BEST and DeepAK8, is able to tag other heavy parti-
cles, such as W±, Z, and H bosons, in addition to top quarks. If PF+BEST is developed
along these guidelines, there is significant promise that PF+BEST can play an important
role in discovering new physics involving coupling with heavy SM particles in the future.



33

Bibliography

[1] Mark Thomson. Modern Particle Physics. Cambridge: Cambridge University Press,
2016.

[2] Georges Aad et al. “Observation of a new particle in the search for the Standard
Model Higgs boson with the ATLAS detector at the LHC”. In: Physics Letters B 716.1
(2012), pp. 1–29. DOI: 10.1016/j.physletb.2012.08.020.

[3] Serguei Chatrchyan et al. “Observation of a new boson at a mass of 125 GeV with
the CMS experiment at the LHC”. In: Physics Letters B 716.1 (2012), pp. 30–61. DOI:
10.1016/j.physletb.2012.08.021.

[4] The Standard Model and beyond. URL: http : / / united - states . cern / physics /
standard-model-and-beyond (visited on 04/15/2019).

[5] Justin Pilot et al. “Search for Pair Production of Vector-Like T Quarks in the Fully
Hadronic Channel with the Boosted Event Shape Tagging Algorithm”. In: (2018).
CMS AN-18-095.

[6] Martin Schmaltz and David Tucker-Smith. “Little higgs theories”. In: Annu. Rev.
Nucl. Part. Sci. 55 (2005), pp. 229–270. DOI: 10.1146/annurev.nucl.55.090704.
151502.

[7] Lily Asquith et al. Jet substructure at the Large Hadron Collider: experimental review.
2018. URL: https://arxiv.org/abs/1803.06991.

[8] Albert M Sirunyan et al. “Measurement of vector boson scattering and constraints
on anomalous quartic couplings from events with four leptons and two jets in proton–
proton collisions at s= 13TeV”. In: Physics letters B 774 (2017), pp. 682–705. DOI:
10.1016/j.physletb.2017.10.020.

[9] CMS Detector. URL: https://cms.cern/detector (visited on 04/15/2019).

[10] Albert M Sirunyan, CMS Collaboration, et al. “Particle-flow reconstruction and global
event description with the CMS detector”. In: Journal of Instrumentation 12.10 (2017),
P10003. DOI: 10.1088/1748-0221/12/10/p10003.

[11] Tilman Plehn and Michael Spannowsky. “Top tagging”. In: Journal of Physics G: Nu-
clear and Particle Physics 39.8 (2012), p. 083001. DOI: 10.1088/0954- 3899/39/8/
083001.

http://dx.doi.org/10.1016/j.physletb.2012.08.020
http://dx.doi.org/10.1016/j.physletb.2012.08.021
http://united-states.cern/physics/standard-model-and-beyond
http://united-states.cern/physics/standard-model-and-beyond
http://dx.doi.org/10.1146/annurev.nucl.55.090704.151502
http://dx.doi.org/10.1146/annurev.nucl.55.090704.151502
https://arxiv.org/abs/1803.06991
http://dx.doi.org/10.1016/j.physletb.2017.10.020
https://cms.cern/detector
http://dx.doi.org/10.1088/1748-0221/12/10/p10003
http://dx.doi.org/10.1088/0954-3899/39/8/083001
http://dx.doi.org/10.1088/0954-3899/39/8/083001


BIBLIOGRAPHY 34

[12] Carmen Diez Pardos. Top Quark Physics at ATLAS and CMS. PDF. Presented at Corfu2017:
Workshop on the Standard Model and Beyond in Corfu, Greece, September 2-10,
2017. 2017. URL: http://www.physics.ntua.gr/corfu2017/Talks/carmen_diez@
desy_de_01.pdf.

[13] Matteo Cacciari, Gavin P Salam, and Gregory Soyez. “The anti-kt jet clustering al-
gorithm”. In: Journal of High Energy Physics 2008.04 (2008), p. 063. URL: https://
arxiv.org/pdf/0802.1189.pdf.

[14] Jyothsna Rani Komaragiri for the CMS collaboration. Physics objects for top physics
in CMS. Presented at the 9th International Workshop on Top Quark Physics in Olo-
mouc, Czech Republic, September 19–23, 2016. 2016. URL: https://arxiv.org/abs/
1612.01917.

[15] Mrinal Dasgupta et al. “Towards an understanding of jet substructure”. In: Journal
of High Energy Physics 2013.9 (2013), p. 29. DOI: 10.1007/JHEP09(2013)029.

[16] Andrew J Larkoski, Ian Moult, and Benjamin Nachman. “Jet substructure at the
Large Hadron Collider: a review of recent advances in theory and machine learn-
ing”. In: arXiv preprint arXiv:1709.04464 (2017). URL: https://arxiv.org/pdf/1709.
04464.pdf.

[17] JS Conway et al. “Identification of high-momentum top quarks, Higgs bosons, and
W and Z bosons using boosted event shapes”. In: Physical Review D 94.9 (2016),
p. 094027. DOI: 10.1103/PhysRevD.94.094027.

[18] Jesse Thaler and Ken Van Tilburg. “Identifying boosted objects with N-subjettiness”.
In: Journal of High Energy Physics 2011.3 (2011), p. 15. DOI: 10.1007/JHEP03(2011)
015.

[19] Albert M Sirunyan et al. “Identification of heavy-flavour jets with the CMS detector
in pp collisions at 13 TeV”. In: Journal of Instrumentation (2018). DOI: 10.1088/1748-
0221/13/05/p05011.

[20] Andrew J Larkoski et al. “Soft drop”. In: Journal of High Energy Physics 2014.5 (2014),
p. 146. DOI: 10.1007/JHEP05(2014)146.

[21] The CMS Collaboration. “Deep learning for jet reconstruction”. In: (2017). CMS AN-
17-188.

[22] Markus Stoye et al. “DeepJet: Generic physics object based jet multiclass classifica-
tion for LHC experiments”. In: Proceedings of the Deep Learning for Physical Sciences
Workshop at NIPS. 2017. URL: https://dl4physicalsciences.github.io/files/
nips_dlps_2017_10.pdf.

[23] Julie Hogan. LJMet Tutorial. unpublished. Presented as tutorial to Brown University
CMS Group students in October 2018. 2018.

http://www.physics.ntua.gr/corfu2017/Talks/carmen_diez@desy_de_01.pdf
http://www.physics.ntua.gr/corfu2017/Talks/carmen_diez@desy_de_01.pdf
https://arxiv.org/pdf/0802.1189.pdf
https://arxiv.org/pdf/0802.1189.pdf
https://arxiv.org/abs/1612.01917
https://arxiv.org/abs/1612.01917
http://dx.doi.org/10.1007/JHEP09(2013)029
https://arxiv.org/pdf/1709.04464.pdf
https://arxiv.org/pdf/1709.04464.pdf
http://dx.doi.org/10.1103/PhysRevD.94.094027
http://dx.doi.org/10.1007/JHEP03(2011)015
http://dx.doi.org/10.1007/JHEP03(2011)015
http://dx.doi.org/10.1088/1748-0221/13/05/p05011
http://dx.doi.org/10.1088/1748-0221/13/05/p05011
http://dx.doi.org/10.1007/JHEP05(2014)146
https://dl4physicalsciences.github.io/files/nips_dlps_2017_10.pdf
https://dl4physicalsciences.github.io/files/nips_dlps_2017_10.pdf


BIBLIOGRAPHY 35

[24] J.M. Campbell et al. “Top-pair production and decay at NLO matched with parton
showers”. In: (2015). DOI: 10.1007/JHEP04(2015)114.

[25] François Chollet et al. Keras. https://keras.io. 2015.

[26] Martín Abadi et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous Sys-
tems. Software available from tensorflow.org. 2015. URL: https://www.tensorflow.
org/.

http://dx.doi.org/10.1007/JHEP04(2015)114
https://keras.io
https://www.tensorflow.org/
https://www.tensorflow.org/

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	List of Abbreviations
	List of Symbols
	Introduction & Background
	The Standard Model
	Physics Beyond the Standard Model and Top Quarks
	LHC Physics and CMS

	The CMS Detector and Jet Detection
	CMS Detector Overview

	Identifying Top Quarks with CMS
	tbart Production and Decay
	Boosted Top Decays
	CMS Jet Reconstruction
	Top Tagging Through Jet Substructure
	Exploring ANN- and DNN-based Top Tagging in CMS
	BEST
	BEST Input Variables
	BEST Neural Network Architecture

	DeepAK8
	DeepAK8 Inputs
	DeepAK8 Neural Network Architecture


	Data and Sample Processing
	tbart and QCD Datasets
	tbart and QCD Sample Processing with LJMet
	From ROOT Trees to DNN Inputs

	PF+BEST: A Hybrid Classifier
	Initial Combination Approach
	PF+BEST Network Architecture

	Results
	Initial PF+BEST and Increasing Statistics
	Input-Varying Versions of PF+BEST
	Comparing PF+BEST, BEST, and DeepAK8
	Testing Different Architectures for PF+BEST

	Discussion and Analysis
	Evaluating PF+BEST
	Increasing Statistics
	Varying Inputs
	Direct Comparisons of PF+BEST, BEST_CNN, BEST, and DeepAK8 in Full pT Spectrum
	Direct Comparisons of PF+BEST, BEST_CNN, BEST, and DeepAK8 in Varying pT Bins
	PF+BEST with Varying Architectures

	Conclusions and Moving Forward
	Does PF+BEST have a future?
	Next Steps for PF+BEST

	Bibliography

