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Abstract

Langmuir turbulence, formed when steady winds blow over the ocean,

helps to mix the ocean surface boundary layer that regulates the ex-

change of heat and gas between the stable ocean and the volatile atmo-

sphere. Due to their size and complexity, global climate models struggle

to resolve turbulence on this scale, leading to persistent uncertainties in

ocean surface temperatures and the mixed layer depth. As part of the

effort to reduce climate model uncertainties and better understand ocean-

atmosphere dynamics, this thesis involved the construction and analysis

of a Direct Statistical Simulation (DSS) model of Langmuir turbulence.

Simulations designed with two different approximations, the quasilinear

and generalized quasilinear, were compared to a fully non-linear simula-

tion to judge the ability of DSS to capture critical dynamics at minimal

computational cost. I found that both approximations could produce

Langmuir turbulence but the generalized quasilinear approximation does

so with much greater accuracy.
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Chapter 1

Introduction & Background

Scientists and policymakers alike rely on good climate models to illuminate the past,

describe the present, and project into the future of the Earth system. With the

rapid onset of anthropogenic climate change, an imperative and a time limit have

emerged in the field of climate science. If we want to put precise numbers on sea level

rise, average global temperature increase, desertification, and more, then we need

our climate models to be fast, accurate, and informed by our best science on climate

dynamics.

1.1 Direct Numerical Simulation

Climate models today are based on Direct Numerical Simulation (DNS), which takes

a physically intuitive approach to climate modeling. It starts with an Earth System

Model, a computerized representation of the Earth that stores important climate vari-

ables: air temperature, pressure, and humidity; solar radiation; ocean temperature,

density, salinity, and gas content; landmass albedo and plant coverage; the list goes

on to encompass as many climate-relevant variables as we can fit. Each variable is

stored as a series of discrete values on a three-dimensional grid, ultimately requiring

billions of variables. The Earth System Model is then allowed to evolve over time

using known physical laws that mimic the conditions in the real climate. Chains of

equations and sophisticated mathematical solvers allow solar radiation to heat the air

and ocean, pressure differences to drive air currents, and storms to form and rage and

die away. Climate statistics, which describe resilient patterns in the climate like storm

tracks, average rainfall, and the likelihood of extreme weather events, are collected

by observing the Earth System Model as it runs over years of simulated time. The

DNS approach to climate modeling is ubiquitous, employed by climate researchers

from university labs and research centers all the way up to the National Center for
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Atmospheric Research (NCAR) and the Intergovernmental Panel on Climate Change

(IPCC). A particularly striking example can be seen in figure 1.1, the result of a global

ocean surface current simulation carried out by MIT’s global circulation model.

Figure 1.1: Visualization of the Gulf Stream using model data from ECCO2, a joint
project between MIT and the Jet Propulsion Laboratory that uses the MIT global
circulation model to study ocean currents [1].

For all that DNS climate models have accomplished in describing and predicting

changes in the climate system, they have well-known limitations. Storing billions of

variables takes a lot of computing power, and the higher you push the grid resolution

the more memory and procesing power you require: if I have a grid point every 10

kilometers and I want to improve the resolution to 5 kilometers, I have multiplied the

number of grid points not by 2 but by 8 since I am halving the grid spacing along

not just one but all three spatial dimensions (23 = 8). I also have to cut the time

step in half to ensure numerical convergence once I start to solve the equations of

motion, so the multiplier on computing resources needed is actually 24 = 16. When

there are hundreds or thousands of climate variables defined at each grid point, the

computing load adds up fast. Climate dynamics are complicated, requiring many

equations and interactions that take even supercomputers a long time to calculate.

Unsurprisingly, DNS models take ages to run, easily weeks or months. The burden of

billions of variables and computationally intensive equations leads to long run times

and requires huge supercomputers, tying up computing resources and introducing a

significant time lag after any change or advance in modeling methods.
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In order to reduce the computing burden, DNS models have to sacrifice some ac-

curacy. The grid resolution is generally the easiest to cut, so many DNS models must

accept a spatial resolution of hundreds of kilometers. This resolution is surprisingly

effective for large-scale features like air or ocean currents and solar radiation intake,

but it fails to represent small scale, or sub-grid, features. There are work-arounds that

sneak these features into climate models without representing them explicitly, such as

tuning physical parameters to preserve the effects of sub-grid mechanisms on a larger

scale or assuming homogeneity or isotropy. But these approaches, while providing

useful climate model results, do not give scientists a fundamental understanding of

the climate dynamics at work. If we want to improve climate models while preserving

sub-grid mechanisms, we need to consider alternatives to DNS that provide a deeper

understanding of climate dynamics.

1.2 A Brief Introduction to Direct Statistical Sim-

ulation

Direct Statistical Simulation (DSS) presents an alternative to DNS. Developed by

Professor Brad Marston of Brown University and colleagues, DSS represents each

climate variable as the sum of a mean field and a fluctuation. The quasilinear ap-

proximation is then applied to throw out any interactions between fluctuation terms,

simplifying the equations of motion to speed up computation time while preserving

larger-scale behavior [9, 10]. Ultimately, DSS could produce a full sub-grid climate

process model capable of representing climate features that are not resolved in DNS

models due to resolution constraints.

Before DSS can be implemented in a full climate model, we must confirm that it

accurately represents key climate features. Since completing the theoretical frame-

work for DSS, Marston and colleagues have successfully applied it two test cases in

fluid dynamics, zonal jets [10] and convection [11]. The final test case, and the focus

of this thesis, is Langmuir turbulence.

1.3 Langmuir Turbulence

When a steady wind blows over the ocean and exerts a force on the surface of the

water, it generates ocean surface gravity waves, which have a period of 1 to 10 seconds

and a wavelength of a few to a few hundred meters [12]. Figure 1.2 shows the frequency
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distribution and sources of the many kinds of waves that appear in the ocean; wind-

driven surface gravity waves appear at the far right.

Figure 1.2: Figure 1.1 of Holthuijsen [2]. Frequencies and periods of ocean waves.
Surface gravity waves appear at the far right, under “wind-generated waves”.

If we watch a parcel of water under the influence of a gravity wave, it follows the

path illustrated in figure 1.3a, rising and moving forward as the wave crest passes

and falling and sliding part of the way back once the crest has passed. This produces

the cyclical pattern in the figure, but there is a net motion of water in the direction

of wave propagation. Water near the surface tends to move the fastest, while viscous

friction causes the water velocity to decrease exponentially with depth. The Stokes

drift us describes the average velocity of a parcel of water as it travels with surface

waves propagating in the x̂ direction:

us(z) = ase
2kszx̂ (1.1)

where z is depth, as is the drift velocity at the surface (z = 0), and ks is the

wavenumber.

Langmuir turbulence is a circulation pattern that forms in the surface layer of

the ocean. Under steady wind and waves, the Stokes drift causes local vortices,

vertical columns of rotating water which form and [dissolve] spontaneously due to the

somewhat random motion of water, to tilt and stretch along the surface of the ocean,

as illustrated in figure 1.3b. These vortices align roughly with the direction of wave

propagation to form Langmuir cells, the characteristic feature of Langmuir turbulence:
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(a) Figure 1.5b of Thorpe (2007) [13]. Path
of a parcel of water under the influence of the
Stokes force and tilting and stretching of a
vertical column of water (dotted) as a result.

(b) Figure 8 of Teixeiras & Belcher (2002
)[14]. Tilting and stretching of a vertical vor-
tex of water under the influence of the Stokes
force.

Figure 1.3: Illustrations of the Stokes drift in action on a column or parcel (a) or
vertical vortex tube (b) of water near the ocean surface.

long counter-rotating rolls of water that stretch along the surface of the ocean, as

illustrated in 1.4. Like gears, adjacent Langmuir cells rotate in opposite directions,

producing alternating upwells and downwells in between cells. The downwells produce

convergence zones along the surface of the ocean that collect surface material into

long lines called “windrows” as the water to either side flows towards the middle

and then downward. Windrows formed by Langmuir turbulence is often observed on

the surface of the ocean and large lakes as foam or buoyant algae collects above the

downwells; oil spills provide a particularly striking illustration of Langmuir windrows

1.5.

Although small relative to the other length scales of ocean dynamics, Langmuir

circulation plays a major role in ocean circulation and the interaction between the

ocean and the atmosphere. Relatively speaking, Langmuir cells are quite small, typ-

ically a few meters to a kilometer wide and three to ten times that in length [3].

However, their structure gives them an outsized influence on ocean dynamics. Recall

the downwelling jets that form between adjacent Langmuir cells, illustrated in figure

1.6. The scale depth of the Stokes drift, which causes Langmuir turbulence, is limited

by exponential decay from viscous friction to about δS = 1
2k
≈ 5 m [5, 15]. The down-

welling jets caused by Langmuir turbulence, however, can penetrate much deeper into

the ocean, on the order of 100 m [5]. The difference in scale depth between the Stokes

drift and the jets caused by Langmuir turbulence tells us that Langmuir circulation
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Figure 1.4: Adapted from Figure 1 of Thorpe (2004) [3]. A cross-section of Langmuir
turbulence cells near the ocean surface, showing the counter-rotation and alternating
upwells (red) and downwells (blue).

Figure 1.5: An aerial photograph from npr.org [4] taken just after the Deepwater
Horizon oil spill in 2010 shows oil collecting along convergence zones to form Langmuir
windrows. For a sense of scale: the small white spot in the lower-right is an airplane.
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Figure 1.6: Figure 7 from Polton & Belcher (2007) [5]. The Stokes depth scale δS
is compared to the Ekman depth scale δe on the far right, with the Langmuir cells
oriented from the bottom left to the top right near the surface of the water. As
illustrated, the downwelling jets can penetrate much deeper than the Stokes drift or
Langmuir cells alone.

acts as an amplifier, translating wave forcing in the top 1
2k
≈ 5 m of the ocean into

turbulent features that reach 100 m in depth.

The climate implications of Langmuir turbulence and the amplification effects

mentioned above appear in the “mixed layer” or the “ocean surface boundary layer”

(OSBL). The OSBL is the region composed of the top 100 m or so of the ocean that

is more or less fully mixed, with constant temperature, salinity, and dissolved gas

concentration throughout. Below the OSBL, the ocean is highly stratified: water is

warmest near the bottom of the OSBL and gets monotonically colder with depth.

Temperature stratification eliminates the mixing that would otherwise be driven by

buoyancy imbalances, while distance from the surface minimizes forcing by wind,

waves, or solar radiation. As a result, the “deep ocean” is highly stable and responsible

for the long-term storage of trace gases and chemicals. The mixed layer serves as an
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Figure 1.7: Figures 1c and 1d from Belcher (2012) [6]. Percent error between simu-
lated and measured depths of the mixed layer for Dec-Jan-Feb (left) and Jun-Jul-Aug
(right). Simulated data came from averaging HadGEM3 model data over 20 years,
measured depths from Argo float data.

intermediary between the atmosphere, which varies on a time scale of days to weeks,

and the deep ocean, which varies on a time scale of centuries or even longer. As a

result, the depth of the mixed layer is a crucial climate variable. Langmuir turbulence

helps to set this depth through the turbulent mixing driven by downwelling jets, so

it stands to reason that including it in climate models is a good idea.

Unfortunately, climate modeling is not so simple. Recall that computing con-

straints restrict current climate models to a horizontal resolution of hundreds of kilo-

meters, which is far too sparse to resolve Langmuir cells. There is evidence that

climate model accuracy suffers as a result; figure 1.7 shows errors in the mixed layer

depth based on current climate models as compared to data taken by floats [6]. In

some regions, particularly in the June-July-August Southern Ocean, errors are as

much as 100% of the calculated mixed layer, with corresponding errors in calculated

sea surface temperature of 3-4◦ C [6].

There are many ways that ocean surface gravity waves can influence ocean mix-

ing and the global climate, but Langmuir turbulence is increasingly considered one

of the most important to incorporate into climate models [6, 7, 16]. D’Asaro et al.

found that including Langmuir turbulence in a global model of boundary layer mix-

ing increased the depth of the mixed layer by up to 40% (see figure 1.8). In the

Southern Ocean, where models have historically suffered from a persistent shallow

bias in the depth of the mixed layer, the inclusion of Langmuir turbulence could

have a particularly powerful effect. By finding a more computationally manageable
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Figure 1.8: Adapted from Figure 3 of D’Asaro (2013) [7]. Percent increase in (winter)
simulated mixed layer depth with wave forcing relative to no wave forcing; Langmuir
turbulence is included through parametrization rather than explicit simulation.

way to simulate sub-grid Langmuir turbulence, we may be able to explicitly incorpo-

rate Langmuir turbulence into global climate models and improve some of the errors

currently encountered in the mixed layer.

1.3.1 Better Than Your Average Test Case

Fortunately for us, Langmuir turbulence also has practical advantages as a test case.

While the detailed dynamics of Langmuir circulation are complicated and remain

an open area of research [3], the equations of motion were identified by Craik and

Leibovich in 1976 [17]. The Craik-Leibovich equations can be written in various

forms (see Suzuki and Fox-Kemper (2016) [18]), but for the simulations that follow

the relevant form is shown in equation 1.2:
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∇ · u = 0 (1.2a)

∂tu+ (u ·∇)u+ f × (u+ us) =− 1

ρ0
∇
(
p+

ρ0
2

(
|u+ us|2 − |u|2

))
(1.2b)

+ νh∇2
hu+ νz∇2

zu

+ us ×∇× u

+
τ

ρ0
+ gα (T − T0)

∂tT + ((u+ us) ·∇)T =
q

cpρ0
+ κh∇2

hT + κz∇2
zT (1.2c)

where u = {u, v, w} is the three-dimensional velocity vector, us is the Stokes drift

defined in equation 1.1, f = f x̂ is the Coriolis parameter, p is the three-dimensional

pressure, τ = τ x̂ is the surface wind stress, g = gẑ is the gravitational acceleration,

T is the three-dimensional temperature, and all other constant parameters are given

in table 2.1 in section 2. ∇2
h and ∇2

v are the horizontal and vertical components of

the vector Laplacian.

A lot is happening in equation 1.2, so we will break down the terms one-by-one.

The first equation, 1.2a, is the continuity equation and enforces conservation of mass

when density is constant [19]. We are operating under the Boussinesq approximation,

a common approach to fluid dynamics that takes the density to be constant in all

terms except for buoyancy (gα (T − T0) in equation 1.2b). In practice, Boussinesq

hydrodynamics gives an incompressible flow (a close approximation for most liquids,

incompressibility mainly excludes the formation of sound waves) while still allowing

for buoyancy [19].

The second equation, 1.2, is derived from the Navier-Stokes equations, which are

a set of three momentum-balance equations that underpin much of the theory of fluid

dynamics. The terms ∂tu + (u ·∇)u (total acceleration), − 1
ρ0
∇p (pressure forces),

νh∇2
hu+ νz∇2

z (viscous forces), and gα (T − T0) (buoyancy) follow directly from the

Navier-Stokes equations [19]. Additional terms are added to account for the effects of

Stokes drift and the Coriolis force: f×(u+ us) is the Coriolis effect; the correction to

the pressure − 1
ρ0
∇
(
ρ0
2

(
|u+ us|2 − |u|2

))
accounts for the Stokes drift; us ×∇× u

is the wave-influenced vortex force [18]; τ
ρ0

is the forcing caused by wind along the

surface of the water.

The final equation, 1.2c, describes heat conservation [3]. The LHS, ∂tT+((u+ us) ·∇)T ,

is analogous to the first two terms on the LHS of the momentum equation and gives
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the time rate of change of temperature T for a parcel of fluid moving with the velocity

field u. Moving on to the RHS, q
cpρ0

describes the rate of heat loss at the water’s

surface. The final two terms κh∇2
hT + κz∇2

zT describe heat loss due to thermal

diffusion.

Two of the terms in equation 1.2, wind forcing τ
ρ0

and radiative heat loss q
cpρ0

,

only act at the surface of the water. When implementing the equations of motion in

the simulation, those terms appear as boundary conditions on the x-velocity u and

the z-derivative of temperature dT
dz

rather than as terms in the equations.

The Craik-Leibovich equations are far from trivial, but they have proven to be

robust and continue to be used for studies of Langmuir turbulence today. The fa-

miliarity of the equations of motion and the extensive literature on its peculiarities

greatly simplifies the computational task ahead.

The complex dynamics of Langmuir turbulence also present a test of the flexibility

of DSS. Langmuir circulation relies on the coupling of mixed turbulence scales: small-

scale eddies (swirls of water, like the vortex tubes in figure 1.3b) interact with larger-

scale flows like the Stokes drift in order to produce the overall pattern. The quasilinear

approximation required by DSS, described in more detail in section 1.4.1, decouples

eddy scales from one another. Eddies can interact with mean fields or with the

subset of other eddies that produce mean fields, but they cannot interact with other

eddies to produce more eddies (called eddy-eddy scattering). Langmuir turbulence

will therefore provide a useful test of whether DSS can still capture features with

complex eddy interactions.

1.4 A Lengthier Introduction to Direct Statistical

Simulation

We now turn to the meat of Direct Statistical Simulation. In numerical simulations,

the climate is a sum of interacting but distinct physical processes: we feed sub-grid

models into global models, couple atmospheric models to oceanic models, and collect

climate statistics by tracking the aggregate behavior of small scale processes over long

periods of time. Intuitive and useful, but not necessarily instructive. The theoret-

ical development of DSS emerged as an alternative to the numerical approach. By

reimagining the mathematical framework of climate models, DSS attempts to answer

fundamental questions about climate as a distinct dynamical system, not merely a

sum of interacting physical processes. In numerical simulations, the variables are

descriptive physical features – temperature, pressure, trace gas or chemical content –
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and the outputs are the climate system at various points in time. Climate statistics,

the outputs we are actually interested in, are calculated indirectly based on the be-

havior of the climate system over time. In DSS, the variables are the climate statistics

and the governing equations tell us how those statistics evolve over time and inter-

act with each other directly. Instead of tracking air temperature and solar radiation

absorption and then crunching out trends and patterns, DSS follows storm tracks,

average rainfall, and ocean currents. With this approach, we believe that a more

fundamental understanding of climate can emerge. By directly [observing] how each

climate statistic affects the others, DSS should provide a more intuitive perspective

on the climate system as a whole.

In order to test the efficacy of DSS on Langmuir turbulence, we need to compare

a model that uses DSS to a control. The control in this case is a fully nonlinear (NL)

simulation, which directly integrates the time derivatives in the equations of motion

(see equation 1.2). The NL simulation is like a high-resolution DNS model, reproduc-

ing what we believe to be the actual physical conditions of Langmuir turbulence. It

pays for that accuracy by being computationally expensive, hence the need for DSS

in the first place. The NL simulation will be compared to two different versions of

DSS. One uses the quasilinear (QL) approximation, which is a common approach to

computational fluid dynamics that essentially decouples small-scale from large-scale

eddies. The other uses the generalized quasilinear approximation (GQL), a variation

on QL developed by Marston and colleagues that allows more interaction between

eddy scales with only a small projected increase in computation time. We expect to

find that Langmuir turbulence simulated with the QL approximation is fairly close to

the NL simulation results but that the GQL approximation performs even better, an

argument for this modified version of QL to be put to use in future implementations

of DSS.

1.4.1 Quasilinear Approximation

Mathematically, the quasilinear approximation involves decomposing each state vari-

able into two parts, a mean and a fluctuation. State variables for our purposes include

temperature T , pressure p, and the three components of velocity u, v, and w (along

the x-, y-, and z-axes). We can describe the QL decomposition for a generalized state

variable q as follows:

q = q + q′ (1.3)

12



where q is the mean field while q′ is the fluctuation. The decomposition in equation

1.3 is known as a Reynolds decomposition, and it comes with three key properties:

q′ = 0 (1.4)

q = q (1.5)

a q + b = a q + b (1.6)

where a and b can either be scalars or vary over a direction not involved in the

mean q.

One of the impressive flexibilities of DSS is in its definition of the mean; in general,

q can be a temporal mean, a spatial mean, or an ensemble mean [20]. In this case,

however, we are studying spatial means, so q is the average over the horizontal plane.

In the context of our Langmuir turbulence simulation, the state variable decomposi-

tion in equation 1.3 means that the water temperature, for example, is stored in two

parts: T is the average of the temperature in the xy-plane (which varies only with

depth z) while T ′ contains the deviations from those averages.

Each equation of motion is then split into two: what was once dt(q) is now two

equations, one for dt(q) and the other for dt(q′). In order to determine which terms

belong in which equation, we need to distinguish between linear and non-linear terms.

A linear term, denoted in general form by L[q], involves only one state variable or its

derivatives. A non-linear term, denoted by Q[q, q], involves the product of two state

variables, their derivatives, or a state variable with its own derivative. Below are the

equations of motion for Langmuir turbulence with non-linear terms picked out in red

and linear terms in regular type, to provide a more concrete example:

∇ · u = 0 (1.7a)

∂tu+ (u ·∇)u+ f × (u+ us) =− 1

ρ0
∇
(
p+

ρ0
2

(
|u+ us|2 − |u|2

))
(1.7b)

+ νh∇2
hu+ νz∇2

zu

+ us ×∇× u

+
τ

ρ0
+ gα (T − T0)

∂tT + ((u+ us) ·∇)T =
q

cpρ0
+ κh∇2

hT + κz∇2
zT (1.7c)

13



The quasilinear approximation dictates how we treat the non-linear terms, which

represent interactions between and among mean fields q and eddies or fluctuations q′.

We will approximate the large-scale behavior of the system by discarding any non-

linear terms that involve eddy-eddy interactions that produce more eddies (as opposed

to two eddies that interact just right to produce a mean field). Discarding eddy-eddy

scattering terms, which is the real substance of the quasilinear approximation, is

described in more detail just after equation 1.13, below.

Now that we have identified the linear and non-linear terms, we can figure out

how to split each equation into dt(q) and dt(q′). There are a few ways to explain this;

I will start with an algebraic approach, which will give a generalized form for the two

time derivatives. Once we have the equations, I will take a more intuitive approach

by showing how to sort the terms of one of the Langmuir equations of motion between

dt(q) and dt(q′).

For a generic equation of the form

dt(q) = L[q] +Q[q, q] (1.8)

we can apply a horizontal average over both sides

dt(q) = L[q] +Q[q, q] (1.9)

For linear operators, a horizontal average can slip inside the operator. For non-

linear operators, on the other hand, we have to expand over the possible interactions

by plugging in q = q + q′:

dt(q) = L[q] +Q[q + q′, q + q′]

= L[q] +Q[q, q] +Q[q, q′] +Q[q′, q] +Q[q′, q′] (1.10)

The middle two non-linear terms, Q[q, q′] andQ[q′, q], are subject to the scalar rule

for Reynolds decomposition (equation 1.6), where we can treat q itself as scalar-like

because it varies only over a direction orthogonal to the horizontal average:

Q[q, q′] => q · q′

= q · q′

= q · q′

= 0
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where we used q = q (equation 1.5) and q′ = 0 (equation 1.4). The operator

· is meant to represent a generalized interaction; the non-linear term could involve

derivatives rather than straight products, but the same reduction steps would apply

regardless. This leaves us with the full generalized expression for dt(q):

dt(q) = L[q] +Q[q, q] +Q[q′, q′] (1.11)

Now that we have dt(q), we can actually solve for dt(q′) through a straightforward

substitution. Start by taking a time-derivative of the Reynolds decomposition:

q = q + q′

dt(q) = dt(q) + dt(q′)

dt(q′) = dt(q)− dt(q)

We can then substitute the generalized expression for dt(q) (equation 1.8), plug-

ging in q = q + q′, and the one we just derived for dt(q) (equation 1.11):

dt(q′) = L[q] +Q[q, q]−
(
L[q] +Q[q, q] +Q[q′, q′]

)
= L[q + q′] +Q[q + q′, q + q′]− L[q]−Q[q, q]−Q[q′, q′]

= L[q] + L[q′] +Q[q, q] +Q[q, q′] +Q[q′, q] +Q[q′, q′]

− L[q]−Q[q, q]−Q[q′, q′] (1.12)

expanding Q[q + q′, q + q′] just as we did in equation 1.10. Now cancel matching

terms:

dt(q′) = L[q′] + +Q[q, q′] +Q[q′, q] +Q[q′, q′]−Q[q′, q′] (1.13)

Everything we have done so far is “real” math, but this next step is where the

quasilinear approximation actually happens. The expression dt(q′) describes the time-

evolution of eddies (fluctuations q′), so the right-hand side gives all of the interactions

that can influence the eddy dynamics. The magic of the quasilinear approximation

comes from killing the last two terms, Q[q′, q′] and −Q[q′, q′]. Physically, this prevents

eddy-eddy interactions (Q[q′, q′]) from affecting other eddies (dt(q′)), which we call

eddy-eddy scattering. Instead, the only interactions that can affect dt(q′) are between

an eddy and a mean field (q, q′).
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Once we’ve crossed out the eddy-eddy scattering terms, we end up with our gen-

eralized expression for dt(q′), displayed below along with dt(q) so that we have them

both in one place:

dt(q′) = L[q′] +Q[q, q′] +Q[q′, q] (1.14)

dt(q) = L[q] +Q[q, q] +Q[q′, q′] (1.15)

Ok, so we have the generalized equations of motion. What does this look like

in practice? We’ll use one of the equations of motion for Langmuir turbulence as an

example of how to split and sort non-linear terms. Recall that the momentum balance

equation 1.2b for Langmuir turbulence is actually three equations, since u = {u, v, w}
is a vector of state variables. We will look at the x-component of this equation, dt(u).

The un-expanded form is

∂tu+ (u ·∇x)u+ (f × (u+ us))x =− 1

ρ0
∇x

(
p+

ρ0
2

(
|u+ us|2 − |u|2

))
+ νh∇2

hu

+ (us ×∇× u)x (1.16)

where the subscript x indicates the x-component of an operator or expression and

we have dropped the νz∇2
zu and gα (T − T0) because they act only in the vertical

direction and the τ
ρ0

because it is incorporated into our problem as a boundary condi-

tion. Expanding out the dot products and cross products and applying the derivative

operator ∇x and the Laplacian ∇2
x, we have for the x-direction (still in the fully

non-linear case, here):

dt(u) +
1

ρ0
dx(p)− νh(dx2(u) + dy2(u))− νzdz2(u)− fv + dx(uus)

= −udx(u)− vdy(u)− wdz(u) (1.17)

where I have placed the linear terms on the left-hand side and the non-linear

terms on the right. I could just plug in q = q + q′ and start expanding each term,

but that would get messy very quickly. Instead, recall that the linear terms are

divided easily between dt(q) and dt(q′): L[q] go with dt(q) and L[q′] go with dt(q′).

It is only the non-linear term that must be expanded by hand: Q[q + q′, q + q′] =

Q[q, q] +Q[q, q′] +Q[q′, q] +Q[q′, q′]. Applying this expansion to the non-linear terms

on the right-hand side of equation 1.17:
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−udx(u)− vdy(u)− wdz(u) =− udx(u)− vdy(u)− wdz(u)

− udx(u′)− vdy(u′)− wdz(u′)

− u′dx(u)− v′dy(u)− w′dz(u)

− u′dx(u′)− v′dy(u′)− w′dz(u′) (1.18)

In this form, it is not so hard to sort terms: as per equations 1.11 and 1.14, any

Q[q, q] or Q[q′, q′] term goes in dt(q), leaving Q[q, q′] and Q[q′, q] for dt(q′). Then it

is just a matter of actually writing out the quasilinear equations of motion, sorting

the terms as described above:

dt(u) +
1

ρ0
dx(p)− νh(dx2(u) + dy2(u)) (1.19)

− νzdz2(u)− fv + dx(uus)

= −udx(u)− vdy(u)− wdz(u)

− u′dx(u′)− v′dy(u′)− w′dz(u′)

dt(u′) +
1

ρ0
dx(p′)− νh(dx2(u′) + dy2(u′)) (1.20)

− νzdz2(u′)− fv′ + dx(u′us)

= −udx(u′)− vdy(u′)− wdz(u′)

− u′dx(u)− v′dy(u)− w′dz(u)

That gives us one of the five equations of motion for Langmuir turbulence in QL

form. Conversion for all equations follows the same procedure outlined above, so I

will not walk through the rest of them.

Discarding eddy-eddy scattering as dictated by the quasilinear approximation may

seem extreme, but it has proven effective at representing physical systems with strong

mean flows. The simplest form of DSS, which proceeds with the method outlined

above, has successfully described plasmas on giant planets [21], wall-bounded shear-

flow turbulence [22, 23], the growth of the dry atmospheric convective boundary layer

[24], and magnetorotational instability in accretion discs [25].

As physical systems are driven further from equilibrium, however, the limitations

of the quasilinear approximation quickly become apparent. Tobias et al. found good

agreement of DSS with DNS for the problem of driving β-plane jets but the approach

failed as the system was driven further from equilibrium [26, 10]. If DSS is to succeed

across a large variety of physical systems far from equilibrium, as it must to represent

the intricacies of climate, a new approach is in order.
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1.4.2 Generalized Quasilinear Approximation

Marston and colleagues have developed a modified approach to DSS that allows some

but not all eddy-eddy scattering rather than discarding them entirely as the quasi-

linear approximation does. The generalized quasilinear (GQL) approximation takes

a more lenient approach to the state variable decomposition and eddy-eddy interac-

tions. Rather than strictly defining the variable q as the sum of a mean field and a

fluctuation, the GQL approximation splits q by wavenumber: the sum of all compo-

nents of q with a wavenumber below some threshold Λ form q (which oscillates slowly

in the horizontal plane) while all wavenumbers above Λ go into q′ (which oscillates

rapidly). The equations of motion are still split into d(q) and d(q′), but when can-

celling non-linear terms we now allow some extra eddy-eddy interactions. QL only

allows eddy-eddy into mean field scattering, which means two components with non-

zero wavenumbers interact to form something with a wavenumber of zero. GQL, on

the other hand, includes any eddy-eddy scattering that produces a wavenumber below

Λ, so two components of with wavenumbers higher than Λ can form either something

with a wavenumber of zero or another eddy so long as it has a wavenumber below Λ.

By retaining or discarding terms in this fashion, we allow some interactions between

high-wavenumber eddies to form other eddies rather than just mean fields.

With the math behind us, it is important to emphasize some critical features of

GQL [10]. First, GQL interpolates between QL and NL through the wavenumber

threshold Λ. If we set Λ = 0, then q becomes the mean field, q′ is the fluctuation,

and we retrieve the QL case. If we allow Λ→∞, then q → q, q′ empties out, and we

have the fully non-linear case again. By adjusting Λ, we can choose how to trade off

between exactness (NL) and computational speed and simplicity (QL). Second, by

retaining the extra interaction terms that are left out of QL, GQL preserves linear

and quadratic conservation laws including conservation of energy, angular momentum,

and enstrophy (the integral of the vorticity, an important quantity in fluid dynamics).

Third, since some eddy-eddy scattering is now allowed, it is possible for energy to flow

between the small and large turbulent scales. By forbidding eddy-eddy interactions

in QL, we prevent small-scale eddies and large-scale eddies from interacting at all,

whereas GQL softens this barrier with Λ. Finally, and this is a more theoretical

point, QL and GQL are not fully statistical. They are actually a half-way step to the

purely statistical approach, the 2nd order (generalized) cumulant expansions CE2

and GCE2 (similar to Stochastic Structural Stability Theory (S3T) [23, 27]). By

“purely statistical”, I mean that the only dynamic variables are the first and second

cumulants, or statistical moments. In general, CE2 and GCE2 are approximations
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that involve truncating the infinite set of cumulant expansion equations at 2nd order.

However, for the approximations used in QL and GQL, CE2 and GCE2 are exact

in the sense that they require no other approximations in order to achieve closure of

the equations of motion. Since CE2 and GCE2 are more difficult to implement, it is

easier to work with QL and GQL as was done for this project.

1.5 Dedalus and Spectral Methods

We have a physical system and its equations of motion, but to carry out the simula-

tions and analyze their results we need a computational fluid dynamics software pack-

age. For this project, we chose Dedalus, an open-source program written in Python

that solves systems of partial differential equations in spectral (Fourier) space [28].

Dedalus has a variety of useful features, including:

• Spectral space representation

• Both periodic and non-periodic boundary conditions

• Plain-text entry of equations

– for example, ∇ · u = 0 is entered as ‘‘dx(u) + dy(v) + dz(w) = 0’’

• MPI parallelization

• Flexible analysis tools

– Integration, differentiation, interpolation, basic functions

• HDF5 file format

– Organizes output files into a folder-like structure that includes metadata

Spectral space representation, as opposed to real space, makes Dedalus particu-

larly well-suited to DSS analysis. When variables are represented in real space, they

are stored as a three-dimensional array of values, where each element of the array is

the value of the variable at that point in space; this should sound familiar from our

discussion of DNS climate modeling in section 1.1 In spectral space, Fourier coeffi-

cients are stored instead. Fourier transformations allows us to convert data back and

forth with ease, but some problems are much easier to solve in one representation

than the other. In the case of DSS, the QL and GQL approximations are spectral

statements: they dictate which Fourier modes (i.e. mean fields with a wavenumber of
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zero vs fluctuations with a non-zero wavenumber) can interact with each other. Par-

ticularly for GQL, where we want to set a threshold wavenumber Λ and use different

equations of motion depending on which Fourier mode of the state variable we are

considering, the equations of motion are much easier to manage in software that uses

spectral space.

The other key feature of Dedalus is its treatment of boundary conditions. For a

problem in three dimensions like Langmuir turbulence, three bases must be chosen on

which to represent the variables and equations of motion, one for each direction. The

vertical z direction is not periodic, as there is a distinct physical difference between

the top of the simulated domain (the surface of the ocean on which wind and waves

act) and the bottom (the deep ocean). By contrast, the two horizontal directions are

periodic; there is nothing special about the sides of our domain, they just continue out

into more water, so we can choose a periodic basis to represent the x and y directions.

Dedalus supports up to one non-periodic basis for any given problem, so we are able

to represent the vertical direction in our simulation using (non-periodic) Chebyshev

polynomials while the horizontal directions use a (periodic) Fourier basis.

To actually solve the equations of motion, Dedalus uses an approach called the

pseudo-spectral algorithm. It begins by choosing a set of trial functions to form a

basis; as mentioned above, for our problem this is a Fourier basis for the horizontal

directions and a Chebyshev polynomial basis for the vertical. Each basis type defines

a set of “collocation points” at which the equations of motion will actually be solved;

these collocation points are not evenly spaced in general and vary by basis type. At

each collocation point, the equations of motion and the initial conditions are Fourier

transformed into spectral space and solved exactly. The solutions at each point are

made up of a finite sum of weighted basis functions while the solution in between

points is interpolated. To advance the simulation in time, Dedalus applies numerical

integration in spectral space. By repeating this process over and over with small time

steps for each iteration, a time series of the motion is built up.

1.6 This Project, in Brief

Ultimately, this project compares NL, QL, and GQL simulations of Langmuir turbu-

lence in the ocean surface boundary layer. We will evaluate the accuracy of QL and

GQL approaches to Langmuir turbulence simulation by comparing them to the NL

case, which serves as a direct numerical simulation (DNS) benchmark. To minimize

the influence of random numerical variations between simulations, we will average
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the results across an ensemble of 10 simulations per case (NL, QL, and GQL). Each

ensemble member will be identical to the others except for the random number seed

used to generate the initial conditions. For each simulation type, we will confirm the

presence and dimensions of Langmuir cells by studying horizontal midplanes of the

vertical velocity. We will then go on to compare vertical profiles of the mean fields,

momentum flux, and turbulent temperature transport to track the evolution of the

mixed layer and evaluate the relative performance of the QL and GQL approaches.

We expect that QL will produce a rough facsimile of Langmuir turbulence but that

GQL will be even more accurate. The success of both, even in producing a rough

approximation, will validate the ability of DSS to represent a variety of physical

systems. If GQL can produce an accurate model of Langmuir turbulence, we will be

one step closer to deploying DSS in a full-scale sub-grid climate model.
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Chapter 2

Method

In order to set up the Langmuir turbulence simulations, we need to establish six

components: domain, equations of motion, parameters, boundary conditions, initial

conditions, and computational settings. All of these components are communicated to

Dedalus for each simulation through a Python script, which is available for reference

in Appendices A, B, and C along with annotations. The simulation conditions are

based on McWilliams et al (1997) [15] as modified in Ref. [8], although the domain

size and resolution have been reduced in this work.

Instead of simulating the entire ocean, which would be overkill given our stated

purpose of studying a subgrid phenomenon that itself is only a few hundred meters

in size, we run the Langmuir turbulence simulations over a finite domain. Since

Langmuir turbulence is an ocean surface phenomenon, the vertical dimension of the

domain is constrained by the mixed layer depth of the ocean. The mixed layer can be

anywhere from 10 m to 150 m deep depending on the location and season, but for these

simulations the initial mixed layer is 32.1 m deep for consistency with McWilliams et

al. We set our vertical domain dimension at 64.8 m, approximately double the initial

mixed layer depth, since we are interested in studying how Langmuir turbulence

deepens the mixed layer over time. The horizontal dimensions, which need to be

large enough to capture multiple Langmuir cells, are 288 m by 288 m for consistency

with Ref. [8]. For the spectral representation of the domain, there are 72 modes in

the vertical direction and 96 modes in each of the horizontal directions.

A schematic of the domain can be found in figure 2.1. At the top of the domain,

which represents the interface between the ocean and the atmosphere, there are three

major physical processes: surface cooling, wind forcing, and wave forcing. The surface

cooling, set by q = −5 W/m2, is included for consistency with McWilliams et al.

and helps to destabilize the flow and kick-start turbulence. Wind forcing, set by

τ = 0.037 N/m2, is incorporated as a boundary condition on the velocity of the
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Figure 2.1: Figure 5 of Ref. [8]. Diagram of the Langmuir turbulence domain, with
wind stress τ and surface cooling q at the top. The bounds are non-periodic in the
vertical direction and periodic in both horizontal directions.

water at the surface. Wave forcing, represented by the Stokes drift us(z) = ase
2kszx̂,

exponentially decays with depth and is incorporated into the equations of motion in

equation 1.2.

The equations of motion for Langmuir turbulence come from the phase-averaged

Craik-Leibovich equations, which can be found in section 1.3.1. The physical param-

eters, including viscosity, density, and wave speed, are based on McWilliams et al.

[15] and Ref. [8] and are given in table 2.1.

A few parameters appear in table 2.1 that are not from the Craik-Leibovich equa-

tions (equation 1.2), specificallyN2, as, ks, and MLD. The square of the Brunt-Väisälä

frequency N2 = gα∂T
∂z

is a constant characterizing the linear temperature stratifica-

tion of the deep ocean, below the mixed layer. The next two, as and ks, come from

the definition of the Stokes drift in equation 1.1. Finally, MLD is the initial mixed

layer depth above which the temperature is uniformly equal to the background tem-

perature T0 and below which there is linear temperature stratification as described

by the Brunt-Väisälä frequency N .

Most parameters have roughly their values as measured for the actual ocean with

a few notable exceptions. The surface cooling q = −5 W/m2 is chosen for consistency

with McWilliams et al. [15], where it is included to destabilize and kick-start the

flow. q is quite small, but this is appropriate considering that we do not want thermal

convection to dominate the dynamics. The Coriolis parameter varies with latitude,
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Parameter Symbol Name Value

f Coriolis parameter 1× 10−4 s−1

ρ0 background density 1035 kg m−3

νh horizontal harmonic kinematic viscosity 2× 10−3 m2 s−1

νz vertical harmonic kinematic viscosity 1× 10−3 m2 s−1

τ surface wind stress 0.037 N m−2

g gravitational acceleration 9.81 m s−2

α coefficient of thermal expansion 2× 10−4 C−1

T0 background temperature 20 C

q surface heat flux −5 W m−2

cp specific heat of sea water 3994 J kg−1 C−1

κh horizontal thermal diffusivity 2× 10−3 m2 s−1

κz vertical thermal diffusivity 1× 10−3 m2 s−1

N2 (squared) Brunt-Väisälä frequency 1.936× 10−5 s−2

as surface Stokes drift velocity 0.068 m s−1

ks Stokes wavenumber 0.105 m−1

MLD mixed layer depth 32.1 m

Table 2.1: Constant parameters used in the equations of motion (equation 1.2), the
Stokes drift (equation 1.1), and to describe the domain (figure 2.1). Based on Ref.s
[15, 8].

24



but the given value of f = 1× 10−4 is appropriate for mid-latitudes around 45◦,

where f = 1.03 × 10−4. The kinematic viscosity ν and thermal diffusivity κ, which

essentially control energy loss to friction and heat diffusion, are much higher than

their physical values, which are on the order of 1× 10−6 to 1× 10−7 m2/s [29]. This

is done to account for the discrete nature of the grid on which all physical variables

are represented. As the grid spacing increases, so too must viscosity and diffusivity

to account for the separation between grid points. This is the same reason that we

distinguish different values of ν and κ for the horizontal and vertical directions: the

grid spacing in the z direction is different from that in the x and y directions, so it

follows that ν and κ should also be different. Incidentally, the viscosity of the ocean

in many global climate simulations is many times greater than that of molasses to

account for grid spacing and the drastically different time scales of the ocean and the

atmosphere.

The boundary conditions, giving periodic boundaries in the horizontal directions,

a slip condition at the bottom of the domain, and both surface cooling and wind

stress at the top, are as follows:

dT

dz
= 0 at surface, − q

κhcpρ0
at bottom (2.1a)

du

dz
=

τ

νhρ0
at surface, 0 at bottom (2.1b)

dv

dz
= 0 at surface, 0 at bottom (2.1c)

w = 0 at surface, 0 at bottom (2.1d)

The boundary conditions above are joined by a final condition on the pressure

field, which replaces the condition w = 0 at the bottom of the domain for the nx =

0, ny = 0 Fourier mode: ∫ zsurface

zbottom

p dz = 0 (2.2)

The pressure condition, called a pressure gauge choice, is necessary for two reasons.

One, for the (0,0) Fourier mode when both nx and ny are 0 (solving for mean fields

in both horizontal directions), the continuity equation 1.2a reduces to dw
dz

= 0, which

makes one of the boundary conditions in equation 2.1a redundant. This redundant

boundary condition must be replaced for that mode in order to provide the proper

number of boundary conditions to constrain the problem. Two, pressure p as defined

in the equations of motion is gauge-invariant, meaning that only its derivative is fully
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Figure 2.2: Vertical profile of the initial temperature field, labeled with the mixed
layer (top 32.1 m) and deep ocean (below mixed layer).

defined while the actual value is arbitrary. We must set this arbitrary value to give

the numerical solutions a reference point, so we can address both issues above by

replace the redundant boundary condition for the (0,0) mode with a pressure gauge

choice, equation 2.2.

The initial condition for our Langmuir turbulence simulation is defined on the

temperature field; the initial velocities are set to zero for convenience, as they will

be determined by wind, wave, and buoyancy forcing once the simulation starts. To

mimic the physical ocean, the initial temperature has two distinct regions: a surface

mixed layer and a stratified deep ocean, illustrated in figure 2.2. Above the mixed

layer depth of 32.1 m, the temperature is set to a uniform background of T0 = 20◦ C

plus random noise on the order of 1× 10−4 in the top 5 m to provide initial instability.

Below the mixed layer depth, the ocean is stratified: colder water is more dense, so the

temperature decreases linearly with depth from the bottom of the mixed layer. The

rate of temperature decrease in the deep ocean is set by the squared Brunt-Väisälä

frequency N2, given in table 2.1.
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Each simulation is stopped after completing 78 hours of simulated time. The time

step used to numerically integrate the equations of motion is set by the Courant-

Friedrichs-Lewy (CFL) condition, which is a numerical constraint based on the ve-

locities u and us that ensures convergence of the numerical solutions. Excluding the

very beginning of each simulation, which had large time steps due to the slow onset of

turbulence, the CFL condition generally gave time steps of between 7 and 10 seconds.

The output of each simulation was written to an external file every 6 hours of

simulated time, giving a time-series of 13 snapshots for each simulation. Dedalus’s

flexible analysis tools were used to process the results of each simulation. For an-

alyzing midplanes, the state variables – temperature T and the three components

of velocity u, v, and w – were saved in their entirety, one three-dimensional array

per variable. Midplanes were then produced externally in Python by interpolating a

two-dimensional slice out of the three-dimensional array for a variable of interest.

Three types of vertical profiles were also saved: mean fields, momentum flux

profiles, and turbulent temperature transport profiles. All three of these profiles

were ensemble averaged before analysis: profiles were generated for all 10 ensem-

ble members in a given simulation type at each of the 13 snapshots. The profiles

of each ensemble member were then averaged together at each snapshot to pro-

duce a single set of ensemble averaged profiles, denoted by 〈〉. Mean fields were

calculated by integrating each state variable over x and y (for QL, this just in-

volved saving the variable q), producing a vertical profile of the horizontal aver-

age of each variable as a function of z: u(z) = 1
area

∫
u dx dy. Momentum flux

and turbulent temperature transport profiles were each determined by integrating

the product of the fluctuating components of a pair of state variables over x and

y. For momentum flux, this involved the product of two velocities, for example

u′v′(z) = 1
area

∫
u′v′ dx dy. For turbulent temperature transport, we take the prod-

uct of a velocity and the temperature, for example u′T ′(z) = 1
area

∫
u′T ′ dx dy. With

three velocities and one temperature, there are three unique ensemble-averaged pro-

files each for momentum flux 〈u′v′(z)〉, 〈u′w′(z)〉, 〈v′w′(z)〉 and turbulent temperature

transport 〈u′T ′(z)〉, 〈v′T ′(z)〉, 〈w′T ′(z)〉.
The simulations were carried out using computing resources from Brown’s Center

for Computation and Visualization (CCV). Dedalus is, thankfully, MPI parallelized,

which means that a single simulation can be divvied up between many processors

that run simultaneously, considerably decreasing the computation time. By default,

Dedalus will divide up the simulation domain along one of the periodic directions;

if I submitted a simulation to 4 processors, for example, the domain might be split
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into 4 equal-sized chunks along the y-direction, where each chunk is run on a separate

processor. This divide-and-conquer process can be made much more efficient by using

a mesh, which splits up the domain along both the x- and y-directions. For all of

the Langmuir turbulence simulations, I chose a 4 by 8 mesh (i.e. dividing the y-axis

into 4 segments and the x-axis into 8), requiring 4 · 8 = 32 processors; this gave an

approximately one-to-one match between simulated time and real time, so all of the

simulations finished in less than 100 hours.
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Chapter 3

Results

The results that follow cover a 10-simulation ensemble each for the NL, QL, and

GQL cases, producing a total of 30 simulations. To avoid confusion, we will use

angled brackets to indicate an ensemble average as in 〈x〉 and an overbar to indicate

an average over the horizontal plane x = 1
area

∫
x dxdy.

First, we will confirm that all three simulation types have produced the Lang-

muir turbulence pattern and compare their structural characteristics (Section 3.1).

Then we will analyze mean fields, turbulent transport, and momentum flux to deter-

mine how well QL and GQL capture the dynamics of the fully non-linear Langmuir

turbulence simulation (Sections 3.2 and 3.3).

3.1 Midplanes

Horizontal midplanes of vertical velocity w are displayed at 18 hours of simulated

time for the NL, QL, and GQL simulations in figure 3.1. We are looking from a

birds-eye view down on a block of ocean water. The midplanes shown are a slice of

that block taken from 8 meters below the ocean’s surface. The colors correspond to

vertical velocity, so brown indicates water that is moving up or out of the page while

purple indicates water that is moving down or into the page. What would we expect

Langmuir turbulence to look like in this representation? Recall from figure 1.4 that

Langmuir cells are long tubes oriented along the ocean’s surface edged by alternating

strips of upwells and downwells. In a horizontal midplane of vertical velocity as shown,

we would expect to see alternating strips of up-moving water (upwells, in brown) and

down-moving water (downwells, in purple). All three simulations in figure 3.1 exhibit

this behavior, with the Langmuir cells oriented diagonally from the upper-left to

the lower-right of each midplane. As expected, the NL and GQL midplanes look

particularly similar, although the GQL cells tend to be slightly thinner and more
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(a) Non-linear (NL) (b) Quasilinear (QL)

(c) Generalized Quasilinear (GQL)

Figure 3.1: Horizontal midplanes of vertical velocity w at 18 hours. From a birds-eye
view: brown indicates water moving up/out of the page, purple for water moving
down/into the page. Colorbar units are m/s.
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(a) Horizontal midplane of vertical velocity for
NL simulation case. Colorbar units are m/s.

(b) An aerial photograph from npr.org
[4] taken just after the Deepwater Hori-
zon oil spill in 2010 shows oil collecting
along convergence zones to form Lang-
muir windrows. For a sense of scale: the
small white spot in the lower-right is an
airplane.

Figure 3.2: Comparing Langmuir windrows in simulation (a) and observation (b).

fragmented. Langmuir cell formation is much more regular in the QL simulation,

most likely a result of the structural coherence that arises from the neglect of eddy-

eddy scattering.

Magnitudes and length scales also match across simulations. Using the distances

marked out on the x- and y-axes, we see that the larger Langmuir cells (each composed

of a pair of adjacent upwells and downwells) are on the order of 50 m across in

the NL, QL, and GQL midplanes. These length scales are roughly consistent with

Langmuir cells “in the wild”, which range from a few to 100 m across. Similar velocity

magnitudes are also present across all three simulations, with the colorbars topping

out just above 0.032 m/s.

For comparison to Langmuir turbulence as it appears in the actual ocean, in figure

3.2 the NL simulation midplane appears alongside the oil spill image from section 1,

where the purple strips of the simulation midplane correspond to the convergence

zones along which the oil collects in the photograph.

3.2 Mean Field Profiles

3.2.1 Temperature Profiles

Ensemble averaged vertical temperature profiles from the NL, QL, and GQL sim-

ulations at 0 hours (the initial temperature profile) and 60 hours can be found in

figure 3.3. By construction, all simulations have the same initial temperature. Even
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Figure 3.3: Vertical Temperature profiles at 0 and 60 hours for NL, QL, and GQL.

after 60 hours, the three profiles are remarkably similar. The QL temperature profile

deviates only slightly from the other two, trending colder at the top and warmer at

the bottom, which implies that QL may have enhanced vertical mixing, a possibility

that is explored in the discussion in section 4.2.

A time-series of the temperature profile for the NL case, taken to be representative

of all three simulation types, is shown in figure 3.4. As the simulation progresses, we

observe a somewhat unexpected smoothing trend rather than a deepening one. If the

mixed layer was deepening consistently over time, the vertical portion of the profile

near the surface would extend deeper and deeper over the course of the simulation.

Instead, we see the mixed layer actually shrink to about 20 m deep from its initial

value of 32.1 m, but the deep ocean is also warming and becoming less stratified. If

the simulations had continued, say for 100 hours instead of the 72 hours shown in

figure 3.4, we might eventually see the two trends converge to form a mixed layer

the spans the entire vertical domain. This is a significant result that will be explored

in the Discussion: instead of pushing the mixed layer down from above, Langmuir

turbulence appears to reach into the stratified deep ocean, cooling the mixed layer,
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Figure 3.4: Time-series of ensemble averaged temperature profiles for the NL simu-
lation.

warming the deep ocean, and reducing the gradient between the two to eventually

form a deeper mixed layer.

3.2.2 Velocity Mean Fields

Mean fields for velocity were constructed just like the temperature profiles by av-

eraging each state variable in the horizontal plane and plotting those averages as a

function of depth. Due to the boundary conditions on w given in equation 2.1d,

which prevent flow in or out of the domain along the z-direction, the mean field 〈w〉
is always identically zero up to numerical truncation error, so it is not shown in the

following plots. Mean fields of x-velocity u and y-velocity v at 12 hours and 48 hours

are shown in figure 3.5, with NL, QL, and GQL fields shown on the same plots for

comparison.

We can begin with the general observation that GQL mean fields tend to track

NL closely throughout the course of the simulations. Deviations are small and do not

tend to be concentrated at greater depths, which is good news for consistency across
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(a) 12 hours

(b) 48 hours

Figure 3.5: Vertical profiles of ensemble averaged mean velocities for NL, QL, and
GQL simulations.
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simulation types in the evolution of the mixed layer depth. QL mean fields tend

to deviate further than GQL fields from the NL case, particularly for 〈u〉. Overall,

the QL mean fields indicate a smoothing effect, under-predicting the maxima and

over-predicting the minima of the NL mean fields, the cause of which is unclear.

3.3 Correlation Profiles

Physically, there are two types of second-order correlation profiles, which refers to

the horizontal average of a product of two state variables. One is momentum flux,

which involves a horizontal average of the product of two velocity fluctuations 〈u′iu′j〉
and describes the transfer of momentum between orthogonal directions. The other is

turbulent temperature transport, which involves the horizontal average of the product

of the temperature fluctuation and a velocity fluctuation 〈u′iT ′〉 and describes the

transport of (heat) energy in the direction specified by the velocity ui.

3.3.1 Turbulent Transport

Turbulent transport describes how a flow property like temperature is moved around

in the domain by the velocity field. By looking at the turbulent transport of temper-

ature T , we can study how energy, in this case thermal energy, is distributed through

convection as opposed to, for example, thermal diffusion. Convection is the dominant

form of heat transport in most fluids, so it is important to understand how Langmuir

turbulence facilitates the transport and mixing of heat energy in the upper ocean.

The climate implications are also significant, as one of the primary processes carried

out in the mixed layer and a strong motivation for improving its representation in

climate models is the transport of heat between the atmosphere and the deep ocean.

A snapshot of turbulent temperature transport at 54 hours is shown in figure 3.6.

I chose to display only a single time because the behavior of the QL profiles is so

erratic and the fit of QL to the NL profile so consistently poor that there is not much

to say about either consistencies or changes over time. As usual, the QL profiles

have the worst fit, often fluctuating wildly off of the NL case and no more inclined

to behave well near the bottom of the domain than they are near the surface. While

GQL generally does much better, it, too, has significant deviations in some snapshots,

particularly for 〈v′T ′〉, where it tends to stick much closer to zero than the NL case.

The poor performance of the QL and occasionally GQL approximations could

indicate a lack of convergence among the ensemble members. If w′T ′, for example,

tends to vary a lot from one ensemble member to another, then a 10-member ensemble

35



Figure 3.6: Vertical profiles of ensemble averaged turbulent temperature transport
for NL, QL, and GQL simulations.
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may not be enough to collect reliable statistics. The possibility of poor convergence

and its implications for DSS will be explored in section 4.3.

Comparing strengths, we see that 〈w′T ′〉 is an order of magnitude less than either

〈u′T ′〉 or 〈v′T ′〉. Evidently, w′ and T ′ are less correlated, which indicates that warmer

water does not have a strong preference for moving up as opposed to down. Physically,

this tells us that buoyancy, introduced in the equations of motion as the term gα(T −
T0) (see equation 1.2b), is weak compared to the other forces at work in Langmuir

turbulence.

3.3.2 Momentum Flux

There are three unique momentum fluxes determined by the product u′iu
′
j where i 6= j:

〈u′v′〉, 〈u′w′〉, and 〈v′w′〉. The three momentum fluxes for the NL, QL, and GQL cases

are displayed at 18 hours in figure 3.7a and at 60 hours in figure 3.7b.

Momentum flux is an interesting case where the profiles for NL, QL, and GQL

tend to be fairly stable over time, with the main exception being the QL 〈v′w′〉 profile,

which develops a significant deep-water tail by 60 hours. Stability does not, however,

imply goodness of fit. The GQL profiles show deviations from the NL case near the

surface in 〈u′v′〉 and in the length of the deep-water tail in 〈v′w′〉. For 〈u′v′〉, the

NL and GQL profiles are fairly consistent, although near the surface the QL is many

times the value of either of the others. The agreement between the three on 〈u′w′〉 is

the best of the bunch, although even there the QL profile deviates further from the

NL and GQL as time passes (see figure 3.7b).
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(a) 18 hours

(b) 60 hours

Figure 3.7: Vertical profiles of ensemble averaged momentum flux for NL, QL, and
GQL simulations.
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Chapter 4

Discussion

It is easy to get lost in the minutiae of figures and approximations, so let us take a

step back and review some of the takeaways so far:

1. In most cases, GQL mean fields and transports are a better fit to their NL

counterparts than the QL results.

2. The mixed layer actually gets shallower over the course of the simulation, al-

though the deep ocean also becomes less stratified. Given enough time, the two

regions may converge to form a deeper mixed layer.

3. While temperature profiles were remarkably similar across all three simulations,

the QL profile was slightly cooler near the surface and warmer near the bottom

of the domain, which could indicate enhanced vertical mixing.

4. Vertical profiles of both momentum and temperature transport for QL and (to

a lesser extent) GQL occasionally fluctuated unexpectedly from snapshot to

snapshot, indicating possible issues with convergence of the ensemble members.

Item 1 is the good news: as we expected, allowing for more eddy-eddy scattering

generally improves computational representations of turbulence. This is a point in

the favor of DSS, particularly given the issues encountered with the QL approxima-

tion when trying to model processes without sufficiently strong mean fields [10] (and

turbulence is a poster child for things not moving in a uniform direction).

Items 2-4 are more mixed. The mixed layer does not appear to deepen monoton-

ically, although this may be attributable to the type of deep mixing driven by the

downwelling jets formed in between Langmuir cells. The QL vertical temperature

profile in figure 3.3 seemed to reduce the gradient between the mixed layer and the

deep ocean a bit faster than the NL or GQL cases, but it is difficult to say with
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any certainty what may have contributed to it. Finally, fluctuations in some vertical

profiles hinted at an ensemble convergence issue, but at least that can be (and is, in

section 4.3) probed more closely. In the sections that follow, we will explore what the

figures in the previous section can and cannot tell us about the phenomenon above:

the evolution of the mixed layer (section 4.1), the smoothing of the QL temperature

profile (section 4.2), and convergence testing of QL and GQL (section 4.3).

4.1 Mixed Layer Evolution

Deepening of the mixed layer is one of the most important features to capture in

Langmuir turbulence climate process models. As explained in section 1.3, the mixed

layer serves as the dynamic interface between the volatile atmosphere and the stable

deep ocean. One of the primary purposes of integrating Langmuir turbulence into

global climate models is to improve the bias that currently exists, particularly in the

Southern Ocean, on the mixed layer depth (see figures 1.7), which in turn affects the

quantity of heat and trace gases stored in the ocean. So we had better make sure

that QL and GQL are getting it right.

The temperature profiles in figures 3.3 and 3.4 indicate that the initial mixed

layer tends to get cooler and shallower over time while the stratification of the deep

ocean lessens. If we imagine the downwelling jets of Langmuir cells to be pushing

down on the mixed layer, then this result is not reassuring. However, recall that the

downwelling jets can penetrate 100 m or more, while our simulation domain is only

about 65 m deep. Instead of pushing down, Langmuir turbulence may be injecting

warmer water from the surface into the deep ocean. This would gradually warm the

deep ocean rather than merely pushing it deeper. But how could we determine that

this is actually happening? In theory, our turbulent temperature transports should

tell us how temperature is being shifted around in the domain; after all, 〈w′T ′〉
measures the transport of T in the vertical direction. However, those plots (figure

3.6) are so variable over time as to be difficult to trust. One small point in the favor

of my speculation is that we do see non-zero values of 〈w′T ′〉 all the way down to the

bottom of the domain. This holds true even for the very first snapshot at 6 hours,

so there is vertical temperature transport well into the deep ocean region beginning

early on.
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4.2 QL Temperature Smoothing

While the QL and GQL temperature profiles both track NL quite closely throughout

the simulation, by 60 hours the QL profile exhibits some extra cooling near the surface

and warming near the bottom of the domain (see figure 3.3). Again, I can only

speculate what might cause such a trend. It is possible that the lack of eddy-eddy

scattering prevents coherent dynamical structures from breaking down, since their

small and large turbulence scales do not interact in the quasilinear approximation.

Certainly the horizontal midplanes in figure 3.1 show that Langmuir cells in the

QL case are much more regular than those for either NL or GQL. The QL vertical

turbulent temperature transport 〈w′T ′〉 is highly variable from one snapshot to the

next, but that variability sometimes produces much higher transport magnitudes than

appear for either NL or GQL, even near the base of the domain. It is possible that

QL simulations tend to build up strong but transient structures that lead to greater

mixing due to their neglect of eddy-eddy scattering. Unfortunately, performing the

energy pathway analysis that might support such a conjecture is beyond the scope of

this project.

4.3 Convergence Analysis

Over the course of evaluating some of the mean fields, momentum flux profiles, and

turbulent temperature transports, I noticed that the QL profiles and even occasionally

the GQL could fluctuate dramatically as a function of depth or from one snapshot to

the next. A particularly striking example is in the turbulent temperature transports

〈v′T ′〉 and 〈w′T ′〉 in figure 3.6, where QL waves about erratically. I speculated that

the variations could arise from poor convergence among the ensemble members; if

each ensemble member was drastically different from the others and tended to vary

widely over time, we might expect the ensemble average to also swing about. In that

vein, I produced plots that show the ensemble average on top of all 10 individual

ensemble member profiles; representative snapshots at 60 hours for 〈v〉 (figure 4.1)

and 〈v′w′〉 (figure 4.2).

It is both gratifying and disheartening that we see poor convergence reflected

in the mixed ensemble and individual plots. The mean fields tended to perform

better, with the ensemble members of both NL and GQL closely packed around the

ensemble average but much more variation in QL. The ensemble averaged momentum

flux was reassuringly stable and well-defined for NL but more variable for GQL and
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(a) NL

(b) QL

(c) GQL

Figure 4.1: Horizontal velocity mean field v ensemble averages (dark) and ensemble
members (light) for NL, QL, and GQL.
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(a) NL

(b) QL

(c) GQL

Figure 4.2: Momentum flux v′w′ ensemble averages (dark) and ensemble members
(light) for NL, QL, and GQL.
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particularly poor for QL. It is not uncommon to see some ensemble members far

into the positive and others far into the negative for the same snapshot, tugging

the ensemble average about. One conclusion we might draw is that we simply need

many more ensemble members; instead of averaging over 10 simulations, we might

try 20 or even 50 and hope that collecting more statistics will make it clearer where

the ensemble average truly lies. A different interpretation is that QL and GQL are

more sensitive to initial conditions when it comes to certain types of transport. If

the structures of QL are indeed more robust because of the neglect of eddy-eddy

scattering, for example, the initial conditions might have an outsized influence on

which structures arise and persist. Without the time and resources available to try a

50-member ensemble simulation, I am left to speculation.

4.3.1 Future Work

As exciting as it is to show that Direct Statistical Simulation can indeed reproduce

complicated turbulent features, there is still work to be done before it becomes usable

in sub-grid climate models. The next major thrust in research on Direct Statistical

Simulation is dimensional reduction. Recall that the Reynolds decomposition q =

q + q′ used in the quasilinear approximation applies to a generalized average q, not

just the horizontal average that was used in this work. Depending on the symmetry

of the problem in question and the averaging operation q used, DSS can actually end

up trying to solve over more dimensions than DNS’s four (three space, one time),

making it much more computationally expensive than DNS methods [20]. There is

evidence that the argument for DSS can be salvaged by using Proper Orthogonal

Decomposition to discard the least energetic modes, reducing the dimensionality of

the problem and bringing DSS back into competition with DNS [8]. Future research

must further explore the possibilities for reduced dimensionality, including problems

for which it succeeds or fails and best approaches to choosing how many modes to

include.

An area of future research more closely related to this project in particular is

testing grid resolution and solution convergence. In comparing these midplanes of

Langmuir turbulence, shown in section 3, to those produced in the preliminary stages

of Ref [8], we noticed that the length scale of the Langmuir cells between the two

projects was inconsistent, with mine approximately 50 m across and theirs more like

100 m, despite identical equations and physical parameters. We discovered that the

grid resolution near the top of the domain (ocean surface) seemed to be setting the

length scale of the turbulent features; the Chebyshev basis has higher resolution near
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the top than the bottom while the computational method in Ref [8] has the same

grid resolution throughout the domain. This finding implies that one or both of our

simulations was not fully converged. In order to ensure that the grid resolution is

not having an undue impact on the physical properties of our simulated turbulence,

it would be helpful to run a series of simulations with increasingly higher resolution.

We could then track the size of the Langmuir cells as a function of grid resolution to

determine the optimal resolution, high enough to fully resolve the Langmuir cells and

get a converged solution but low enough to be computationally efficient.

In the interests of studying the evolution of the mixed layer, another area of future

study would involve working with deeper domains. As mentioned in the analysis of

temperature profiles in section 3.2.1 and their implications for the mixed layer in

section 4.1, our domain is shallow enough that the downwelling jets produced by

Langmuir turbulence appear to hit the bottom and start warming the “deep ocean”

early on in the simulation. For a more realistic look at the mixed layer, we would

need to work with a deeper domain so that the bottom surface is, at least for the first

few hours, unaffected by Langmuir turbulence. In that scenario, we might be able to

observe the formation of the deeper mixed layer as the surface cools and the region

just below the initial mixed layer depth warms, a trend observed in figure 3.4. We

could then compare the rate of deepening and, hopefully, the final equilibrium depth

of the mixed layer between the NL, QL, and GQL simulations for further information

about how well DSS captures the key climate features of Langmuir turbulence.
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Chapter 5

Conclusions

Let us take a step back and review what we have covered so far before attempting a

sweeping conclusion. We began by going over the current state of climate modeling:

the use of Direct Numerical Simulation and earth system models, their limitations in

spatial resolution and computing speed, and the need for Direct Statistical Simula-

tion, which can begin to incorporate sub-grid phenomenon. Then we focused in on

Langmuir turbulence, a sub-grid turbulence feature in the upper ocean with a partic-

ularly strong influence on the mixed layer depth and related climate variables like sea

surface temperature. We dove into Direct Statistical Simulation and the quasilinear

and generalized quasilinear approximations to explore methods for simplifying the

equations of motion by decomposing variables into mean field and fluctuating compo-

nents and discarding eddy-eddy scattering. For the experimental setup, I described

the dimensions and physical properties of the simulation domain, paying particular

attention to the importance of heat flux and wind stress in the boundary conditions

and the inclusion of both a mixed layer and a stratified deep ocean in the initial tem-

perature profile. We then reviewed the results, finding evidence for Langmuir cells in

horizontal midplanes of vertical velocity, reduction of the temperature gradient over

time, and good agreement between NL and GQL cases for mean field and correlation

profiles. Finally, I presented key takeaways in the Discussion and evaluated the evo-

lution of the mixed layer, the potential for greater vertical mixing in the QL case,

and the issue of ensemble convergence.

Now for the sweeping conclusion. My project presents good evidence that both

the QL and GQL approximations can produce Langmuir turbulence, but that GQL

does so with much greater accuracy. This is good news for the development of Direct

Statistical Simulation, as I have shown that even complex turbulence features like

Langmuir turbulence are quite robust to the loss of eddy-eddy scattering. It is more

difficult to evaluate the long-term performance of any of the three cases in representing
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the mixed layer because of the vertical size constraints that were placed on the domain.

Given a deeper domain and a longer run time, it would be possible to determine

more precisely how the evolution of the mixed layer varies between the three cases.

In particular, we would be interested in learning whether the equilibrium state, when

the mixed layer becomes stable over time, occurs at the same time or the same depth

between the three cases. It is promising for the future of the Southern Ocean shallow

bias that all three cases trend towards the development of a deeper mixed layer over

time, but for application in climate models the equilibrium depth will be just as

important as the fact that the mixed layer is indeed getting deeper.
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Appendix A

Nonlinear Langmuir Turbulence
Code

1 # Load Python packages , Dedalus
import numpy as np

3 from mpi4py import MPI
import time

5

from dedalus import pub l i c as de
7 from dedalus . ex t ra s import f l o w t o o l s

9 # Import Dedalus l o g g e r
# the l o g g e r keeps t rack o f and p e r i o d i c a l l y saves the p rog r e s s

o f the s imu la t i on
11 # a l l l o g g e r e n t r i e s are g iven a date and time stamp as we l l as

the ID o f the CPU proce s s which i s p r i n t i n g the message
# f o r CPU proce s s example , 0/4 means the l o g g e r message i s

pr in ted from the f i r s t (0 ) o f f our (4 ) p r o c e s s e s
13 # to pr in t a message to the l o g g e r : >>l o g g e r . i n f o ( ’ S t r ing to

p r in t to the l o g g e r goes here ’ )
import l o gg ing

15 l o g g e r = logg ing . getLogger ( name )

17 # Begin t iming i n i t i a l i z a t i o n
s t a r t i n i t t i m e = time . time ( )

19

# Domain parameters
21 Lx , Ly , Lz = ( 2 8 8 . , 288 . , 6 4 . 8 ) # Phys i ca l dimensions o f the

domain in meters
x modes , y modes , z modes = (96 , 96 , 72) # Number o f modes (

degree s o f freedom ) along each d i r e c t i o n in the domain
23 # simula t i on w i l l run s l i g h t l y f a s t e r i f the number o f modes in

the p e r i o d i c d i r e c t i o n s i s a power o f 2
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25 # Create bases
# x and y d i r e c t i o n s have Four i e r ( p e r i o d i c ) b a s i s

27 # z d i r e c t i o n has a Chebyshev ( non−p e r i o d i c ) b a s i s
# i n t e r v a l=(−Lx/2 , Lx/2) means x=0 ( f o r example , in Ana lys i s )

cor responds to the cente r o f the domain
29 # d e a l i a s c o n t r o l s r e s o l u t i o n when conver t ing from s p e c t r a l

space ( where r e a l data i s s to r ed ) and r e a l space ( where we
u s u a l l y want to look at the data )
# when conver t ing from s p e c t r a l space to r e a l space , you end

up with a g r id o f 3/2 ∗ ( number o f modes ) in each d i r e c t i o n
31 x b a s i s = de . Four i e r ( ’ x ’ , x modes , i n t e r v a l=(−Lx/2 , Lx/2) ,

d e a l i a s =3/2)
y b a s i s = de . Four i e r ( ’ y ’ , y modes , i n t e r v a l=(−Ly/2 , Ly/2) ,

d e a l i a s =3/2)
33 z b a s i s = de . Chebyshev ( ’ z ’ , z modes , i n t e r v a l=(−Lz , 0) , d e a l i a s

=3/2)

35 # Construct domain
# mesh=[n ,m] i s f o r running in p a r a l l e l , d i v i d e s domain among n

p r o c e s s o r s in one p e r i o d i c ( x or y , in t h i s case ) d i r e c t i o n
and m p r o c e s s o r s in the other

37 # number o f p r o c e s s o r s must equal n∗m
domain = de . Domain ( [ x bas i s , y bas i s , z b a s i s ] , g r id dtype=np .

f l oa t64 , mesh =[4 , 8 ] )
39

# Set up an i n i t i a l va lue problem (IVP)
41 # p = pressure , T = temperature , (u , v ,w) = v e l o c i t y f i e l d

# Tz , uz , e t c . are the z−d e r i v a t i v e s o f cor re spond ing v a r i a b l e s
( exp la ined in ” Equations ” s e c t i on , below )

43 problem = de . IVP( domain , v a r i a b l e s =[ ’p ’ , ’T ’ , ’u ’ , ’ v ’ , ’w ’ , ’Tz ’ , ’ uz ’
, ’ vz ’ , ’wz ’ ] , time=’ t ’ )

45 # Metadata ( o p t i o na l )
# D i r i c h l e t p r e c o nd i t i o n i n g ( f o r v a r i a b l e s with D i r i c h l e t

boundary c o n d i t i o n s ; s e e ”Boundary c o n d i t i o n s ” below ) w i l l
speed up computation

47 problem . meta [ ’p ’ , ’w ’ , ’ uz ’ , ’ vz ’ , ’Tz ’ ] [ ’ z ’ ] [ ’ d i r i c h l e t ’ ] = True

49 # Def ine constant parameters f o r the equat ions o f motion
# adapted from McWilliams et a l . (1997)

51 # SI un i t s g iven in bracket s at end o f each comment
# alpha , T 0 , and g are a l s o g iven l o c a l v a r i a b l e s f o r

i n i t i a l i z i n g temperature ( in ” i n i t i a l i z e temperature ” , below )
53 problem . parameters [ ’ q ’ ] = 5 . # heat f l u x from upper s u r f a c e [W/m

ˆ2 ]
problem . parameters [ ’ c p ’ ] = 3994 # s p e c i f i c heat o f sea water at

constant p r e s su r e [ J/kg∗C]
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55 problem . parameters [ ’ rho 0 ’ ] = 1035 # background dens i ty [ kg/mˆ3 ]
problem . parameters [ ’ nu z ’ ] = 1e−3 # v e r t i c a l harmonic k inemat ic

v i s c o s i t y [mˆ2/ s ]
57 problem . parameters [ ’ nu ’ ] = 2e−3 # h o r i z o n t a l harmonic k inemat ic

v i s c o s i t y [mˆ2/ s ]
problem . parameters [ ’ kappa z ’ ] = 1e−3 # v e r t i c a l c o e f f i c i e n t o f

thermal d i f f u s i v i t y [mˆ2/ s ]
59 problem . parameters [ ’ kappa ’ ] = 2e−3 # h o r i z o n t a l c o e f f i c i e n t o f

thermal d i f f u s i v i t y [mˆ2/ s ]
problem . parameters [ ’ alpha ’ ] = alpha = 2e−4 # c o e f f i c i e n t o f

thermal expansion [1/C]
61 problem . parameters [ ’ T 0 ’ ] = T 0 = 20 # background temperature [C]

problem . parameters [ ’ g ’ ] = g = 9.81 # g r a v i t a t i o n a l a c c e l e r a t i o n [
m/ s ˆ2 ]

63 problem . parameters [ ’ f ’ ] = 1e−4 # C o r i o l i s parameter [ 1/ s ]
problem . parameters [ ’ tau ’ ] = 0 .037 # s u r f a c e wind s t r e s s [N/mˆ2 ]

65

# Make domain dimensions in to problem parameters
67 # f o r c a l c u l a t i n g i n t e g r a l s in ”Mean F i e l d s f o r Ana lys i s ” and ”

Ana lys i s ” , below
problem . parameters [ ’Lx ’ ] = Lx

69 problem . parameters [ ’Ly ’ ] = Ly
problem . parameters [ ’ Lz ’ ] = Lz

71

# Def ine Stokes f i e l d
73 S t o k e s f i e l d = domain . n e w f i e l d (name=’ u s ’ )

z = domain . g r id (2 ) # r e a l space g r id po in t s f o r z−a x i s (2 i s the
index f o r the z−a x i s )

75 k s = 0.105 # Stokes wavenumber [1/m]
a s = 0.068 # Stokes v e l o c i t y at s u r f a c e ( z=0) [m/ s ]

77 S t o k e s f i e l d [ ’ g ’ ] = a s ∗ np . exp ( 2 . ∗ k s ∗ z ) # d e f i n e Stokes
f i e l d in r e a l g r id ( ’ g ’ ) space

S t o k e s f i e l d . meta [ ’ x ’ , ’ y ’ ] [ ’ constant ’ ] = True # metadata t e l l s
Dedalus that Stokes f i e l d does not couple p e r i o d i c (x , y )
d i r e c t i o n s ; Dedalus does not support f i e l d s that do not meet
t h i s c r i t e r i a

79 problem . parameters [ ’ u s ’ ] = S t o k e s f i e l d # s e t Stokes f i e l d as a
named parameter

81 # Mean F i e l d s f o r Ana lys i s
# f o r use in ” Ana lys i s : mean f i e l d s and c o r r e l a t i o n s ” below

83 problem . s u b s t i t u t i o n s [ ’ u bar ’ ] = ” i n t e g (u , ’ x ’ , ’ y ’ ) /(Lx∗Ly) ”
problem . s u b s t i t u t i o n s [ ’ v bar ’ ] = ” i n t e g (v , ’ x ’ , ’ y ’ ) /(Lx∗Ly) ”

85 problem . s u b s t i t u t i o n s [ ’ w bar ’ ] = ” i n t e g (w, ’ x ’ , ’ y ’ ) /(Lx∗Ly) ”
problem . s u b s t i t u t i o n s [ ’ T bar ’ ] = ” i n t e g (T, ’ x ’ , ’ y ’ ) /(Lx∗Ly) ”

87

# Equations
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89 # Phase−averaged Craik−Leibov ich equat ions from Craik (1977)
# Tz , uz , e t c are used because Dedalus w i l l only a l low f i r s t −

order d e r i v a t i v e s in the inhomogeneous ( Chebyshev ) d i r e c t i o n
91 # Al l non−l i n e a r terms and terms that vary in only one

d i r e c t i o n ( l i k e f ∗ u s ) must be on r ight−hand s i d e ( e x p l i c i t l y
time−stepped )

93 # divergence cond i t i on :
problem . add equat ion ( ’ dx (u) + dy ( v ) + wz = 0 ’ )

95 # thermal energy :
problem . add equat ion ( ’ dt (T) − kappa ∗( dx ( dx (T) ) + dy ( dy (T) ) ) −

kappa z∗dz (Tz) = −u∗dx (T) − u s ∗dx (T) − v∗dy (T) − w∗Tz ’ )
97 # Navier−Stokes /momentum equat ions :

problem . add equat ion ( ’ dt (u) + (1/ rho 0 ) ∗dx (p) − nu∗( dx ( dx (u) ) +
dy ( dy (u) ) ) − nu z∗dz ( uz ) − f ∗v + dx (u∗ u s )

= −u∗dx (u) − v∗dy (u) − w∗uz ’ )
99 problem . add equat ion ( ’ dt ( v ) + (1/ rho 0 ) ∗dy (p) − nu∗( dx ( dx ( v ) ) +

dy ( dy ( v ) ) ) − nu z∗dz ( vz ) + f ∗u + dy (u∗ u s ) − u s ∗dy (u) + u s ∗
dx ( v ) = −u∗dx ( v ) − v∗dy ( v ) − w∗vz − f ∗ u s ’ )

problem . add equat ion ( ’ dt (w) + (1/ rho 0 ) ∗dz (p) − nu∗( dx ( dx (w) ) +
dy ( dy (w) ) ) − nu z∗dz (wz) + dz (u∗ u s ) − u s ∗uz + u s ∗
dx (w) = −u∗dx (w) − v∗dy (w) − w∗wz − 0 .5∗ dz ( u s ∗ u s ) + g∗ alpha
∗(T−T 0 ) ’ )

101 # match z−d e r i v a t i v e s to Tz , uz , e t c :
problem . add equat ion ( ”Tz − dz (T) = 0” )

103 problem . add equat ion ( ”uz − dz (u) = 0” )
problem . add equat ion ( ”vz − dz ( v ) = 0” )

105 problem . add equat ion ( ”wz − dz (w) = 0” )

107 # Boundary c o n d i t i o n s
# apply to the bounds o f the non−p e r i o d i c ( Chebyshev ) b a s i s

d i r e c t i o n
109

# l e f t z ( bottom o f domain )
111 problem . add bc ( ” l e f t (Tz) = 0” ) # no heat exchange in s t r a t i f i e d

deep ocean ( bottom of domain )
problem . add bc ( ” l e f t ( uz ) = 0” ) # f r e e s u r f a c e cond i t i on

113 problem . add bc ( ” l e f t ( vz ) = 0” ) # f r e e s u r f a c e cond i t i on
problem . add bc ( ” l e f t (w) = 0” , cond i t i on=” ( nx != 0) or ( ny != 0) ” )

# ” cond i t i on ” prevents system from being over−cons t ra ined ;
t h i s boundary cond i t i on i s r ep laced with the p r e s su r e gauge
choice , below

115

# r i g h t z ( ocean s u r f a c e )
117 problem . add bc ( ” r i g h t (Tz) = −q /( kappa∗ c p ∗ rho 0 ) ” ) # heat f l u x

problem . add bc ( ” r i g h t ( uz ) = tau /(nu∗ rho 0 ) ” ) # s u r f a c e wind
s t r e s s
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119 problem . add bc ( ” r i g h t ( vz ) = 0” ) # f r e e s u r f a c e cond i t i on
problem . add bc ( ” r i g h t (w) = 0” ) # no v e r t i c a l t r anspor t out o f

domain
121

# pre s su r e gauge cho i c e
123 problem . add bc ( ” i n t e g z (p) = 0” , cond i t i on=” ( nx == 0) and ( ny ==

0) ” )

125 # Build s o l v e r
# t imestepper i s 3rd−order 4−s tage DI ( d i a g o n a l l y i m p l i c i t ) + E

( e x p l i c i t ) Runge−Kutta scheme
127 s o l v e r = problem . b u i l d s o l v e r ( de . t imes t epper s . RK443)

l o g g e r . i n f o ( ’ So lve r b u i l t ’ )
129

# I n i t i a l c o n d i t i o n s f o r temperature
131 T = s o l v e r . s t a t e [ ’T ’ ]

Tz = s o l v e r . s t a t e [ ’Tz ’ ]
133 T. s e t s c a l e s ( domain . d e a l i a s , keep data=False ) # i n i t i a l i z e T on

d e a l i a s e d domain ( h igher r e s o l u t i o n )
Tz . s e t s c a l e s ( domain . d e a l i a s , keep data=False ) # i n i t i a l i z e T on

d e a l i a s e d domain ( h igher r e s o l u t i o n )
135

# Def ine f i l t e r f i e l d func t i on
137 # Dedalus doesn ’ t l i k e random Gaussian no i s e o f the type we

int roduce f o r the i n i t i a l temperature ( not very compatible
with s p e c t r a l space r e p r e s e n t a t i o n )

# t h i s f i l t e r w i l l throw out high−f r equency no i s e
139 def f i l t e r f i e l d ( f i e l d , f r a c =0.5) :

f i e l d . r e q u i r e c o e f f s p a c e ( )
141 dom = f i e l d . domain

l o c a l s l i c e = dom . d i s t . c o e f f l a y o u t . s l i c e s ( s c a l e s=dom . d e a l i a s )
143 c o e f f = [ ]

for n in dom. g l o b a l c o e f f s h a p e :
145 c o e f f . append (np . l i n s p a c e (0 , 1 , n , endpoint=False ) )

cc = np . meshgrid (∗ c o e f f , index ing=’ i j ’ )
147 f i e l d f i l t e r = np . z e ro s (dom . l o c a l c o e f f s h a p e , dtype=’ bool ’ )

for i in range (dom . dim ) :
149 f i e l d f i l t e r = f i e l d f i l t e r | ( cc [ i ] [ l o c a l s l i c e ] > f r a c )

f i e l d [ ’ c ’ ] [ f i e l d f i l t e r ] = 0 j
151

# Set up v a r i a b l e s f o r i n i t i a l temperature
153 N 2 = 1.936 e−5 # Brunt−Vaisa la f requency [1/ s ˆ2 ]

MLD = −32.1 # mixed−l a y e r depth [m]
155 f i l t e r f r a c = 0 .5 # s e t f r a c t i o n o f f r e q u e n c i e s to keep in

f i l t e r f i e l d

157 # Domain shape and s l i c e s
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# when run in p a r a l l e l , Dedalus d i v i d e s domain along one o f the
p e r i o d i c d i r e c t i o n s and a l l o c a t e s a s l i c e to each p roc e s s o r

159 # f o r s e t t i n g i n i t i a l temperature , need ” s l i c e s ” to t e l l us
what part o f the f u l l domain i s be ing run on that p r o c e s s o r

gshape = domain . d i s t . g r i d l a y o u t . g l oba l shape ( s c a l e s=domain .
d e a l i a s ) # [ x , y , z ] d imensions o f f u l l domain

161 s l i c e s = domain . d i s t . g r i d l a y o u t . s l i c e s ( s c a l e s=domain . d e a l i a s ) #
takes domain s l i c e o f cur rent p roce s s ( f o r running in

p a r a l l e l )

163 # I n i t i a l i z e random no i s e g l o b a l l y
rand = np . random . RandomState ( seed =60)

165 no i s e = rand . standard normal ( gshape ) [ s l i c e s ]

167 # I n i t i a l i z e temperature
# in top 4 .5 m, background temperature o f T 0 + random no i s e o f

magnitude 1e−4
169 # from s u r f a c e to mixed−l a y e r depth (MLD) , background

temperature o f T 0
# below MLD ( deep ocean ) , l i n e a r s t r a t i f i c a t i o n from Brunt−

Vaisa la f requency
171 temp array = np . z e ro s ( gshape ) [ s l i c e s ]

z v a l s = domain . g r id (2 , s c a l e s=domain . d e a l i a s ) [ 0 , 0 , : ] # r e a l
space g r id po in t s a long z−a x i s

173 # loop over depths :
for ind , depth in enumerate( z v a l s ) :

175 # array index ” ind ” and z−value ”depth” o f each domain s l i c e
a long z−a x i s

cur r ent shape = temp array [ : , : , ind ] . shape
177 i f depth > −4.5: # s u r f a c e with no i s e

rand no i s e = no i s e [ : , : , ind ]
179 temp array [ : , : , ind ] = T 0 ∗ np . ones ( cur r ent shape ) + (1 e−4 ∗

rand no i s e )
e l i f depth > MLD: # with in mixed l a y e r

181 temp array [ : , : , ind ] = T 0 ∗ np . ones ( cur r ent shape )
e l i f depth <= MLD: # s t r a t i f i e d deep ocean

183 dist from MLD = abs (MLD−depth )
T BV = − ( N 2∗dist from MLD ) /( alpha ∗g ) # temperature

c o n t r i b u t i o n from Brunt−Vaisa la f requency
185 temp array [ : , : , ind ] = ( T 0 + T BV) ∗ np . ones ( cur r ent shape )

T[ ’ g ’ ] = 1 .0 ∗ temp array # s e t i n i t i a l temperature as de f ined
in ” temp array ” above

187 l o g g e r . i n f o ( ’ Beginning f i l t e r ’ )
f i l t e r f i e l d (T, f r a c=f i l t e r f r a c ) # apply f i l t e r to remove high−

f r equency components
189 l o g g e r . i n f o ( ’ F in i shed f i l t e r ’ )

T. d i f f e r e n t i a t e ( ’ z ’ , out=Tz) # s e t i n i t i a l dz (T)
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191

# I n t e g r a t i o n parameters
193 s o l v e r . s top s im t ime = 7 8 .∗6 0 .∗6 0 . # stops s imu la t i on a f t e r

running f o r 72 hours o f s imulated time
s o l v e r . s t o p w a l l t i m e = np . i n f # no c o n s t r a i n t on wal l t ime

195 s o l v e r . s t o p i t e r a t i o n = np . i n f # no c o n s t r a i n t on number o f
i t e r a t i o n s

197 # Analys i s : f u l l s t a t e v a r i a b l e s
# s e t up ” s t a t e v a r i a b l e s ” f o l d e r f o r HDF5 f i l e to wr i t e to

199 # sim dt s e t s f requency o f wr i t i ng ta sk s to the f i l e
# sim dt =21600 −> wr i t e out a l l snapshots1 ta sk s every 21600

seconds (6 hours ) o f s imulated time
201 # max writes l i m i t s t o t a l number o f w r i t e s per HDF5 f i l e to

keep f i l e s i z e r ea sonab l e
snapshots1 = s o l v e r . eva lua to r . a d d f i l e h a n d l e r ( ’ s t a t e v a r i a b l e s ’ ,

s im dt =21600. , max writes =10)
203 # save f u l l s t a t e v a r i a b l e in g r id space ( ’ g ’ ) f o r T, u , v , and

w
snapshots1 . add task ( s o l v e r . s t a t e [ ’T ’ ] , l ayout=’ g ’ , name=’T ’ )

205 snapshots1 . add task ( s o l v e r . s t a t e [ ’u ’ ] , l ayout=’ g ’ , name=’u ’ )
snapshots1 . add task ( s o l v e r . s t a t e [ ’ v ’ ] , l ayout=’ g ’ , name=’ v ’ )

207 snapshots1 . add task ( s o l v e r . s t a t e [ ’w ’ ] , l ayout=’ g ’ , name=’w ’ )

209 # Analys i s : mean f i e l d s and c o r r e l a t i o n s
snapshots2 = s o l v e r . eva lua to r . a d d f i l e h a n d l e r ( ’ d i a g n o s t i c s ’ ,

s im dt =21600. , max writes =10)
211 # save mean f i e l d s ( de f ined in ”Mean F i e l d s f o r Ana lys i s ” ,

above )
snapshots2 . add task ( ’ u bar ’ , l ayout=’ g ’ , s c a l e s =1, name=’ u bar ’ )

213 snapshots2 . add task ( ’ v bar ’ , l ayout=’ g ’ , s c a l e s =1, name=’ v bar ’ )
snapshots2 . add task ( ’ w bar ’ , l ayout=’ g ’ , s c a l e s =1, name=’ w bar ’ )

215 snapshots2 . add task ( ’ T bar ’ , l ayout=’ g ’ , s c a l e s =1, name=’ T bar ’ )
# save c o r r e l a t i o n s : both momentum f l u x ( v e l o c i t y ∗ v e l o c i t y ) and

turbu l ent t ranspor t ( v e l o c i t y ∗ temperature )
217 snapshots2 . add task ( ” i n t e g (u∗v , ’ x ’ , ’ y ’ ) /(Lx∗Ly) ” , layout=’ g ’ ,

s c a l e s =1, name=’ uv cor r ’ )
snapshots2 . add task ( ” i n t e g (u∗w, ’ x ’ , ’ y ’ ) /(Lx∗Ly) ” , layout=’ g ’ ,

s c a l e s =1, name=’ uw corr ’ )
219 snapshots2 . add task ( ” i n t e g ( v∗w, ’ x ’ , ’ y ’ ) /(Lx∗Ly) ” , layout=’ g ’ ,

s c a l e s =1, name=’ vw corr ’ )
snapshots2 . add task ( ” i n t e g (u∗T, ’ x ’ , ’ y ’ ) /(Lx∗Ly) ” , layout=’ g ’ ,

s c a l e s =1, name=’ uT corr ’ )
221 snapshots2 . add task ( ” i n t e g ( v∗T, ’ x ’ , ’ y ’ ) /(Lx∗Ly) ” , layout=’ g ’ ,

s c a l e s =1, name=’ vT corr ’ )
snapshots2 . add task ( ” i n t e g (w∗T, ’ x ’ , ’ y ’ ) /(Lx∗Ly) ” , layout=’ g ’ ,

s c a l e s =1, name=’ wT corr ’ )
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223

# Courant−Fr i ed r i ch s−Lewy cond i t i on
225 # numerica l convergence cond i t i on that s e t s time step based on

v e l o c i t i e s
# i n i t i a l d t : s t a r t i n g po int f o r CFL c a l c u l a t i o n f o r f i r s t

i t e r a t i o n
227 # max dt : maximum al lowed time step

# s a f e t y : m u l t i p l i e r ; time step = CFL cond i t i on ∗ s a f e t y
229 # max change : maximum f r a c t i o n a l change between computed time

s t ep s
# cadence : i t e r a t i o n cadence at which to re−compute CFL

cond i t i on
231 i n i t i a l d t = 1 .

CFL = f l o w t o o l s .CFL( so lve r , i n i t i a l d t=i n i t i a l d t , max dt =20. ,
s a f e t y =1.2 , max change =10. , cadence=1)

233 CFL. a d d v e l o c i t i e s ( ( ’u ’ , ’ v ’ , ’w ’ ) ) # g ive s t a t e v a r i a b l e
v e l o c i t i e s

CFL. a d d v e l o c i t y ( ’ u s ’ , 0 ) # g ive Stokes d r i f t v e l o c i t y and a x i s
a long which i t a c t s (0 i s the index f o r the x−a x i s )

235

# Flow p r o p e r t i e s
237 # al l ows p r i n t i n g o f min/max o f f low p r o p e r t i e s to the l o g g e r

during the main loop
f low = f l o w t o o l s . GlobalFlowProperty ( so lve r , cadence=1)

239 # add s t a t e v a r i a b l e s as f low p r o p e r t i e s
f low . add property ( ’T ’ , name=’ Temperature ’ )

241 f l ow . add property ( ’u ’ , name=’u−v e l o c i t y ’ )
f low . add property ( ’ v ’ , name=’v−v e l o c i t y ’ )

243 f l ow . add property ( ’w ’ , name=’w−v e l o c i t y ’ )

245 # Elapsed i n i t i a l i z a t i o n time
e n d i n i t t i m e = time . time ( )

247 l o g g e r . i n f o ( ’ I n i t i a l i z a t i o n time : { : f } ’ . format ( e n d i n i t t im e−
s t a r t i n i t t i m e ) )

249 # Main loop
try :

251 l o g g e r . i n f o ( ’ S t a r t i ng loop ’ )
s t a r t r u n t i m e = time . time ( )

253 while s o l v e r . ok :
dt = CFL. compute dt ( ) # c a l c u l a t e s time step based on CFL

cond i t i on
255 s o l v e r . s tep ( dt ) # t h i s s tep r i g h t here i s the money−maker ;

advances the s imu la t i on forward in time by dt seconds
i f ( s o l v e r . i t e r a t i o n −1) % 20 == 0 : # p r in t s t a t u s message to
l o g g e r every 20 i t e r a t i o n s
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257 l o g g e r . i n f o ( ’ I t e r a t i o n : {} , Time : { : e } , dt : { : e} ’ . format (
s o l v e r . i t e r a t i o n , s o l v e r . s im time , dt ) )

l o g g e r . i n f o ( ’ Max/Min T = { : f } , { : f } ’ . format ( f low .max( ’
Temperature ’ ) , f low .min( ’ Temperature ’ ) ) )

259 l o g g e r . i n f o ( ’ Max/Min U = { : f } , { : f } ’ . format ( f low .max( ’u−
v e l o c i t y ’ ) , f low .min( ’u−v e l o c i t y ’ ) ) )

l o g g e r . i n f o ( ’ Max/Min V = { : f } , { : f } ’ . format ( f low .max( ’ v−
v e l o c i t y ’ ) , f low .min( ’ v−v e l o c i t y ’ ) ) )

261 l o g g e r . i n f o ( ’ Max/Min W = { : f } , { : f } ’ . format ( f low .max( ’w−
v e l o c i t y ’ ) , f low .min( ’w−v e l o c i t y ’ ) ) )

except :
263 l o g g e r . e r r o r ( ’ Exception ra i s ed , t r i g g e r i n g end o f main loop . ’ )

raise
265 f ina l ly : # p r in t summary s t a t i s t i c s to l o g g e r on complet ion o f

s imu la t i on
end run t ime = time . time ( )

267 l o g g e r . i n f o ( ’ I t e r a t i o n s : {} ’ . format ( s o l v e r . i t e r a t i o n ) )
l o g g e r . i n f o ( ’ Sim end time : { : f } ’ . format ( s o l v e r . s im time ) )

269 l o g g e r . i n f o ( ’Run time : { : . 2 f } s ec ’ . format ( end run time−
s t a r t r u n t i m e ) )

l o g g e r . i n f o ( ’Run time : { : f } cpu−hr ’ . format ( ( end run time−
s t a r t r u n t i m e ) / ( 6 0 . ∗ 6 0 . ) ∗domain . d i s t . comm cart . s i z e ) )
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Appendix B

Quasilinear Langmuir Turbulence
Code

# Load Python packages , Dedalus
2 import numpy as np
from mpi4py import MPI

4 import time

6 from dedalus import pub l i c as de
from dedalus . ex t ra s import f l o w t o o l s

8

# Import Dedalus l o g g e r
10 import l o gg ing

l o g g e r = logg ing . getLogger ( name )
12

# Begin t iming i n i t i a l i z a t i o n
14 s t a r t i n i t t i m e = time . time ( )

16 # Domain parameters
Lx , Ly , Lz = ( 2 8 8 . , 288 . , 6 4 . 8 )

18 x modes , y modes , z modes = (96 , 96 , 72)

20 # Create bases
x b a s i s = de . Four i e r ( ’ x ’ , x modes , i n t e r v a l=(−Lx/2 , Lx/2) ,

d e a l i a s =3/2)
22 y b a s i s = de . Four i e r ( ’ y ’ , y modes , i n t e r v a l=(−Ly/2 , Ly/2) ,

d e a l i a s =3/2)
z b a s i s = de . Chebyshev ( ’ z ’ , z modes , i n t e r v a l=(−Lz , 0) , d e a l i a s

=3/2)
24

# Construct domain
26 domain = de . Domain ( [ x bas i s , y bas i s , z b a s i s ] , g r id dtype=np .

f l oa t64 , mesh =[4 , 8 ] )
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28 # Set up an i n i t i a l va lue problem (IVP)
# f o r q u a s i l i n e a r (QL) approximation , each s t a t e v a r i a b l e q i s

s p l i t i n to two par t s ( Reynolds decompos it ion ) :
30 # ql −> low−order or mean f i e l d ; a l s o wr i t t en q bar

# qh −> high−order or f l u c t u a t i o n s ; a l s o wr i t t en q ’
32 # such that q = q l + qh

problem = de . IVP( domain , v a r i a b l e s =[ ’ p l ’ , ’ Tl ’ , ’ u l ’ , ’ v l ’ , ’ wl ’ , ’ Tzl
’ , ’ u z l ’ , ’ v z l ’ , ’ wzl ’ , ’ ph ’ , ’Th ’ , ’ uh ’ , ’ vh ’ , ’wh ’ , ’Tzh ’ , ’ uzh ’ , ’ vzh ’
, ’wzh ’ ] , time=’ t ’ )

34

# Metadata ( o p t i o na l )
36 problem . meta [ ’ p l ’ , ’ u z l ’ , ’ v z l ’ , ’ wl ’ , ’ Tzl ’ , ’ uzh ’ , ’ vzh ’ , ’wh ’ , ’Tzh ’ ] [

’ z ’ ] [ ’ d i r i c h l e t ’ ] = True

38 # Def ine constant parameters f o r the equat ions o f motion
problem . parameters [ ’ q ’ ] = 5 . # heat f l u x from upper s u r f a c e [W/m

ˆ2 ]
40 problem . parameters [ ’ c p ’ ] = 3994 # s p e c i f i c heat o f sea water at

constant p r e s su r e [ J/kg∗C]
problem . parameters [ ’ rho 0 ’ ] = 1035 # background dens i ty [ kg/mˆ3 ]

42 problem . parameters [ ’ nu z ’ ] = 1e−3 # v e r t i c a l harmonic k inemat ic
v i s c o s i t y [mˆ2/ s ]

problem . parameters [ ’ nu ’ ] = 2e−3 # h o r i z o n t a l harmonic k inemat ic
v i s c o s i t y [mˆ2/ s ]

44 problem . parameters [ ’ kappa z ’ ] = 1e−3 # v e r t i c a l c o e f f i c i e n t o f
thermal d i f f u s i v i t y [mˆ2/ s ]

problem . parameters [ ’ kappa ’ ] = 2e−3 # h o r i z o n t a l c o e f f i c i e n t o f
thermal d i f f u s i v i t y [mˆ2/ s ]

46 problem . parameters [ ’ alpha ’ ] = alpha = 2e−4 # c o e f f i c i e n t o f
thermal expansion [1/C]

problem . parameters [ ’ T 0 ’ ] = T 0 = 20 # background temperature [C]
48 problem . parameters [ ’ g ’ ] = g = 9.81 # g r a v i t a t i o n a l a c c e l e r a t i o n [

m/ s ˆ2 ]
problem . parameters [ ’ f ’ ] = 1e−4 # C o r i o l i s parameter [ 1/ s ]

50 problem . parameters [ ’ tau ’ ] = 0 .037 # s u r f a c e wind s t r e s s [N/mˆ2 ]

52 # Make domain dimensions in to problem parameters
problem . parameters [ ’Lx ’ ] = Lx

54 problem . parameters [ ’Ly ’ ] = Ly
problem . parameters [ ’ Lz ’ ] = Lz

56

# Def ine Stokes f i e l d
58 S t o k e s f i e l d = domain . n e w f i e l d (name=’ u s ’ )

z = domain . g r id (2 )
60 k s = 0.105 # Stokes wavenumber [1/m]

a s = 0.068 # Stokes v e l o c i t y at s u r f a c e ( z=0) [m/ s ]
62 S t o k e s f i e l d [ ’ g ’ ] = a s ∗ np . exp ( 2 . ∗ k s ∗ z )
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S t o k e s f i e l d . meta [ ’ x ’ , ’ y ’ ] [ ’ constant ’ ] = True
64 problem . parameters [ ’ u s ’ ] = S t o k e s f i e l d

66 # Mean F i e l d s f o r Ana lys i s
# r e c a l l that , f o r a s t a t e v a r i a b l e q , q = q l + qh

68 problem . s u b s t i t u t i o n s [ ’ u mean ’ ] = ” i n t e g ( u l + uh , ’ x ’ , ’ y ’ ) /(Lx∗
Ly) ”

problem . s u b s t i t u t i o n s [ ’ v mean ’ ] = ” i n t e g ( v l + vh , ’ x ’ , ’ y ’ ) /(Lx∗
Ly) ”

70 problem . s u b s t i t u t i o n s [ ’w mean ’ ] = ” i n t e g ( wl + wh, ’ x ’ , ’ y ’ ) /(Lx∗
Ly) ”

problem . s u b s t i t u t i o n s [ ’T mean ’ ] = ” i n t e g ( Tl + Th, ’ x ’ , ’ y ’ ) /(Lx∗
Ly) ”

72

# Equations f o r nx=0, ny=0 mode
74 # nx and ny are Four i e r modes in x− and y−d i r e c t i o n

# these equat ions correspond to dt ( q l ) , a l s o wr i t t en dt ( q bar )
76

# divergence cond i t i on :
78 problem . add equat ion ( ’ dx ( u l ) + dy ( v l ) + wzl = 0 ’ , c ond i t i on=’ ( nx

== 0) and ( ny == 0) ’ )
# thermal energy :

80 problem . add equat ion ( ’ dt ( Tl ) − kappa ∗( dx ( dx ( Tl ) ) + dy ( dy ( Tl ) ) ) −
kappa z∗dz ( Tzl ) = −ul ∗dx ( Tl ) − v l ∗dy ( Tl ) − wl∗Tzl − uh∗dx (Th)
− vh∗dy (Th) − wh∗Tzh − u s ∗dx ( Tl ) ’ , c ond i t i on=’ ( nx == 0) and (
ny == 0) ’ )

# Navier−Stokes /momentum equat ions :
82 problem . add equat ion ( ’ dt ( u l ) + (1/ rho 0 ) ∗dx ( p l ) − nu∗( dx ( dx ( u l ) )

+ dy ( dy ( u l ) ) ) − nu z∗dz ( uz l ) − f ∗ v l + dx ( u l ∗ u s )
= −ul ∗dx ( u l ) − v l ∗dy ( u l ) − wl∗ uz l − uh∗dx (uh) − vh∗

dy (uh) − wh∗uzh ’ , c ond i t i on=’ ( nx == 0) and ( ny == 0) ’ )
problem . add equat ion ( ’ dt ( v l ) + (1/ rho 0 ) ∗dy ( p l ) − nu∗( dx ( dx ( v l ) )

+ dy ( dy ( v l ) ) ) − nu z∗dz ( vz l ) + f ∗ ul + dy ( u l ∗ u s ) − u s ∗dy ( u l )
+ u s ∗dx ( v l ) = −ul ∗dx ( v l ) − v l ∗dy ( v l ) − wl∗ vz l − uh∗dx ( vh ) −
vh∗dy ( vh ) − wh∗vzh − f ∗ u s ’ , c ond i t i on=’ ( nx == 0) and ( ny ==
0) ’ )

84 problem . add equat ion ( ’ dt ( wl ) + (1/ rho 0 ) ∗dz ( p l ) − nu∗( dx ( dx ( wl ) )
+ dy ( dy ( wl ) ) ) − nu z∗dz ( wzl ) + dz ( u l ∗ u s ) − u s ∗ uz l +

u s ∗dx ( wl ) = −ul ∗dx ( wl ) − v l ∗dy ( wl ) − wl∗wzl − uh∗dx (wh) − vh
∗dy (wh) − wh∗wzh − 0 .5∗ dz ( u s ∗ u s ) + g∗ alpha ∗( Tl−T 0 ) ’ ,
c ond i t i on=’ ( nx == 0) and ( ny == 0) ’ )

# high−order components ( f l u c t u a t i o n s ) are zero f o r nx=0, ny=0
mode

86 problem . add equat ion ( ’ph = 0 ’ , c ond i t i on=’ ( nx == 0) and ( ny == 0)
’ )

problem . add equat ion ( ’Th = 0 ’ , cond i t i on=’ ( nx == 0) and ( ny == 0)
’ )
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88 problem . add equat ion ( ’uh = 0 ’ , c ond i t i on=’ ( nx == 0) and ( ny == 0)
’ )

problem . add equat ion ( ’ vh = 0 ’ , c ond i t i on=’ ( nx == 0) and ( ny == 0)
’ )

90 problem . add equat ion ( ’wh = 0 ’ , cond i t i on=’ ( nx == 0) and ( ny == 0)
’ )

problem . add equat ion ( ’Tzh = 0 ’ , c ond i t i on=’ ( nx == 0) and ( ny ==
0) ’ )

92 problem . add equat ion ( ’ uzh = 0 ’ , cond i t i on=’ ( nx == 0) and ( ny ==
0) ’ )

problem . add equat ion ( ’ vzh = 0 ’ , cond i t i on=’ ( nx == 0) and ( ny ==
0) ’ )

94 problem . add equat ion ( ’wzh = 0 ’ , c ond i t i on=’ ( nx == 0) and ( ny ==
0) ’ )

# match z−d e r i v a t i v e s to Tz , uz , e t c :
96 problem . add equat ion ( ’ Tzl − dz ( Tl ) = 0 ’ , cond i t i on=’ ( nx == 0) and

( ny == 0) ’ )
problem . add equat ion ( ’ uz l − dz ( u l ) = 0 ’ , c ond i t i on=’ ( nx == 0) and

( ny == 0) ’ )
98 problem . add equat ion ( ’ v z l − dz ( v l ) = 0 ’ , c ond i t i on=’ ( nx == 0) and

( ny == 0) ’ )
problem . add equat ion ( ’ wzl − dz ( wl ) = 0 ’ , cond i t i on=’ ( nx == 0) and

( ny == 0) ’ )
100

# Equations f o r nx !=0 , ny!=0 mode
102 # these equat ions correspond to dt ( qh ) , a l s o wr i t t en dt ( q ’ )

104 # divergence cond i t i on :
problem . add equat ion ( ’ dx (uh) + dy ( vh ) + wzh = 0 ’ , cond i t i on=’ ( nx

!= 0) or ( ny != 0) ’ )
106 # thermal energy :

problem . add equat ion ( ’ dt (Th) − kappa ∗( dx ( dx (Th) ) + dy ( dy (Th) ) ) −
kappa z∗dz (Tzh) = −ul ∗dx (Th) − v l ∗dy (Th) − wl∗Tzh − uh∗dx ( Tl )
− vh∗dy ( Tl ) − wh∗Tzl − u s ∗dx (Th) ’ , c ond i t i on=’ ( nx != 0) or (
ny != 0) ’ )

108 # Navier−Stokes /momentum equat ions :
problem . add equat ion ( ’ dt (uh) + (1/ rho 0 ) ∗dx (ph) − nu∗( dx ( dx (uh) )

+ dy ( dy (uh) ) ) − nu z∗dz ( uzh ) − f ∗vh + dx (uh∗ u s )
= −ul ∗dx (uh) − v l ∗dy (uh) − wl∗uzh − uh∗dx ( u l ) − vh∗

dy ( u l ) − wh∗ uz l ’ , c ond i t i on=’ ( nx != 0) or ( ny != 0) ’ )
110 problem . add equat ion ( ’ dt ( vh ) + (1/ rho 0 ) ∗dy (ph) − nu∗( dx ( dx ( vh ) )

+ dy ( dy ( vh ) ) ) − nu z∗dz ( vzh ) + f ∗uh + dy (uh∗ u s ) − u s ∗dy (uh)
+ u s ∗dx ( vh ) = −ul ∗dx ( vh ) − v l ∗dy ( vh ) − wl∗vzh − uh∗dx ( v l ) −
vh∗dy ( v l ) − wh∗ vz l − f ∗ u s ’ , c ond i t i on=’ ( nx != 0) or ( ny != 0)
’ )

problem . add equat ion ( ’ dt (wh) + (1/ rho 0 ) ∗dz (ph) − nu∗( dx ( dx (wh) )
+ dy ( dy (wh) ) ) − nu z∗dz (wzh) + dz (uh∗ u s ) − u s ∗uzh +

65



u s ∗dx (wh) = −ul ∗dx (wh) − v l ∗dy (wh) − wl∗wzh − uh∗dx ( wl ) − vh
∗dy ( wl ) − wh∗wzl − 0 .5∗ dz ( u s ∗ u s ) + g∗ alpha ∗(Th−T 0 ) ’ ,
c ond i t i on=’ ( nx != 0) or ( ny != 0) ’ )

112 # low−order components (mean f i e l d s ) are zero f o r nx !=0 , ny!=0
mode

problem . add equat ion ( ’ p l = 0 ’ , c ond i t i on=’ ( nx != 0) or ( ny != 0) ’
)

114 problem . add equat ion ( ’ Tl = 0 ’ , c ond i t i on=’ ( nx != 0) or ( ny != 0) ’
)

problem . add equat ion ( ’ u l = 0 ’ , c ond i t i on=’ ( nx != 0) or ( ny != 0) ’
)

116 problem . add equat ion ( ’ v l = 0 ’ , c ond i t i on=’ ( nx != 0) or ( ny != 0) ’
)

problem . add equat ion ( ’ wl = 0 ’ , c ond i t i on=’ ( nx != 0) or ( ny != 0) ’
)

118 problem . add equat ion ( ’ Tzl = 0 ’ , c ond i t i on=’ ( nx != 0) or ( ny != 0)
’ )

problem . add equat ion ( ’ uz l = 0 ’ , cond i t i on=’ ( nx != 0) or ( ny != 0)
’ )

120 problem . add equat ion ( ’ v z l = 0 ’ , c ond i t i on=’ ( nx != 0) or ( ny != 0)
’ )

problem . add equat ion ( ’ wzl = 0 ’ , c ond i t i on=’ ( nx != 0) or ( ny != 0)
’ )

122 # match z−d e r i v a t i v e s to Tz , uz , e t c :
problem . add equat ion ( ’Tzh − dz (Th) = 0 ’ , cond i t i on=’ ( nx != 0) or

( ny != 0) ’ )
124 problem . add equat ion ( ’ uzh − dz (uh) = 0 ’ , c ond i t i on=’ ( nx != 0) or

( ny != 0) ’ )
problem . add equat ion ( ’ vzh − dz ( vh ) = 0 ’ , c ond i t i on=’ ( nx != 0) or

( ny != 0) ’ )
126 problem . add equat ion ( ’wzh − dz (wh) = 0 ’ , cond i t i on=’ ( nx != 0) or

( ny != 0) ’ )

128

# Boundary c o n d i t i o n s : nx=0, ny=0 mode
130 # l e f t z ( bottom o f domain )

problem . add bc ( ” l e f t ( Tzl ) = 0” , cond i t i on=’ ( nx == 0) and ( ny ==
0) ’ )

132 problem . add bc ( ” l e f t ( uz l ) = 0” , cond i t i on=’ ( nx == 0) and ( ny ==
0) ’ )

problem . add bc ( ” l e f t ( v z l ) = 0” , cond i t i on=’ ( nx == 0) and ( ny ==
0) ’ )

134 problem . add bc ( ” l e f t ( wl ) = 0” , cond i t i on=’ ( nx == 0) and ( ny == 0)
’ )

# r i g h t z ( ocean s u r f a c e )
136 problem . add bc ( ” r i g h t ( Tzl ) = −q /( kappa∗ c p ∗ rho 0 ) ” , cond i t i on=’ (

nx == 0) and ( ny == 0) ’ ) # heat f l u x

66



problem . add bc ( ” r i g h t ( uz l ) = tau /(nu∗ rho 0 ) ” , cond i t i on=’ ( nx ==
0) and ( ny == 0) ’ ) # s u r f a c e wind s t r e s s

138 problem . add bc ( ” r i g h t ( v z l ) = 0” , cond i t i on=’ ( nx == 0) and ( ny ==
0) ’ )

#problem . add bc (” r i g h t ( wl ) = 0” , cond i t i on = ’(nx == 0) and ( ny ==
0) ’ ) # rep laced with p l gauge cho i c e

140 # pre s su r e gauge cho i c e
problem . add bc ( ” i n t e g z ( p l ) = 0” , cond i t i on=” ( nx == 0) and ( ny ==

0) ” )
142

# Boundary c o n d i t i o n s : nx !=0 , ny!=0 mode
144 # l e f t z

problem . add bc ( ” l e f t (Tzh) = 0” , cond i t i on=’ ( nx != 0) or ( ny != 0)
’ )

146 problem . add bc ( ” l e f t ( uzh ) = 0” , cond i t i on=’ ( nx != 0) or ( ny != 0)
’ )

problem . add bc ( ” l e f t ( vzh ) = 0” , cond i t i on=’ ( nx != 0) or ( ny != 0)
’ )

148 problem . add bc ( ” l e f t (wh) = 0” , cond i t i on=’ ( nx != 0) or ( ny != 0) ’
)

# r i g h t z
150 problem . add bc ( ” r i g h t (Tzh) = 0” , cond i t i on=’ ( nx != 0) or ( ny !=

0) ’ ) # heat f l u x i s a mean f i e l d , 0 f o r nx!=0 or ny!=0
problem . add bc ( ” r i g h t ( uzh ) = 0” , cond i t i on=’ ( nx != 0) or ( ny !=

0) ’ ) # s u r f a c e wind s t r e s s i s a l s o a mean f i e l d
152 problem . add bc ( ” r i g h t ( vzh ) = 0” , cond i t i on=’ ( nx != 0) or ( ny !=

0) ’ )
problem . add bc ( ” r i g h t (wh) = 0” , cond i t i on=’ ( nx != 0) or ( ny != 0)

’ )
154 # pre s su r e gauge cho i c e

#problem . add bc (” i n t e g z (ph) = 0” , cond i t i on = ’(nx != 0) or ( ny !=
0) ’ ) # ph does not e x i s t f o r nx , ny != 0

156

# Build s o l v e r
158 s o l v e r = problem . b u i l d s o l v e r ( de . t imes t epper s . RK443)

l o g g e r . i n f o ( ’ So lve r b u i l t ’ )
160

# I n i t i a l c o n d i t i o n s f o r temperature
162 Tl = s o l v e r . s t a t e [ ’ Tl ’ ]

Tzl = s o l v e r . s t a t e [ ’ Tzl ’ ]
164 Tl . s e t s c a l e s ( domain . d e a l i a s , keep data=False )

Tzl . s e t s c a l e s ( domain . d e a l i a s , keep data=False )
166 Th = s o l v e r . s t a t e [ ’Th ’ ]

Tzh = s o l v e r . s t a t e [ ’Tzh ’ ]
168 Th. s e t s c a l e s ( domain . d e a l i a s , keep data=False )

Tzh . s e t s c a l e s ( domain . d e a l i a s , keep data=False )
170
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# Def ine f i l t e r f i e l d func t i on
172 def f i l t e r f i e l d ( f i e l d , f r a c =0.5) :

f i e l d . r e q u i r e c o e f f s p a c e ( )
174 dom = f i e l d . domain

l o c a l s l i c e = dom . d i s t . c o e f f l a y o u t . s l i c e s ( s c a l e s=dom . d e a l i a s )
176 c o e f f = [ ]

for n in dom. g l o b a l c o e f f s h a p e :
178 c o e f f . append (np . l i n s p a c e (0 , 1 , n , endpoint=False ) )

cc = np . meshgrid (∗ c o e f f , index ing=’ i j ’ )
180 f i e l d f i l t e r = np . z e ro s (dom . l o c a l c o e f f s h a p e , dtype=’ bool ’ )

for i in range (dom . dim ) :
182 f i e l d f i l t e r = f i e l d f i l t e r | ( cc [ i ] [ l o c a l s l i c e ] > f r a c )

f i e l d [ ’ c ’ ] [ f i e l d f i l t e r ] = 0 j
184

# Set up v a r i a b l e s f o r i n i t i a l temperature
186 N 2 = 1.936 e−5 # Brunt−Vaisa la f requency [1/ s ˆ2 ]

MLD = −32.1 # mixed−l a y e r depth [m]
188 f i l t e r f r a c = 0 .5

190 # Domain shape and s l i c e s
gshape = domain . d i s t . g r i d l a y o u t . g l oba l shape ( s c a l e s=domain .

d e a l i a s )
192 s l i c e s = domain . d i s t . g r i d l a y o u t . s l i c e s ( s c a l e s=domain . d e a l i a s )

194 # I n i t i a l i z e random no i s e g l o b a l l y
rand = np . random . RandomState ( seed =70)

196 no i s e = rand . standard normal ( gshape ) [ s l i c e s ]

198 # I n i t i a l i z e temperature
# Th ( f l u c t u a t i o n s ) : in top 4 .5 m, random no i s e o f magnitude 1e
−4; o therw i se zero

200 # Tl (mean f i e l d ) : above MLD, background temperature o f T 0 ;
below MLD, l i n e a r s t r a t i f i c a t i o n from BV frequency

temp array l = np . z e r o s ( gshape ) [ s l i c e s ]
202 temp array h = np . z e ro s ( gshape ) [ s l i c e s ]

z v a l s = domain . g r id (2 , s c a l e s=domain . d e a l i a s ) [ 0 , 0 , : ]
204 for ind , depth in enumerate( z v a l s ) :

cu r r ent shape = temp array l [ : , : , ind ] . shape
206 i f depth > −4.5: # s u r f a c e with no i s e

rand no i s e = no i s e [ : , : , ind ]
208 temp array h [ : , : , ind ] = 1e−4 ∗ rand no i s e

t emp array l [ : , : , ind ] = T 0 ∗ np . ones ( cur r ent shape )
210 e l i f depth > MLD: # with in mixed l a y e r

t emp array l [ : , : , ind ] = T 0 ∗ np . ones ( cur r ent shape )
212 e l i f depth <= MLD: # s t r a t i f i e d deep ocean

dist from MLD = abs (MLD−depth )
214 T BV = − ( N 2∗dist from MLD ) /( alpha ∗g )
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t emp array l [ : , : , ind ] = ( T 0 + T BV) ∗ np . ones ( cur r ent shape )
216 Tl [ ’ g ’ ] = 1 .0 ∗ t emp array l

Tl . d i f f e r e n t i a t e ( ’ z ’ , out=Tzl )
218 Th[ ’ g ’ ] = 1 .0 ∗ temp array h

l o g g e r . i n f o ( ’ Beginning f i l t e r ’ )
220 f i l t e r f i e l d (Th, f r a c=f i l t e r f r a c ) # apply f i l t e r to remove high−

f r equency components
l o g g e r . i n f o ( ’ F in i shed f i l t e r ’ )

222 Th. d i f f e r e n t i a t e ( ’ z ’ , out=Tzh)

224 # I n t e g r a t i o n parameters
s o l v e r . s top s im t ime = 7 8 .∗6 0 .∗6 0 .

226 s o l v e r . s t o p w a l l t i m e = np . i n f
s o l v e r . s t o p i t e r a t i o n = np . i n f

228

# Analys i s : f u l l s t a t e v a r i a b l e s
230 snapshots1 = s o l v e r . eva lua to r . a d d f i l e h a n d l e r ( ’ s t a t e v a r i a b l e s ’ ,

s im dt =21600. , max writes =10)
snapshots1 . add task ( s o l v e r . s t a t e [ ’ Tl ’ ] , l ayout=’ g ’ , name=’ Tl ’ )

232 snapshots1 . add task ( s o l v e r . s t a t e [ ’ u l ’ ] , l ayout=’ g ’ , name=’ u l ’ )
snapshots1 . add task ( s o l v e r . s t a t e [ ’ v l ’ ] , l ayout=’ g ’ , name=’ v l ’ )

234 snapshots1 . add task ( s o l v e r . s t a t e [ ’ wl ’ ] , l ayout=’ g ’ , name=’ wl ’ )
snapshots1 . add task ( s o l v e r . s t a t e [ ’Th ’ ] , l ayout=’ g ’ , name=’Th ’ )

236 snapshots1 . add task ( s o l v e r . s t a t e [ ’ uh ’ ] , l ayout=’ g ’ , name=’uh ’ )
snapshots1 . add task ( s o l v e r . s t a t e [ ’ vh ’ ] , l ayout=’ g ’ , name=’ vh ’ )

238 snapshots1 . add task ( s o l v e r . s t a t e [ ’wh ’ ] , l ayout=’ g ’ , name=’wh ’ )

240 # Analys i s : mean f i e l d s and c o r r e l a t i o n s
snapshots2 = s o l v e r . eva lua to r . a d d f i l e h a n d l e r ( ’ d i a g n o s t i c s ’ ,

s im dt =21600. , max writes =10)
242 # mean f i e l d s

snapshots2 . add task ( ’ u mean ’ , layout=’ g ’ , s c a l e s =1, name=’ u bar ’ )
244 snapshots2 . add task ( ’ v mean ’ , l ayout=’ g ’ , s c a l e s =1, name=’ v bar ’ )

snapshots2 . add task ( ’w mean ’ , l ayout=’ g ’ , s c a l e s =1, name=’ w bar ’ )
246 snapshots2 . add task ( ’T mean ’ , l ayout=’ g ’ , s c a l e s =1, name=’ T bar ’ )

# c o r r e l a t i o n s
248 snapshots2 . add task ( ” i n t e g ( ( u l + uh) ∗( v l + vh ) , ’ x ’ , ’ y ’ ) /(Lx∗Ly)

” , layout=’ g ’ , s c a l e s =1, name=’ uv cor r ’ )
snapshots2 . add task ( ” i n t e g ( ( u l + uh) ∗( wl + wh) , ’ x ’ , ’ y ’ ) /(Lx∗Ly)

” , layout=’ g ’ , s c a l e s =1, name=’ uw corr ’ )
250 snapshots2 . add task ( ” i n t e g ( ( v l + vh ) ∗( wl + wh) , ’ x ’ , ’ y ’ ) /(Lx∗Ly)

” , layout=’ g ’ , s c a l e s =1, name=’ vw corr ’ )
snapshots2 . add task ( ” i n t e g ( ( u l + uh) ∗( Tl + Th) , ’ x ’ , ’ y ’ ) /(Lx∗Ly)

” , layout=’ g ’ , s c a l e s =1, name=’ uT corr ’ )
252 snapshots2 . add task ( ” i n t e g ( ( v l + vh ) ∗( Tl + Th) , ’ x ’ , ’ y ’ ) /(Lx∗Ly)

” , layout=’ g ’ , s c a l e s =1, name=’ vT corr ’ )
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snapshots2 . add task ( ” i n t e g ( ( wl + wh) ∗( Tl + Th) , ’ x ’ , ’ y ’ ) /(Lx∗Ly)
” , layout=’ g ’ , s c a l e s =1, name=’ wT corr ’ )

254

# CFL cond i t i on
256 i n i t i a l d t = 1 .

CFL = f l o w t o o l s .CFL( so lve r , i n i t i a l d t=i n i t i a l d t , max dt =20. ,
s a f e t y =1.2 , max change =10. , cadence=1)

258 CFL. a d d v e l o c i t i e s ( ( ’ u l + uh ’ , ’ v l + vh ’ , ’ wl + wh ’ ) )
CFL. a d d v e l o c i t y ( ’ u s ’ , 0 )

260

# Flow p r o p e r t i e s
262 f l ow = f l o w t o o l s . GlobalFlowProperty ( so lve r , cadence=1)

f low . add property ( ’ Tl + Th ’ , name=’ Temperature ’ )
264 f l ow . add property ( ’ u l + uh ’ , name=’u−v e l o c i t y ’ )

f low . add property ( ’ v l + vh ’ , name=’v−v e l o c i t y ’ )
266 f l ow . add property ( ’ wl + wh ’ , name=’w−v e l o c i t y ’ )

268 # Elapsed i n i t i a l i z a t i o n time
e n d i n i t t i m e = time . time ( )

270 l o g g e r . i n f o ( ’ I n i t i a l i z a t i o n time : { : f } ’ . format ( e n d i n i t t im e−
s t a r t i n i t t i m e ) )

272 # Main loop
try :

274 l o g g e r . i n f o ( ’ S t a r t i ng loop ’ )
s t a r t r u n t i m e = time . time ( )

276 while s o l v e r . ok :
dt = CFL. compute dt ( )

278 s o l v e r . s tep ( dt )
i f ( s o l v e r . i t e r a t i o n −1) % 20 == 0 :

280 l o g g e r . i n f o ( ’ I t e r a t i o n : {} , Time : { : e } , dt : { : e} ’ . format (
s o l v e r . i t e r a t i o n , s o l v e r . s im time , dt ) )

l o g g e r . i n f o ( ’ Max/Min T = { : f } , { : f } ’ . format ( f low .max( ’
Temperature ’ ) , f low .min( ’ Temperature ’ ) ) )

282 l o g g e r . i n f o ( ’ Max/Min U = { : f } , { : f } ’ . format ( f low .max( ’u−
v e l o c i t y ’ ) , f low .min( ’u−v e l o c i t y ’ ) ) )

l o g g e r . i n f o ( ’ Max/Min V = { : f } , { : f } ’ . format ( f low .max( ’ v−
v e l o c i t y ’ ) , f low .min( ’ v−v e l o c i t y ’ ) ) )

284 l o g g e r . i n f o ( ’ Max/Min W = { : f } , { : f } ’ . format ( f low .max( ’w−
v e l o c i t y ’ ) , f low .min( ’w−v e l o c i t y ’ ) ) )

except :
286 l o g g e r . e r r o r ( ’ Exception ra i s ed , t r i g g e r i n g end o f main loop . ’ )

raise
288 f ina l ly :

end run t ime = time . time ( )
290 l o g g e r . i n f o ( ’ I t e r a t i o n s : {} ’ . format ( s o l v e r . i t e r a t i o n ) )

l o g g e r . i n f o ( ’ Sim end time : { : f } ’ . format ( s o l v e r . s im time ) )
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292 l o g g e r . i n f o ( ’Run time : { : . 2 f } s ec ’ . format ( end run time−
s t a r t r u n t i m e ) )

l o g g e r . i n f o ( ’Run time : { : f } cpu−hr ’ . format ( ( end run time−
s t a r t r u n t i m e ) / ( 6 0 . ∗ 6 0 . ) ∗domain . d i s t . comm cart . s i z e ) )
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Appendix C

Generalized Quasilinear Langmuir
Turbulence Code

1 # Load Python packages , Dedalus
import numpy as np

3 from mpi4py import MPI
import time

5

from dedalus import pub l i c as de
7 from dedalus . ex t ra s import f l o w t o o l s

9 # Import Dedalus l o g g e r
import l o gg ing

11 l o g g e r = logg ing . getLogger ( name )

13 # Begin t iming i n i t i a l i z a t i o n
s t a r t i n i t t i m e = time . time ( )

15

# Domain parameters
17 Lx , Ly , Lz = ( 2 8 8 . , 288 . , 6 4 . 8 )

x modes , y modes , z modes = (96 , 96 , 72)
19

# Create bases
21 x b a s i s = de . Four i e r ( ’ x ’ , x modes , i n t e r v a l=(−Lx/2 , Lx/2) ,

d e a l i a s =3/2)
y b a s i s = de . Four i e r ( ’ y ’ , y modes , i n t e r v a l=(−Ly/2 , Ly/2) ,

d e a l i a s =3/2)
23 z b a s i s = de . Chebyshev ( ’ z ’ , z modes , i n t e r v a l=(−Lz , 0) , d e a l i a s

=3/2)

25 # Construct domain
domain = de . Domain ( [ x bas i s , y bas i s , z b a s i s ] , g r id dtype=np .

f l oa t64 , mesh =[4 , 8 ] )
27
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# Set up an i n i t i a l va lue problem (IVP)
29 # l i k e in QL, s p l i t each s t a t e v a r i a b l e in to low−order and high

−order components , but in GQL those are not j u s t mean f i e l d s
vs f l u c t u a t i o n s

# s t i l l t rue that q = q l + qh
31 problem = de . IVP( domain , v a r i a b l e s =[ ’ p l ’ , ’ Tl ’ , ’ u l ’ , ’ v l ’ , ’ wl ’ , ’ Tzl

’ , ’ u z l ’ , ’ v z l ’ , ’ wzl ’ , ’ ph ’ , ’Th ’ , ’ uh ’ , ’ vh ’ , ’wh ’ , ’Tzh ’ , ’ uzh ’ , ’ vzh ’
, ’wzh ’ ] , time=’ t ’ )

33 # Metadata ( o p t i o na l )
problem . meta [ ’ p l ’ , ’ u z l ’ , ’ v z l ’ , ’ wl ’ , ’ Tzl ’ , ’ uzh ’ , ’ vzh ’ , ’wh ’ , ’Tzh ’ ] [

’ z ’ ] [ ’ d i r i c h l e t ’ ] = True
35

# Def ine constant parameters f o r the equat ions o f motion
37 problem . parameters [ ’ q ’ ] = 5 . # heat f l u x from upper s u r f a c e [W/m

ˆ2 ]
problem . parameters [ ’ c p ’ ] = 3994 # s p e c i f i c heat o f sea water at

constant p r e s su r e [ J/kg∗C]
39 problem . parameters [ ’ rho 0 ’ ] = 1035 # background dens i ty [ kg/mˆ3 ]

problem . parameters [ ’ nu z ’ ] = 1e−3 # v e r t i c a l harmonic k inemat ic
v i s c o s i t y [mˆ2/ s ]

41 problem . parameters [ ’ nu ’ ] = 2e−3 # h o r i z o n t a l harmonic k inemat ic
v i s c o s i t y [mˆ2/ s ]

problem . parameters [ ’ kappa z ’ ] = 1e−3 # v e r t i c a l c o e f f i c i e n t o f
thermal d i f f u s i v i t y [mˆ2/ s ]

43 problem . parameters [ ’ kappa ’ ] = 2e−3 # h o r i z o n t a l c o e f f i c i e n t o f
thermal d i f f u s i v i t y [mˆ2/ s ]

problem . parameters [ ’ alpha ’ ] = alpha = 2e−4 # c o e f f i c i e n t o f
thermal expansion [1/C]

45 problem . parameters [ ’ T 0 ’ ] = T 0 = 20 # background temperature [C]
problem . parameters [ ’ g ’ ] = g = 9.81 # g r a v i t a t i o n a l a c c e l e r a t i o n [

m/ s ˆ2 ]
47 problem . parameters [ ’ f ’ ] = 1e−4 # C o r i o l i s parameter [ 1/ s ]

problem . parameters [ ’ tau ’ ] = 0 .037 # s u r f a c e wind s t r e s s [N/mˆ2 ]
49

# Make domain dimensions in to problem parameters
51 problem . parameters [ ’Lx ’ ] = Lx

problem . parameters [ ’Ly ’ ] = Ly
53 problem . parameters [ ’ Lz ’ ] = Lz

55 # Def ine Stokes f i e l d
S t o k e s f i e l d = domain . n e w f i e l d (name=’ u s ’ )

57 z = domain . g r id (2 )
k s = 0.105 # Stokes wavenumber [1/m]

59 a s = 0.068 # Stokes v e l o c i t y at s u r f a c e ( z=0) [m/ s ]
S t o k e s f i e l d [ ’ g ’ ] = a s ∗ np . exp ( 2 . ∗ k s ∗ z )

61 S t o k e s f i e l d . meta [ ’ x ’ , ’ y ’ ] [ ’ constant ’ ] = True
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problem . parameters [ ’ u s ’ ] = S t o k e s f i e l d
63

# Mean F i e l d s f o r Ana lys i s
65 problem . s u b s t i t u t i o n s [ ’ u mean ’ ] = ” i n t e g ( u l + uh , ’ x ’ , ’ y ’ ) /(Lx∗

Ly) ”
problem . s u b s t i t u t i o n s [ ’ v mean ’ ] = ” i n t e g ( v l + vh , ’ x ’ , ’ y ’ ) /(Lx∗

Ly) ”
67 problem . s u b s t i t u t i o n s [ ’w mean ’ ] = ” i n t e g ( wl + wh, ’ x ’ , ’ y ’ ) /(Lx∗

Ly) ”
problem . s u b s t i t u t i o n s [ ’T mean ’ ] = ” i n t e g ( Tl + Th, ’ x ’ , ’ y ’ ) /(Lx∗

Ly) ”
69

# Equations f o r nx , ny <= 10
71 # we have s e t Lambda , the cut−o f f f requency f o r GQL that

d i s t i n g u i s h e s between ”low−order ” and ”high−order ” , to 10

73 # divergence cond i t i on :
problem . add equat ion ( ’ dx ( u l ) + dy ( v l ) + wzl = 0 ’ , c ond i t i on=’ ( abs

( nx ) <= 10) and ( abs ( ny ) <= 10) ’ )
75 # thermal energy :

problem . add equat ion ( ’ dt ( Tl ) − kappa ∗( dx ( dx ( Tl ) ) + dy ( dy ( Tl ) ) ) −
kappa z∗dz ( Tzl ) = −ul ∗dx ( Tl ) − v l ∗dy ( Tl ) − wl∗Tzl − uh∗dx (Th)
− vh∗dy (Th) − wh∗Tzh − u s ∗dx ( Tl ) ’ , c ond i t i on=’ ( abs ( nx ) <= 10)

and ( abs ( ny ) <= 10) ’ )
77 # Navier−Stokes /momentum equat ions :

problem . add equat ion ( ’ dt ( u l ) + (1/ rho 0 ) ∗dx ( p l ) − nu∗( dx ( dx ( u l ) )
+ dy ( dy ( u l ) ) ) − nu z∗dz ( uz l ) − f ∗ v l + dx ( u l ∗ u s )

= −ul ∗dx ( u l ) − v l ∗dy ( u l ) − wl∗ uz l − uh∗dx (uh) − vh∗
dy (uh) − wh∗uzh ’ , c ond i t i on=’ ( abs ( nx ) <= 10) and ( abs ( ny ) <=
10) ’ )

79 problem . add equat ion ( ’ dt ( v l ) + (1/ rho 0 ) ∗dy ( p l ) − nu∗( dx ( dx ( v l ) )
+ dy ( dy ( v l ) ) ) − nu z∗dz ( vz l ) + f ∗ ul + dy ( u l ∗ u s ) − u s ∗dy ( u l )
+ u s ∗dx ( v l ) = −ul ∗dx ( v l ) − v l ∗dy ( v l ) − wl∗ vz l − uh∗dx ( vh ) −
vh∗dy ( vh ) − wh∗vzh − f ∗ u s ’ , c ond i t i on=’ ( abs ( nx ) <= 10) and (
abs ( ny ) <= 10) ’ )

problem . add equat ion ( ’ dt ( wl ) + (1/ rho 0 ) ∗dz ( p l ) − nu∗( dx ( dx ( wl ) )
+ dy ( dy ( wl ) ) ) − nu z∗dz ( wzl ) + dz ( u l ∗ u s ) − u s ∗ uz l +

u s ∗dx ( wl ) = −ul ∗dx ( wl ) − v l ∗dy ( wl ) − wl∗wzl − uh∗dx (wh) − vh
∗dy (wh) − wh∗wzh − 0 .5∗ dz ( u s ∗ u s ) + g∗ alpha ∗( Tl−T 0 ) ’ ,
c ond i t i on=’ ( abs ( nx ) <= 10) and ( abs ( ny ) <= 10) ’ )

81 # high−order components are zero f o r nx , ny <= Lambda (10)
problem . add equat ion ( ’ph = 0 ’ , c ond i t i on=’ ( abs ( nx ) <= 10) and (

abs ( ny ) <= 10) ’ )
83 problem . add equat ion ( ’Th = 0 ’ , cond i t i on=’ ( abs ( nx ) <= 10) and (

abs ( ny ) <= 10) ’ )
problem . add equat ion ( ’uh = 0 ’ , c ond i t i on=’ ( abs ( nx ) <= 10) and (

abs ( ny ) <= 10) ’ )
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85 problem . add equat ion ( ’ vh = 0 ’ , c ond i t i on=’ ( abs ( nx ) <= 10) and (
abs ( ny ) <= 10) ’ )

problem . add equat ion ( ’wh = 0 ’ , cond i t i on=’ ( abs ( nx ) <= 10) and (
abs ( ny ) <= 10) ’ )

87 problem . add equat ion ( ’Tzh = 0 ’ , c ond i t i on=’ ( abs ( nx ) <= 10) and (
abs ( ny ) <= 10) ’ )

problem . add equat ion ( ’ uzh = 0 ’ , cond i t i on=’ ( abs ( nx ) <= 10) and (
abs ( ny ) <= 10) ’ )

89 problem . add equat ion ( ’ vzh = 0 ’ , cond i t i on=’ ( abs ( nx ) <= 10) and (
abs ( ny ) <= 10) ’ )

problem . add equat ion ( ’wzh = 0 ’ , c ond i t i on=’ ( abs ( nx ) <= 10) and (
abs ( ny ) <= 10) ’ )

91 # match z−d e r i v a t i v e s to Tz , uz , e t c :
problem . add equat ion ( ’ Tzl − dz ( Tl ) = 0 ’ , cond i t i on=’ ( abs ( nx ) <=

10) and ( abs ( ny ) <= 10) ’ )
93 problem . add equat ion ( ’ uz l − dz ( u l ) = 0 ’ , c ond i t i on=’ ( abs ( nx ) <=

10) and ( abs ( ny ) <= 10) ’ )
problem . add equat ion ( ’ v z l − dz ( v l ) = 0 ’ , c ond i t i on=’ ( abs ( nx ) <=

10) and ( abs ( ny ) <= 10) ’ )
95 problem . add equat ion ( ’ wzl − dz ( wl ) = 0 ’ , cond i t i on=’ ( abs ( nx ) <=

10) and ( abs ( ny ) <= 10) ’ )

97 # Equations f o r nx , ny > 10

99 # divergence cond i t i on :
problem . add equat ion ( ’ dx (uh) + dy ( vh ) + wzh = 0 ’ , cond i t i on=’ ( abs

( nx ) > 10) or ( abs ( ny ) > 10) ’ )
101 # thermal energy :

problem . add equat ion ( ’ dt (Th) − kappa ∗( dx ( dx (Th) ) + dy ( dy (Th) ) ) −
kappa z∗dz (Tzh) = −ul ∗dx (Th) − v l ∗dy (Th) − wl∗Tzh − uh∗dx ( Tl )
− vh∗dy ( Tl ) − wh∗Tzl − u s ∗dx (Th) ’ , c ond i t i on=’ ( abs ( nx ) > 10)
or ( abs ( ny ) > 10) ’ )

103 # Navier−Stokes /momentum equat ions :
problem . add equat ion ( ’ dt (uh) + (1/ rho 0 ) ∗dx (ph) − nu∗( dx ( dx (uh) )

+ dy ( dy (uh) ) ) − nu z∗dz ( uzh ) − f ∗vh + dx (uh∗ u s )
= −ul ∗dx (uh) − v l ∗dy (uh) − wl∗uzh − uh∗dx ( u l ) − vh∗

dy ( u l ) − wh∗ uz l ’ , c ond i t i on=’ ( abs ( nx ) > 10) or ( abs ( ny ) > 10) ’
)

105 problem . add equat ion ( ’ dt ( vh ) + (1/ rho 0 ) ∗dy (ph) − nu∗( dx ( dx ( vh ) )
+ dy ( dy ( vh ) ) ) − nu z∗dz ( vzh ) + f ∗uh + dy (uh∗ u s ) − u s ∗dy (uh)
+ u s ∗dx ( vh ) = −ul ∗dx ( vh ) − v l ∗dy ( vh ) − wl∗vzh − uh∗dx ( v l ) −
vh∗dy ( v l ) − wh∗ vz l − f ∗ u s ’ , c ond i t i on=’ ( abs ( nx ) > 10) or ( abs
( ny ) > 10) ’ )

problem . add equat ion ( ’ dt (wh) + (1/ rho 0 ) ∗dz (ph) − nu∗( dx ( dx (wh) )
+ dy ( dy (wh) ) ) − nu z∗dz (wzh) + dz (uh∗ u s ) − u s ∗uzh +

u s ∗dx (wh) = −ul ∗dx (wh) − v l ∗dy (wh) − wl∗wzh − uh∗dx ( wl ) − vh
∗dy ( wl ) − wh∗wzl − 0 .5∗ dz ( u s ∗ u s ) + g∗ alpha ∗(Th−T 0 ) ’ ,
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cond i t i on=’ ( abs ( nx ) > 10) or ( abs ( ny ) > 10) ’ )
107 # high−order components are zero f o r nx , ny > Lambda (10)

problem . add equat ion ( ’ p l = 0 ’ , c ond i t i on=’ ( abs ( nx ) > 10) or ( abs (
ny ) > 10) ’ )

109 problem . add equat ion ( ’ Tl = 0 ’ , c ond i t i on=’ ( abs ( nx ) > 10) or ( abs (
ny ) > 10) ’ )

problem . add equat ion ( ’ u l = 0 ’ , c ond i t i on=’ ( abs ( nx ) > 10) or ( abs (
ny ) > 10) ’ )

111 problem . add equat ion ( ’ v l = 0 ’ , c ond i t i on=’ ( abs ( nx ) > 10) or ( abs (
ny ) > 10) ’ )

problem . add equat ion ( ’ wl = 0 ’ , c ond i t i on=’ ( abs ( nx ) > 10) or ( abs (
ny ) > 10) ’ )

113 problem . add equat ion ( ’ Tzl = 0 ’ , c ond i t i on=’ ( abs ( nx ) > 10) or ( abs
( ny ) > 10) ’ )

problem . add equat ion ( ’ uz l = 0 ’ , cond i t i on=’ ( abs ( nx ) > 10) or ( abs
( ny ) > 10) ’ )

115 problem . add equat ion ( ’ v z l = 0 ’ , c ond i t i on=’ ( abs ( nx ) > 10) or ( abs
( ny ) > 10) ’ )

problem . add equat ion ( ’ wzl = 0 ’ , c ond i t i on=’ ( abs ( nx ) > 10) or ( abs
( ny ) > 10) ’ )

117 # match z−d e r i v a t i v e s to Tz , uz , e t c :
problem . add equat ion ( ’Tzh − dz (Th) = 0 ’ , cond i t i on=’ ( abs ( nx ) >

10) or ( abs ( ny ) > 10) ’ )
119 problem . add equat ion ( ’ uzh − dz (uh) = 0 ’ , c ond i t i on=’ ( abs ( nx ) >

10) or ( abs ( ny ) > 10) ’ )
problem . add equat ion ( ’ vzh − dz ( vh ) = 0 ’ , c ond i t i on=’ ( abs ( nx ) >

10) or ( abs ( ny ) > 10) ’ )
121 problem . add equat ion ( ’wzh − dz (wh) = 0 ’ , cond i t i on=’ ( abs ( nx ) >

10) or ( abs ( ny ) > 10) ’ )

123

# Boundary c o n d i t i o n s : nx , ny <= 10 modes
125 # l e f t z ( bottom o f domain )

problem . add bc ( ” l e f t ( Tzl ) = 0” , cond i t i on=’ ( abs ( nx ) <= 10) and (
abs ( ny ) <= 10) ’ )

127 problem . add bc ( ” l e f t ( uz l ) = 0” , cond i t i on=’ ( abs ( nx ) <= 10) and (
abs ( ny ) <= 10) ’ )

problem . add bc ( ” l e f t ( v z l ) = 0” , cond i t i on=’ ( abs ( nx ) <= 10) and (
abs ( ny ) <= 10) ’ )

129 problem . add bc ( ” l e f t ( wl ) = 0” , cond i t i on=’ ( abs ( nx ) <= 10) and (
abs ( ny ) <= 10) ’ )

# r i g h t z ( ocean s u r f a c e )
131 problem . add bc ( ” r i g h t ( Tzl ) = −q /( kappa∗ c p ∗ rho 0 ) ” , cond i t i on=’ (

abs ( nx ) <= 10) and ( abs ( ny ) <= 10) ’ ) # heat f l u x
problem . add bc ( ” r i g h t ( uz l ) = tau /(nu∗ rho 0 ) ” , cond i t i on=’ ( abs ( nx )

<= 10) and ( abs ( ny ) <= 10) ’ ) # s u r f a c e wind s t r e s s
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133 problem . add bc ( ” r i g h t ( v z l ) = 0” , cond i t i on=’ ( abs ( nx ) <= 10) and (
abs ( ny ) <= 10) ’ )

problem . add bc ( ” r i g h t ( wl ) = 0” , cond i t i on=’ ( ( abs ( nx ) <= 10) and (
abs ( ny ) <= 10) ) and ( ( nx != 0) or ( ny != 0) ) ’ ) # r e p l a c e nx ,
ny=0 with p l gauge cho i c e

135 # pre s su r e gauge cho i c e
problem . add bc ( ” i n t e g z ( p l ) = 0” , cond i t i on=” ( nx == 0) and ( ny ==

0) ” )
137

# Boundary c o n d i t i o n s : nx , ny > 10 modes
139 # l e f t z

problem . add bc ( ” l e f t (Tzh) = 0” , cond i t i on=’ ( abs ( nx ) > 10) or ( abs
( ny ) > 10) ’ )

141 problem . add bc ( ” l e f t ( uzh ) = 0” , cond i t i on=’ ( abs ( nx ) > 10) or ( abs
( ny ) > 10) ’ )

problem . add bc ( ” l e f t ( vzh ) = 0” , cond i t i on=’ ( abs ( nx ) > 10) or ( abs
( ny ) > 10) ’ )

143 problem . add bc ( ” l e f t (wh) = 0” , cond i t i on=’ ( abs ( nx ) > 10) or ( abs (
ny ) > 10) ’ )

# r i g h t z
145 problem . add bc ( ” r i g h t (Tzh) = 0” , cond i t i on=’ ( abs ( nx ) > 10) or (

abs ( ny ) > 10) ’ ) # heat f l u x
problem . add bc ( ” r i g h t ( uzh ) = 0” , cond i t i on=’ ( abs ( nx ) > 10) or (

abs ( ny ) > 10) ’ ) # s u r f a c e wind s t r e s s
147 problem . add bc ( ” r i g h t ( vzh ) = 0” , cond i t i on=’ ( abs ( nx ) > 10) or (

abs ( ny ) > 10) ’ )
problem . add bc ( ” r i g h t (wh) = 0” , cond i t i on=’ ( abs ( nx ) > 10) or ( abs

( ny ) > 10) ’ )
149 # pre s su r e gauge cho i c e

#problem . add bc (” i n t e g z (ph) = 0” , cond i t i on = ’( abs ( nx ) > 10) or (
abs ( ny ) > 10) ’ ) # ph does not e x i s t f o r nx , ny != 0

151

# Build s o l v e r
153 s o l v e r = problem . b u i l d s o l v e r ( de . t imes t epper s . RK443)

l o g g e r . i n f o ( ’ So lve r b u i l t ’ )
155

# I n i t i a l c o n d i t i o n s
157 Tl = s o l v e r . s t a t e [ ’ Tl ’ ]

Tzl = s o l v e r . s t a t e [ ’ Tzl ’ ]
159 Tl . s e t s c a l e s ( domain . d e a l i a s , keep data=False )

Tzl . s e t s c a l e s ( domain . d e a l i a s , keep data=False )
161 Th = s o l v e r . s t a t e [ ’Th ’ ]

Tzh = s o l v e r . s t a t e [ ’Tzh ’ ]
163 Th. s e t s c a l e s ( domain . d e a l i a s , keep data=False )

Tzh . s e t s c a l e s ( domain . d e a l i a s , keep data=False )
165

# Def ine f i l t e r f i e l d func t i on
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167 def f i l t e r f i e l d ( f i e l d , f r a c =0.5) :
f i e l d . r e q u i r e c o e f f s p a c e ( )

169 dom = f i e l d . domain
l o c a l s l i c e = dom . d i s t . c o e f f l a y o u t . s l i c e s ( s c a l e s=dom . d e a l i a s )

171 c o e f f = [ ]
for n in dom. g l o b a l c o e f f s h a p e :

173 c o e f f . append (np . l i n s p a c e (0 , 1 , n , endpoint=False ) )
cc = np . meshgrid (∗ c o e f f , index ing=’ i j ’ )

175 f i e l d f i l t e r = np . z e ro s (dom . l o c a l c o e f f s h a p e , dtype=’ bool ’ )
for i in range (dom . dim ) :

177 f i e l d f i l t e r = f i e l d f i l t e r | ( cc [ i ] [ l o c a l s l i c e ] > f r a c )
f i e l d [ ’ c ’ ] [ f i e l d f i l t e r ] = 0 j

179

# Set up v a r i a b l e s f o r i n i t i a l temperature
181 N 2 = 1.936 e−5 # Brunt−Vaisa la f requency [1/ s ˆ2 ]

MLD = −32.1 # mixed−l a y e r depth [m]
183 f i l t e r f r a c = 0 .5

185 # Domain shape and s l i c e s
gshape = domain . d i s t . g r i d l a y o u t . g l oba l shape ( s c a l e s=domain .

d e a l i a s ) # [ x , y , z ] d imensions o f f u l l domain
187 s l i c e s = domain . d i s t . g r i d l a y o u t . s l i c e s ( s c a l e s=domain . d e a l i a s ) #

takes domain s l i c e o f cur rent p roce s s ( f o r running in
p a r a l l e l )

189 # I n i t i a l i z e random no i s e g l o b a l l y
rand = np . random . RandomState ( seed =80)

191 no i s e = rand . standard normal ( gshape ) [ s l i c e s ]

193 # I n i t i a l i z e temperature
# Th : in top 4 .5 m, random no i s e o f magnitude 1e−4; o therw i se

zero
195 # Tl : in top 4 .5 m, background temperature o f T 0 + random

no i s e o f magnitude 1e−4; above MLD but below 4 .5 m,
background temperature o f T 0 ; below MLD, l i n e a r
s t r a t i f i c a t i o n from BV frequency

temp array l = np . z e r o s ( gshape ) [ s l i c e s ]
197 temp array h = np . z e ro s ( gshape ) [ s l i c e s ]

z v a l s = domain . g r id (2 , s c a l e s=domain . d e a l i a s ) [ 0 , 0 , : ]
199 for ind , depth in enumerate( z v a l s ) :

cu r r ent shape = temp array l [ : , : , ind ] . shape
201 i f depth > −4.5: # s u r f a c e with no i s e

rand no i s e = no i s e [ : , : , ind ]
203 temp array h [ : , : , ind ] = 1e−4 ∗ rand no i s e

t emp array l [ : , : , ind ] = T 0 ∗ np . ones ( cur r ent shape ) + (1 e−4
∗ rand no i s e )

205 e l i f depth > MLD: # with in mixed l a y e r
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t emp array l [ : , : , ind ] = T 0 ∗ np . ones ( cur r ent shape )
207 e l i f depth <= MLD: # s t r a t i f i e d deep ocean

dist from MLD = abs (MLD−depth )
209 T BV = − ( N 2∗dist from MLD ) /( alpha ∗g )

temp array l [ : , : , ind ] = ( T 0 + T BV) ∗ np . ones ( cur r ent shape )
211 Tl [ ’ g ’ ] = 1 .0 ∗ t emp array l

l o g g e r . i n f o ( ’ Beginning Tl f i l t e r ’ )
213 f i l t e r f i e l d ( Tl , f r a c=f i l t e r f r a c ) # apply f i l t e r to remove high−

f r equency components ( both Tl and Th have high−f r equency
random no i s e f o r GQL)

l o g g e r . i n f o ( ’ F in i shed Tl f i l t e r ’ )
215 Tl . d i f f e r e n t i a t e ( ’ z ’ , out=Tzl )

217 Th[ ’ g ’ ] = 1 .0 ∗ temp array h
l o g g e r . i n f o ( ’ Beginning Th f i l t e r ’ )

219 f i l t e r f i e l d (Th, f r a c=f i l t e r f r a c ) # apply f i l t e r to remove high−
f r equency components

l o g g e r . i n f o ( ’ F in i shed Th f i l t e r ’ )
221 Th. d i f f e r e n t i a t e ( ’ z ’ , out=Tzh)

223 # I n t e g r a t i o n parameters
s o l v e r . s top s im t ime = 7 8 .∗6 0 .∗6 0 .

225 s o l v e r . s t o p w a l l t i m e = np . i n f
s o l v e r . s t o p i t e r a t i o n = np . i n f

227

# Analys i s : f u l l s t a t e v a r i a b l e s
229 snapshots1 = s o l v e r . eva lua to r . a d d f i l e h a n d l e r ( ’ s t a t e v a r i a b l e s ’ ,

s im dt =21600. , max writes =10)
snapshots1 . add task ( s o l v e r . s t a t e [ ’ Tl ’ ] , l ayout=’ g ’ , name=’ Tl ’ )

231 snapshots1 . add task ( s o l v e r . s t a t e [ ’ u l ’ ] , l ayout=’ g ’ , name=’ u l ’ )
snapshots1 . add task ( s o l v e r . s t a t e [ ’ v l ’ ] , l ayout=’ g ’ , name=’ v l ’ )

233 snapshots1 . add task ( s o l v e r . s t a t e [ ’ wl ’ ] , l ayout=’ g ’ , name=’ wl ’ )
snapshots1 . add task ( s o l v e r . s t a t e [ ’Th ’ ] , l ayout=’ g ’ , name=’Th ’ )

235 snapshots1 . add task ( s o l v e r . s t a t e [ ’ uh ’ ] , l ayout=’ g ’ , name=’uh ’ )
snapshots1 . add task ( s o l v e r . s t a t e [ ’ vh ’ ] , l ayout=’ g ’ , name=’ vh ’ )

237 snapshots1 . add task ( s o l v e r . s t a t e [ ’wh ’ ] , l ayout=’ g ’ , name=’wh ’ )

239 # Analys i s : mean f i e l d s and c o r r e l a t i o n s
snapshots2 = s o l v e r . eva lua to r . a d d f i l e h a n d l e r ( ’ d i a g n o s t i c s ’ ,

s im dt =21600. , max writes =10)
241 # mean f i e l d s

snapshots2 . add task ( ’ u mean ’ , layout=’ g ’ , s c a l e s =1, name=’ u bar ’ )
243 snapshots2 . add task ( ’ v mean ’ , l ayout=’ g ’ , s c a l e s =1, name=’ v bar ’ )

snapshots2 . add task ( ’w mean ’ , l ayout=’ g ’ , s c a l e s =1, name=’ w bar ’ )
245 snapshots2 . add task ( ’T mean ’ , l ayout=’ g ’ , s c a l e s =1, name=’ T bar ’ )

# c o r r e l a t i o n s
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247 snapshots2 . add task ( ” i n t e g ( ( u l + uh) ∗( v l + vh ) , ’ x ’ , ’ y ’ ) /(Lx∗Ly)
” , layout=’ g ’ , s c a l e s =1, name=’ uv cor r ’ )

snapshots2 . add task ( ” i n t e g ( ( u l + uh) ∗( wl + wh) , ’ x ’ , ’ y ’ ) /(Lx∗Ly)
” , layout=’ g ’ , s c a l e s =1, name=’ uw corr ’ )

249 snapshots2 . add task ( ” i n t e g ( ( v l + vh ) ∗( wl + wh) , ’ x ’ , ’ y ’ ) /(Lx∗Ly)
” , layout=’ g ’ , s c a l e s =1, name=’ vw corr ’ )

snapshots2 . add task ( ” i n t e g ( ( u l + uh) ∗( Tl + Th) , ’ x ’ , ’ y ’ ) /(Lx∗Ly)
” , layout=’ g ’ , s c a l e s =1, name=’ uT corr ’ )

251 snapshots2 . add task ( ” i n t e g ( ( v l + vh ) ∗( Tl + Th) , ’ x ’ , ’ y ’ ) /(Lx∗Ly)
” , layout=’ g ’ , s c a l e s =1, name=’ vT corr ’ )

snapshots2 . add task ( ” i n t e g ( ( wl + wh) ∗( Tl + Th) , ’ x ’ , ’ y ’ ) /(Lx∗Ly)
” , layout=’ g ’ , s c a l e s =1, name=’ wT corr ’ )

253

# CFL cond i t i on
255 i n i t i a l d t = 1 .

CFL = f l o w t o o l s .CFL( so lve r , i n i t i a l d t=i n i t i a l d t , max dt =20. ,
s a f e t y =1.2 , max change =10. , cadence=1)

257 CFL. a d d v e l o c i t i e s ( ( ’ u l + uh ’ , ’ v l + vh ’ , ’ wl + wh ’ ) )
CFL. a d d v e l o c i t y ( ’ u s ’ , 0 )

259

# Flow p r o p e r t i e s
261 f l ow = f l o w t o o l s . GlobalFlowProperty ( so lve r , cadence=1)

f low . add property ( ’ Tl + Th ’ , name=’ Temperature ’ )
263 f l ow . add property ( ’ u l + uh ’ , name=’u−v e l o c i t y ’ )

f low . add property ( ’ v l + vh ’ , name=’v−v e l o c i t y ’ )
265 f l ow . add property ( ’ wl + wh ’ , name=’w−v e l o c i t y ’ )

267 # Elapsed i n i t i a l i z a t i o n time
e n d i n i t t i m e = time . time ( )

269 l o g g e r . i n f o ( ’ I n i t i a l i z a t i o n time : { : f } ’ . format ( e n d i n i t t im e−
s t a r t i n i t t i m e ) )

271 # Main loop
try :

273 l o g g e r . i n f o ( ’ S t a r t i ng loop ’ )
s t a r t r u n t i m e = time . time ( )

275 while s o l v e r . ok :
dt = CFL. compute dt ( )

277 s o l v e r . s tep ( dt )
i f ( s o l v e r . i t e r a t i o n −1) % 20 == 0 :

279 l o g g e r . i n f o ( ’ I t e r a t i o n : {} , Time : { : e } , dt : { : e} ’ . format (
s o l v e r . i t e r a t i o n , s o l v e r . s im time , dt ) )

l o g g e r . i n f o ( ’ Max/Min T = { : f } , { : f } ’ . format ( f low .max( ’
Temperature ’ ) , f low .min( ’ Temperature ’ ) ) )

281 l o g g e r . i n f o ( ’ Max/Min U = { : f } , { : f } ’ . format ( f low .max( ’u−
v e l o c i t y ’ ) , f low .min( ’u−v e l o c i t y ’ ) ) )
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l o g g e r . i n f o ( ’ Max/Min V = { : f } , { : f } ’ . format ( f low .max( ’ v−
v e l o c i t y ’ ) , f low .min( ’ v−v e l o c i t y ’ ) ) )

283 l o g g e r . i n f o ( ’ Max/Min W = { : f } , { : f } ’ . format ( f low .max( ’w−
v e l o c i t y ’ ) , f low .min( ’w−v e l o c i t y ’ ) ) )

except :
285 l o g g e r . e r r o r ( ’ Exception ra i s ed , t r i g g e r i n g end o f main loop . ’ )

raise
287 f ina l ly :

end run t ime = time . time ( )
289 l o g g e r . i n f o ( ’ I t e r a t i o n s : {} ’ . format ( s o l v e r . i t e r a t i o n ) )

l o g g e r . i n f o ( ’ Sim end time : { : f } ’ . format ( s o l v e r . s im time ) )
291 l o g g e r . i n f o ( ’Run time : { : . 2 f } s ec ’ . format ( end run time−

s t a r t r u n t i m e ) )
l o g g e r . i n f o ( ’Run time : { : f } cpu−hr ’ . format ( ( end run time−

s t a r t r u n t i m e ) / ( 6 0 . ∗ 6 0 . ) ∗domain . d i s t . comm cart . s i z e ) )
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