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NATHANIEL DIcK 1 AN INTRODUCTION TO COSMOLOGY

1 An Introduction to Cosmology

The study of the large-scale structure of the universe is one that has always fascinated
cosmologists. Since the beginning of human existence, people have been staring to
the heavens and contemplating the cosmos. Indeed, we have come far in our un-
derstanding of the universe. From Copernicus to Einstein, physicists have combined
mathematical tools with physical insight to explain our experimental observations
of the stars. These innovations in cosmology have culminated in the theory today
known as the Standard Model.

The Standard Model is a powerful cosmological model that explains key properties
of universe. It will provide the foundation for the theory that we will develop later in
this paper. My goal in this section is to introduce the Standard Model and outline
some of its important physical consequences. We will focus in particular on the
smooth expansion of the universe predicted by the Standard Model.

1.1 The Smooth, Expanding Universe

The expansion of the universe is a well-documented fact. There is ample evidence to
suggest the distance between two points in the universe grows with time. To quantify
this effect, we employ a scale factor a(t). The scale factor relates the coordinate
distance to physical distance in the expansion of the universe. If we represent space in
the universe as a coordinate grid, then the co-moving distance is the distance between
two points on the grid. This distance remains constant. The physical distance,
however, is the co-moving distance between two points multiplied by the scale factor.
Thus, the scale factor quantifies the expansion of the universe. It expands in time,
allowing us to convert coordinate distance into the physical distance of the universe.
By convention, the value of the scale factor today is set to unity.

An important distance scale that relates to the scale factor is conformal time.
Conformal time is defined as the co-moving distance that light could travel in a given
time interval. By convention, the speed of light is set to 1. Thus, the physical distance
light travels is dry = dt in a time interval dt. The co-moving distance light travels
dxy = adxry where dxy is the infinitesimal co-moving distance. Thus, the co-moving
distance light travels in an infinitesimal time interval dt is equal to dzy = dt/a. The

total conformal time is given by
t
dt
0= )
o alt)

This is a very important distance because no information can travel faster than the
speed of light. Conformal time creates cone of causality. Any two points separated by
a co-moving distance greater than 7 cannot be causally connected. Points within the
cone of causality can communicate, those outside of it cannot. For this reason, con-
formal time is understood as a co-moving horizon. We will often employ of conformal
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time as a substituted time parameter to simplify equations later in this paper.

The universe does not expand at a constant rate. The evolution of the scale factor
is a complicated function of time. It is useful to introduce the Hubble rate H (t), which
quantifies how the scale factor evolves with time. The Hubble rate is defined by

a
H(t)=- 2
t)="2 &)

The Hubble rate quantifies how the scale factor evolves in time. It has units of
571 and is by definition intimately connected to the expansion of the universe. The
Hubble rate is a useful quantity in probing the age of the universe.

To understand the smooth, expanding universe, it is necessary to have a grasp
of the underlying physical processes that govern its expansion. General relativity is
just one of these essential processes in cosmology. It relates gravity, whose source
is matter and energy, to the structure of space-time in the universe. With general
relativity, we are able to describe the expansion of the universe by considering the
matter and energy density of the universe.

General relativity has two important axioms. The first is that gravity is incorpo-
rated into the structure of space-time and can be described by a metric. The metric
converts coordinate dependent quantities into invariants.

ds® = g, dxtdx” (3)

Here, ds? represents the invariant interval or proper time, and dz* represents a 4-
dimensional coordinate point. The first coordinate is time, and the last three are
space coordinates. g, is the metric. Again, it converts coordinate intervals that are
frame dependent into invariant intervals. This is a necessity in an expanding universe
that does not have globally consistent measurements of time and space. The metric
given by the Standard Model is

-1 0 0 0
o @ o o

=10 0 @@ o0 @)
0 0 0 a)

This is known as the Friedman-Robertson-Walker (FRW) metric. This metric encodes
the expansion of the universe. Using equation 2, it says the physical distance between
two points at a time t is the coordinate distance times the scale factor. This is precisely
the relationship we discussed when we introduced the scale factor.

The second axiom of general relativity relates the metric to the matter and energy
density of the universe. These relations are given by Einstein’s equations

G = 87GT), (5)

G, is a complicated function of the metric known as Einstein’s tensor. G is Newton’s
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constant, and 7}, is the energy-momentum tensor. It encodes the energy density and
the pressure of the different matter and energy constituents of the universe. In the
Standard Model, the energy-momentum tensor is modeled as a perfect isotropic fluid.

—p 0 0 0
0 P00

Tw=10 0 P 0 ©)
0 00 P

p is the energy density and P is the pressure of the fluid. This is a very simplified
version of the energy momentum tensor. It is equivalent to assuming the universe is
smooth and homogeneous. In later section, we will complicate this assumption and
introduce perturbations to the energy-momentum tensor. Nevertheless, the Standard
Model is a useful place to begin our discussion of the structure of the Universe. The
tensor is diagonalized, which simplifies the mathematics while still providing valuable
physical insight.

The relationship between energy density and the metric is incredibly powerful. It
allows us to predict the evolution of the scale factor by considering the energy density
of the universe. In fact, if we input the FRW metric and the energy-momentum tensor
into Einstein’s equation, we arrive at a two very significant cosmological equations

rG

() = —=p(t) (7)
Z+%H%w:—MGP (8)

General relativity has enabled us to relate the Hubble rate with a functions of
the energy density of the universe and the cosmic pressure. We have mathematically
connected the dots between the expansion of the universe and the evolution of its
energy density. This equation gives us a powerful base from which we can delve into
the expansion and structure of the universe.

1.2 Cosmic Constituents

General relativity underscores the fundamental role the energy density plays in deter-
mining the cosmology of the universe. Indeed, the total energy density determines the
curvature of the universe. Using general relativity, we find the universe has an energy
density threshold known as the critical density. If the energy density is greater than
the critical density, the universe is closed. Particles traveling along parallel paths
will eventually converge. If the total energy density is less than the critical density,
the universe is open. Particles travelling along parallel paths will eventual diverge,
as if falling off a saddle. If the total energy density is equal to the critical density,
then particles travelling along parallel paths will remain parallel. The critical density
underscores the fundamental role that energy density plays in cosmology. In this
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section, we will outline the cosmic constituents of that make up the energy in the
universe. They fall under three board categories: matter, radiation, and dark energy.
Matter is composed of dark matter and baryonic matter. Radiation is composed of
photons and neutrinos. Dark energy is a relative unknown, but seems to act as a
cosmological constant. We will examine each of these forms of energy and explore
how their energy density changes in a homogeneous universe.

Before we continue our discussion of cosmic constituents, we must state some
conventions. We assume the energy densities of all the cosmic constituents sum to
the critical density, equivalent to assuming the universe is flat. We will also employ
the variable €2;. It is defined as the ratio of the energy density of the ith cosmic
constituent to the critical density. Note the ratios of the different energy densities
will vary with time. €); is defined in terms of the present day value of the energy
densities.

pC’/’
Although the ratios of the different energy densities will vary with time, they will
always sum to the critical density (the critical density will actually also change with
time, but for the universe to remain flat, the different energy densities must always
sum to the critical density no matter the age of the universe). With the aid of these
conventions, we now turn to the specifics of matter and radiation energy density in
our universe.

1.2.1 Matter

Nonrelativistic matter is the cosmic constituent with which we are most familiar. As
discovered by Einstein, the energy of a nonrelativistic particle is equal to its rest mass.
So long as the particle remain intact, this energy is unchanged. The total energy in
the form of matter is equal to the total number of massive particles times their rest
mass energy. The energy density of matter is therefore equal to the number density
of the particles multiplied by their rest mass.

P (t) = me (10)

The above equation shows the number density of the massive particles is inversely
proportion to the volume they inhabit. As the universe expands, the number density
of the massive particles decreases. The volume of the universe expands with the cube
of the scale factor, so the number density goes as a=3. The rest mass energy remains
constant. Thus, the energy density of matter is inversely proportional to the cube of
the scale factor.

P(t) o< = (11)
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By relating the energy density of matter to the scale factor, we have just derived how
the matter density evolves in the universe. This is an important result. To utilize the
Friedman equation we must know how the energy density evolves in time.

Matter itself can be divided into two groups - baryonic matter and dark matter.

Baryonic matter is the matter that we interact with every day. It is made of atoms
whose fundamental components are protons, neutrons, and electrons. An important
property of baryons is that they interact with some of the other cosmic constituents.
Not only are baryons connected to the other cosmic constituents through the metric,
but electrons are connected to photons through a process known as Compton scat-
tering. In this process, a photon and electron bounce off of each other exchanging
momenta and energy. In the early universe, when it was very dense and hot, electrons
and protons existed in equilibrium because of Compton scattering. Once the rate of
this process dropped below the Hubble rate as the universe expanded, photons and
electrons fell out of equilibrium. They still interact today, just not at the rate re-
quired to maintain a chemical equilibrium. Baryons are a complicated form of energy
to study. As a result, the energy density of the baryons must be measured imperially.
It has been found that baryons contribute roughly two percent of the critical density.

Q) ~ 0.02 (12)

The other form of nonrelativistic matter in the universe is dark matter. Dark matter
gets its name because, unlike baryonic matter, it does not interact with light. This
makes dark matter somewhat tricky to study. Most cosmological experiments rely
upon electromagnetic radiation to garner information about the universe, but these
techniques do not work for dark matter. Instead, the presence of dark matter is
probed using gravity. Discrepancies between the visible matter in the galaxies and
the strength of their gravitational fields points towards dark matter. Leading models
have estimated that dark matter is somewhere around thirty percent of the critical
density, roughly five time the amount of baryonic matter

Dark matter is distinct from baryonic matter and must have a different particulate
nature. The leading candidate for a dark matter particle is known as the Weakly
Interacting Massive Particle, or WIMP. These WIMPs are hypothesized to have been
produced very shortly after the Big Bang They are relics of the early universe. When
the universe was very hot, the dark matter particles existed in equilibrium with the
cosmic plasma. However, very early on, when the temperature of the universe dropped
below the mass scale of the WIMPs, the WIMPs froze out. This means they were no
longer in equilibrium with the cosmic plasma.

We can use Boltzman statistics to probe the relic abundance of dark matter parti-
cles at the time of the freeze out. If we know the abundance of dark matter particles
when the fall out of equilibrium with the cosmic plasma, it is straightforward to de-
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termine their abundance today. This knowledge combined with the empirical data
that QpM =~ 0.02 allows us to gain insight into the fundamental properties of the
dark matter particle, like its cross section and mass.

We will not delve much into the formalism of the Boltzmann statistics. It is
highly technical and tangentially related to the purpose of this paper. Instead, we will
roughly sketch its logic. The Boltzmann equation relates the change in the number
density of a particle over time to its creation and annihilation rates. The creation and
annihilation rates are in turn related to the number density and equilibrium number
density of the particle. The equilibrium number density is the density a particle would
have if it remained in equilibrium with the cosmic plasma. It is defined as zero order
number density with no chemical potential, equivalently

d3p
0 = —B/T 14
=0 | Gy .

To greatly simply the rest of a complicated derivation, we end up with a differential
equation relating the change in the number density of the particle to a function of its
number density and equilibrium number density. For WIMPs, this equation becomes

_gd(nxa®)
3—
T u

Here, ny is the number density of the WIMPs, nx(® is the equilibrium number
density of the WIMPs. The term in the brackets is a thermally average cross section.
It is necessary to determine the creation and annihilation rates of the dark matter
particles.

To fully solve differential equation requires some rigorous mathematics that we
will avoid. However, the intuition of the solution is not difficult to understand if
we note the equilibrium number density is usually damped by an e~ 7 term. Thus,
the equilibrium term drops out of the equation at late times. This leaves us with a
different equation only in nx, which we can integrate from freeze out until late times.
The result is

= (o0)[(nx)? — nx’] (15)

nx(OO) - mpwm
.2 T
nx(0o0) gives the number density of WIMPs at very late times. \ is a term related
to the thermally averaged cross section of the WIMPs. This equation, when input
with the appropriate values, gives a relatively good approximation of the abundance
of the WIMPs today. When this relic abundance is related to the energy density of
dark matter, we can derive a value for the cross section of the WIMP particles. The
best estimate using this method is 1073%¢m?. This value is in reasonable agreement
with the cross section of massive particles predicted in theoretical models.
A final important property of dark matter is that it plays a key role in the large
scale structure of the universe. So far, we have assumed that the universe is homo-

(16)
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geneously distributed. We will see in later section that inhomogeneties do exist on
smaller scales. Dark matter is an important source of these inhomogeneties. Because
dark matter particles froze out of equilibrium at such an early time, the attractive
force of gravity clumped the particles together. These clumps are an important source
of the inhomogeneous structure of the universe, which we will explore in more depth
later in this paper.

1.2.2 Radiation

Relativistic radiation is a less familiar cosmic constituent than matter. It is composed
of photons and neutrinos zooming around at high speeds in the empty vacuum that
is space. These particles have no mass and travel as waves. Their energy is inversely
proportional to their wavelength.

he
E, =— 17
x a7)

The energy density of radiation is the number density of these particles times the
energy of the particle.

he
— = 1
= (18)

Here, n, is the number density of the radiation particles. We would like to know how
the value scales as the universe expands. As with matter, the number density of the
radiation particles must scale as a=2. The number density is inversely proportional to
the volume. As the universe expands, its volume goes as the cube of the scale factor.
What differentiates the evolution of radiation from matter is the evolution of the en-
ergy of its particles as the universe expands. The rest mass energy of massive particles
remain constant; this is not true of relativistic particles. The energy of relativistic
particles is inversely related to the wavelength. As the universe expands, radiation
undergoes the peculiar phenomenon that its wavelength grows proportionally to the
expansion of the universe. On the co-moving grid, the wavelength of radiation is
constant, but the physical distance of the wavelength increases as a(t). This causes
the energy of the radiation to decreases as a~! as the universe expands. The energy
density of radiation is inversely proportional to the fourth power of the scale factor.

1
Pr X E (19)
As the universe expands, the energy density of radiation decreases faster than the
energy density of matter by a factor of a=!. Whereas matter contributes roughly 30
percent of the critical density today, radiation contributes something to the order of
0.01 percent of the critical density.

Q, ~847x107° (20)
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Because the matter density is so much larger than the radiation density, we say
today we are in a matter dominated era. This claim is complicated by the possi-
ble presence of dark energy, which we will discuss briefly. It is generally accepted,
however, that we are living in a matter dominated era because the energy density of
matter so greatly outweighs the energy density of radiation. This was not always the
case. Indeed, the early universe was radiation dominated.

Moving forward in time, the energy density of radiation decreases faster than
the energy density of matter. If we move backwards in time, the energy density of
radiation increases faster than matter. Thus, if we move far enough back in time
to the early universe, the energy density of radiation will greatly outweigh that of
matter. We can infer that the cosmic plasma of the early universe, when the cosmic
constituents were in equilibrium and the temperature was very hot, the energy density
was dominated by radiation.

If the early universe was dominated by radiation energy, and today the universe
is dominated by matter energy, then there must have been a time period sometime
in between when the energy density were roughly equal. This period is known as
the epoch of matter-radiation equality. It is useful to known the time the equality
occurred because inhomogeneities in the universe grow at different rates before and
after. Thus, the epoch of matter-radiation equality has consequences on large-scale
structure of the universe.

We can calculate the value of the scale factor at the time of matter-radiation
equality, denoted a.q, by noting how the energy density of matter and radiation vary
with the scale factor.

Pr = Qrpcra_4 (21)

Pm = Qmﬂch_B (22)

Setting these two equations equal and solving for the scale factor yields:

Q,
e 2.8x107* (23)

m

Just like matter, radiation can be divided into two groups - photons and neutri-
nos. Photons are the particles of electromagnetic radiation, or the particles of light.
Neutrinos are a theoretical Fermi-Dirac particle that have never been observed ex-
perimentally. They are, however, a commonly proposed particle in most theoretical
models.

We will begin our discussion of radiation starting with photons. A powerful way
of exploring the properties of photons is to model it as a cosmic gas. Unlike our
discussion of matter, we are able to describe photons as a gas who distribution is
defined by its temperature and chemical potential. We can employ the occupation
function of statistical mechanics to find the energy density and pressure of photons.

10
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The occupation function of a species describes the number of particles within of
phase space region of position and momentum. The occupation function gives the
distribution of particles along the position and momentum axes.

Photons are a Bose-Einstein particle, meaning they have integer spin. Their oc-
cupation function is therefore given by

1
feE = [y = SE-/T _ 1 (24)

Here, E is the energy of the photon, p is the chemical potential, and T is the tem-
perature. We can simplify this occupation function further by noting the chemical
potential of photon is zero. This is a consequence of the fact that the photon num-
ber was not conserved in the early universe. This assumption has also been verified
empirically.

A final note on the occupation function is in order. Because the energy of a
photon is equal to the magnitude of its momentum, the occupation function we just
described only depends upon the magnitude of the momentum. This is a consequence
of a homogeneous, smooth universe. When we examine the inhomogeneities of the
universe, we will have to perturb the occupation function. This perturbation will
depend on the magnitude and direction of momentum and position.

Once we know the occupation function of photons in the universe, it is straight-
forward to calculate both the energy density and pressure of the photons. To find the
energy density, we must integrate the occupation function times the energy E(p) of
a photon over all possible momentum states. To find the pressure, we must integrate
the occupation function times p?/E(p) over all possible momentum states. A factor
of three must appear in the denominator to account for the 3 possible directions of
pressure. Thus, the energy density and pressure are given by

d*p p
Py =2 / (@r)? @/ — 1 (25)
d3p p2
P =2 26
=2 [ e (26)

The factor of two in the equations account for the degeneracy in the spin of a photon
(two spin states). An immediate and obvious consequence of this formalism is that

p
P7:§7 (27)

The second and perhaps more important consequence of this statistical mechanics
formulation is that the energy density of photons can be expressed as a function
of temperature. The above integrals can be evaluated. The integral for the energy

11
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density yields

™ _,
Py = BT (28)
We know the energy density of radiation scales as a=*. Thus, we have just shown that
the temperature is inversely proportional to the scale factor in a smooth, expanding
universe.

Before we go about evaluating equation 28 by inputting the temperature of pho-
tons today, we must know something about the Cosmic Microwave Background
(CMB). The CMB is the source of the photon energy density of the universe. It
is comprised of photons that fell out of equilibrium with the cosmic plasma in the
very early universe. This process is known as decoupling. The only other cosmic
constituent that interacts with photons are electrons. Photons last scattered off of
electrons when the scale factor was roughly 9x10* times smaller than it is today.
Thus, the photon decoupling happened very early on in the life span of the universe.
Since then, photons have been travelling freely through space in the CMB.

Studies of the CMB offer a powerful look into the early structure of the universe.
Indeed, it was by studying the CMB that led physicist to hypothesize that the universe
was smooth and homogeneous. They observed the CMB to be isotropic, suggesting
that the universe had been that way dating back to the very earliest epochs. Only
recently have studies begun to find small anisotropies in the CMB. We will touch
upon this topic when we discuss perturbations to the smooth universe.

Physicists have measured the present day temperature of the CMB to be T' =
2.725 £ 0.0002K. Plugging this temperature into equation, we arrive at a value for
the energy density of photos in the universe. Today, photons make up roughly 0.005
percent of the critical density.

Q, ~5.04x107° (29)

Neutrinos are the second component of radiation in the universe. Neutrinos, like
dark matter, are difficult to observe experimentally because they do not interact
with electromagnetic forces, but it is still useful to work through its energy density
and pressure as we did with photons. Just like photons, we can model neutrinos
as a cosmic gas with temperature and zero chemical potential, and use statistical
mechanics to evaluate the energy density and pressure.

The first step is to identify an occupation function for the neutrinos. Neutrinos
are Fermi-Dirac particles with zero chemical potential, and as a result have a slightly
different occupation function, given by

1
Jeo=Jv = iy

Now that we have the occupation function, we can apply formalism we developed with
the photons to neutrinos. The equations for finding the energy density and pressure

(30)

12
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are the same, with the neutrino occupation function substituted photon one. These
equations are given by

Pp  p
v = 6/ (2m)? /D) 4 1 (1)

d’p P’
B=0 / @n)? 3p @D + 1] (32
The equations are strikingly similar to those of the photons. Just like photons, neu-
trinos are massless and relativistic, and their energy is equal to the magnitude of their
momentum. Also just like photons, the pressure exerted by the neutrinos is equal
to a third of the energy density. We have just shown that for all forms of radiation
P =p/3.

The differences between equation 31 and 25 arise in the prefactor and the occu-
pation function. The difference in the occupation function occurs because neutrinos
are Fermi-Dirac particles. The prefactor occurs because neutrinos have a spin degen-
eracy of two, and there are three generations of neutrinos. This means the overall
degeneracy factor of the neutrinos is 6.

These equations are integrable. The result we find for the energy density of
neutrinos is

B ™,

Pv = 40 "V

It is important to note that the temperature of the neutrinos is not the temperature of

the CMB. Neutrinos fell out of equilibrium with the cosmic plasma before the photons.

Within this time period, electron positron annihilation occurred. This annihilation

released energy into the plasma and raised the temperature of the photons. The

neutrinos missed this heating process. Furthermore, there is no empirical temperature
upon which we can draw.

We are saved because we can relate the temperature of the neutrinos to the tem-
perature of the photons through the entropy of the universe. The entropy scales as
a3 and is therefore proportional to the cube of the temperature. Before the positron
electron annihilation, the entropy is given by

(33)

4372 73
90

Here T is the temperature of the plasma before annihilation. The plasma contains
both neutrinos and photons. Directly after annihilation, the entropy is given by

s(ay) = (34)

272
—I

s(ay) = T 2T, +5.25T,7° (35)

Setting these two equation equal to each other, we are able to solve for the temperature

13
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of the neutrinos in terms of the photon temperature.

Fo()”

Y
Combining equations 33 and 36 with our knowledge of the present day photon tem-
perature, we are able to find a value for the neutrino energy density. It comes about
to be about 0.003 percent of the critical density.

Q, ~3.43x107° (37)

Dark energy is the last form of energy in the universe. We do not know much about
it, but there are two compelling reasons to believe in its existence. First, the energy
densities of matter and radiation do not sum to the critical density. If the universe is
flat, and there is good evidence to suggest that it is, then there must be a third form
of energy that fills this gap. The second comes from plotting theoretical distance
versus redshift curves. The redshift z of light quantifies how much its wavelength has
increased in the time after it was emitted until it was observed due to the expansion
of the universe. It is defined in the below equation

)\emit 1
1 = = - 38
T2 )\obs a ( )

As can be seen by the its relation to the scale factor, the redshift is also a measure
of how old light radiation is. The higher the redshift, the earlier in the universe the
light was emitted.

Using the redshift parameter, we can create distance versus redshift curves that
depend upon the composition of energy in the universe. For different theoretical com-
positions energy, the universe will expand at different rates (from equation 7) leading
to distinct distance versus redshift curves. Cosmologists have equation experimental
data to test these theoretical curves. The curve that fits the experimental data best
incorporates a dark energy component.

With these two compelling pieces of evidence, it is not hard to accept that dark
energy exists. But that does not bring us any closer to understanding what it is.
Indeed, there is not much scientific consensus on what dark energy is. A popular
theory is that dark energy acts as a cosmological constant. As the universe expands,
its energy density remains constant. Another theory is that dark energy can be
described as a time dependent scalar field. Neither of these theories have much
evidence to support them, however, so dark energy remains a mystery. The only
concrete property of dark energy that we can point to is that must have negative
pressure. This must be true if the universe is flat.

14
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2 Perturbations to the Smooth Background

In the previous section, we have discussed the cosmology of a smooth expanding
universe. We outlined a fairly simple metric that could encode both gravity and the
expansion of the universe, the Freidman-Robertson-Walker metric. It depended only
upon the scale factor, and even then only the spacial components depended upon it.
We assumed a homogeneous distribution of matter and an isotropic distribution of
the radiation in the universe.

This smooth model of the universe led to important cosmological insights. We de-
veloped notions of the scale factor, conformal time, and the Hubble rate. We derived
the evolution of matter and radiation energy density in the universe. But while assum-
ing the universe to be smooth is a useful starting point, it is an ultimately the flawed
model. Matter has is not distributed evenly throughout our universe, and anisotropies
in the Cosmic Microwave Background have been experimentally observed. The uni-
verse is very smooth, but there exist small perturbations to the general smoothness;
very important physics emerges from a study of these perturbations.

In this section, we complicate our smooth model of the universe. We add perturba-
tions to the metric to account for slight changes in gravity, and we add perturbations
to our models of radiation and matter to account for slight irregularities in their
distribution. Our ultimate goal will be to develop a theoretical prediction for the
inhomogeneous distribution of matter in the universe. To achieve this will require a
long process, and accordingly this section is broken into two parts. First, we derive
the Boltzmann-Einstein equations, a set of six differential equations, that couples the
evolution of the different perturbations (metric, matter, and radiation perturbations)
to first order. Second, we use the theory of inflation to arrive at the initial conditions
of the Boltzmann-Einstein equations.

2.1 The Boltzmann-Einstein Evolution Equations

Before we venture into the Boltzmann-Einstein formalism, we need to know what
changes we are actually adding to our cosmological models. We will define first the
perturbations to the metric, then to matter, and finally to radiation. Each will have
two perturbation variables. With these definitions in place, we can begin relating
their coupled evolution. It is important to know that these perturbations are all
assumed to be small on cosmological scales, for the universe is generally smooth.
When we work through the formalism, we will only keep terms that are first order in
the perturbations.

The variables that are needed to perturb the FRW metric are the Newtonian
potential (¥) and a spacial curvature (®) perturbations. These two variables both
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depend upon space and time. The new gravitational metric is given by

—1-2v 0 0 0
B 0 a*(t)[1 + 29] 0 0
I = 0 0 a2(1)[1 + 2] 0 (39)
0 0 0 a2(H)[1 + 2]

In our convention, ¥ < 0 represents a region with above average gravitational po-
tential, accordingly a region with greater than average mass (over-dense). ® > 0
represents a region with above average spacial curvature, also an over-dense region.
In the limit in which our perturbations go to zero, this metric simplifies to the FRW
metric that characterizes a smooth, expanding universe. In this absence of the scale
factor, this metric describes a weak gravitational field. W is the weak gravitational
potential of some source mass, and ® is the spacial curvature caused by the source
mass. These limits corroborate our choice of perturbation variables.

A final note on our choice of perturbations to metric a the perturbations we
have added to the FRW metric are scalar perturbations. Because the metric is still
diagonalized, the perturbations qualify as a scalar perturbations. Vector and tensor
perturbations to the metric are possible; they would affect the off-diagonal terms
of the metric. Because of the decomposition theorem, however, scalar, vector, and
tensor perturbations cannot interact with each other. Thus, we choose to focus on
scalar perturbations because they have the greatest effect on the development of
inhomogeneities and anisotropies in the universe.

Next come the perturbations to the matter distribution. Given an average density
of matter in the universe n,,, we define the first perturbation variable d(x) to be
n(Z) — ny,

5(Z) = (40)

nm
Thus d(z) characterizes the over- and under-densities of matter at a given position x
in the universe.
To define the second perturbation variable to matter, we first need a notion of
a matter distribution function f,, analogous to that of radiation. We can define it
implicitly by

This immediately leads to the definition of the second perturbation variable v

i L[ P fuxpt

nm ) (27)3 FE

This perturbation variable v is known as the matter velocity. In an inhomogeneous
universe, over-dense and under-dense regions of energy will induce cohesive flows in

(42)
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the matter. We understand this cohesive flow of matter as the distribution’s velocity,
and it is the second variable we need to perturb our homogeneous model.

These perturbation variables, § and v, are usually reserved to describe the over-
densities and velocities of dark matter. We can define exactly analogous variables
for baryons 0, and v,. We will ignore the contributions of the baryonic perturbations
to the overall matter distribution. This is justified because baryons make up a very
small portion of the total matter in the universe; most of it is dark matter. It will also
help us to simplify the Boltzmann equations when we solve for the inhomogeneities
in the distribution of matter.

The final perturbations are those to the radiation distribution. Isolating two
distinct (but simple) perturbation variables for radiation is more difficult than in the
previous two cases. We begin by defining a perturbation to the photon distribution
function. Recall that photons are Bose-Einstein particles, so

-1

o) = [eor |y ] 1| o
where T is the temperature of the CMB. Thus, the perturbation characterizes small
changes to the photon distribution’s temperature. These perturbations depend upon
not only the age of the universe, but also the direction and position of the photon
distribution. The perturbation does not depend upon the magnitude of the pho-
ton’s momentum because the momentum remains almost unchanged after Compton
scattering.

We will see that this perturbation to the distribution function quickly becomes
messy, and it is useful to break down the perturbation © in terms of its poles. In
fact, it will only be necessary for us to keep the monopole and dipole terms of the
photon distribution. These two terms, which we will define exactly later, act as our
perturbation variables for electromagnetic radiation.

We will justify dropping the higher moments more rigorously using Boltzmann
statistics, but there is a simple physical intuition that undergirds the result. Before
recombination, photons were tightly coupled to electron. This mixture of particles
acted as a cosmic fluid. This simple cosmic fluid can be described completely with
only the monopole and dipole moments of the photon perturbation. Compton scat-
tering, which couples photons and electrons, suppressed the higher order moments.
The higher moments of the photon perturbation do become important in describing
the photon distribution after recombination, but recombination occurs well into the
matter dominated era. Thus, the higher moments of the photon perturbation only
start to matter once the radiation energy density has become negligible. The higher
order moments of the photon perturbation will therefore not have an effect on the
matter distribution in the universe.

We can define an exactly analogous perturbation to the distribution function
of neutrinos. For this perturbation as well, we will assume the higher moments of
the perturbation are negligible and focus on the monopole and dipole terms. These
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two terms are exactly analogous to the two photon perturbation terms. We will
focus our discussion on the evolution of photon perturbations. We will see that the
Boltzmann equations that emerge for photons will be the same for neutrinos. Indeed,
we will eventually lump the photon and neutrino perturbations together as radiation
perturbations.

2.1.1 Boltzmann Equations for Radiation

Now that we have a list of all the perturbation variables, we can begin to derive
the Boltzmann equations that their evolution as the universe expands. This is a
complicated task because of how all the different cosmic constituents interact. To
systematically account for the interactions amongst different species, we must relate
the evolution of the distribution function to the collision terms of each species. We
start with the unintegrated Boltzmann equation

df
2 =l (14)
We will solve this equation for dark matter and photons. The evolution of neutrinos
will follow from our discussion of photons. We begin with photons.
We first consider the left-hand side of equation, and rewrite the total time deriva-
tive as a sum of partial derivatives over time, position, and momentum. It becomes

df _of ~ofdx’ Ofdp
dt ot or di +(9pdt
where we have ignored the term that involves the momentum unit vector. This term
will necessarily be second order in the photon perturbation, and we are interested
only in first order terms. _
We can use general relativity to solve for % and % coefficients of the partial
derivatives. The square of a photon’s four momentum is zero. Examining the spacial
components of the photon’s four momentum immediately leads to

(45)

det P ; 1—-d P
dt PO _pap(l—\If) Ca
If we remember our conventions, the above equation suggest that photons slow down
upon entering an over-dense region. This agrees with our physical intuition. Never-
theless, this term multiplies g gfi, which is first order, so we must drop the & and ¥
terms.

Evaluating the time component of the momentum geodesic equation and keeping
only first order terms leads yields a result for dp/dt

(1+ 0 — ) (46)

dpl I 0P p'ov

dtp ot a 0x'

(47)
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This differential equation accounts for the change in the momentum of a photon in
perturbed, expanding universe. The first term in the equation accounts for a photon’s
loss of energy (and momentum) in an expanding universe. The second term accounts
for a photon’s loss of energy as it passes through a deepening potential well, while
the third term says that a photon traveling into a potential well gains energy through
gravity. Again, these results match our intuition of how gravity effects light.

To fully expand the left-hand side of equation 45, we must deal with the perturbed
Bose-Einstein distribution function of photons given in equation 24. We are interested

in terms expanded to zero and first order in ©. The appropriate expansion is given
by

0

RSy (48)
0
where f© is the zero order BE distribution given in equation 24.

With equations 46, 47, and 48, we now have all the tools we need to expand the
left-hand side of the unintegrated Boltzmann equation to zero and first order in the
relevant perturbation variables. We are interested in comparing the expanded version
of the unintegrated Boltzmann equation to derive the differential equations that guide
our perturbation variables. Thus, the zero order terms will not be very useful. By
definition, the zero order terms are unaffected by the perturbation variables. Further-
more, the zero order collision term of the Boltzmann equation vanishes. Compton
scattering between photons and electrons are the source of the collision term. As we
noted early, photons and electrons exist in equilibrium in the cosmic plasma during
the radiation-dominated era. Because this process is in equilibrium at zero order, it
will drive the corresponding collision term to zero. No useful information is gained
about the evolution of our perturbation. To derive our guiding equation, we must
investigate the first order terms of the Boltzmann equation.

Although the zero order collision term of the Boltzmann equation was zero, the
first order term will not be. The collision term incorporates the effect Compton
scattering will have upon the photon distribution. Compton scattering is the process
by which an electron and a photon collide and exchange momentum:

e (q) +7(p) < e (¢") + (") (49)

To turn Compton scattering into an expression for the change in the distribution
function of a photon, we need a few ingredients from Boltzmann statistics. First
of all, energy and momentum must be conserved in the scattering process. Second,
the change in the distribution function is related to the production rate of photons
(7(p)) minus the loss rate of photons (y(p)). From the schematic equation above,
the production rate must be proportional to f.(q")f,(p') while the loss rate must
be proportional to f.(¢)f,(p). Third, the effect of the Compton scattering will be
related to its quantum mechanical amplitude M, which is related to the cross section
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of the interaction. Finally, we must sum over all possible momentum states of each
particle. Putting these ingredients together, we arrive at an equation for the Compton
scattering collision term.

1 dqd3qt dPpt | M |? 5
Clf(p)] = ]—3/ SE.(q) B B~ () (27)F x8p+q—p —q']

X O[Ey(p) + Ee(q) — By(p") = Ee(gD] x [fe(a") (") = fel@) f5(p)] (50)

The above formula incorporates all of the Boltzmann statistics we outlined above
into an equation for the Compton scattering collision term. The delta-Dirac functions
ensure conservation of energy and momentum. The | M |? term accounts for the quan-
tum mechanical amplitude of the process. The last term accounts for the production
and loss rates. We have ignored Bose enhancement and Pauli exclusion because those
will only affect the distribution to second order. Equation 50 simplifies drastically
when we plug in the appropriate distribution functions and expand to first order. It
reduces to

(0)

CU) = 2 neon(00 - 65) + - vlOu(e.t) = = [dtelh ) (51)
A few notes on the above equations. First, the n.or term comes from the quantum
mechanical amplitude; n. is the free electron density and or is the Compton cross
section. Second, Oy is defined as the monopole moment of the photon perturbation.
This term, along with the dipole, will be crucial in simplifying the perturbation, as
we noted earlier in this section.

We can now equate the first order parts of the left and right-hand side of the
Boltzmann equation. Substituting in conformal time 7 as our time variable, the
equation becomes

C;)—I—ﬁa@. +<b+ﬁi—qj.:axneaT[@o—@+ﬁ-ve] (52)
ox’ ox’

This is the final result towards which our formalism regarding the photon pertur-
bation has been building. We have a differential equation coupling the evolution of
three of our perturbation variables. This is a linear differential equation. Further-
more, the z dependence in the different equation is contained within the perturbation
variables themselves. If we transform into Fourier space, then the Fourier modes of
the differential equation evolve independently of one another. The Fourier transform
serves to decouple an infinite set of coupled differential equations. Transforming to
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Fourier space, equation 52 becomes

@+ﬁzg+®+ﬁz% = axne.or[©y — O + p - v,] (53)
The perturbation variables are now functions of p rather than x. p is defined as
k-p
HE= (54)
We have just derived the Boltzmann equation coupling the evolution of the photon
perturbation to the evolution of the gravitation and spacial curvature perturbations
of the metric. We are, however, primary concerned about understanding the inho-
mogeneities in the distribution of matter, not radiation. We need understand the
evolution of radiation only so much as it effects the evolution of the metric per-
turbations. Armed with this physical logic, we can make to assumptions that will
drastically simplify equation 53.
First, only the monopole and dipole moments of © will affect the distribution
of matter. Consider equation 53. When the electrons in the cosmic plasma lack a
bulk velocity (v, = 0), the perturbation is driven to equal its monopole moment. All
other moments vanish. If the electrons do carry a bulk velocity, it is necessary to
introduce the dipole moment of the photon perturbation. Still in this case, however,
all moments higher than the dipole will vanish. Thus, the tight coupling of photons
and electrons through Compton scattering erases all but the monopole and dipole
moments of the photon perturbation. The high moments of the photon perturbation
only become important after the photons and electrons decouple. As we noted earlier,
this happens at recombination. Recombination occurs deep into the epoch of matter
domination, so that higher moments of the radiation distribution have a negligible
effect. Thus, we need only consider the monopole and dipole moments of ©. They
are defined as follows

9y = / 1 Leou) (55)

1
o= [ Luenw (56)
-1

Second, we will drop the baryon source term (n.or). As we discussed early in
this section, we are working under the approximation of small baryon density. The
baryonic density is very small compared to the more abundant dark matter. In
the radiation dominated era, the baryonic density is much smaller than the photon
density. With some formalism, it is possible to show that the baryonic source term
is proportional to ratio of the baryonic energy density to the photon energy density.
This ratio is negligibly small for all times during which the photon perturbation has
an effect on the matter distribution. Thus, we drop the baryonic source term on the
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right side of equation 53. Note, this simplification only holds specifically because
we are studying the distribution of matter in the universe. Had we, for instance,
been interested in the evolution of radiation, the baryonic source term would play an
important role.

These two assumptions lead to two simple equations for the evolution of the
monopole and dipole terms of the photon perturbation. Dropping the baryonic source
term and isolating the appropriate pole, we arrive at

O + kO, = —d (57)
. k k

We have completed our derivation of the Boltzmann equations for © that concern the
matter distribution. We have not touched upon the evolution of neutrinos, the other
form of radiation. This is because, for our purposes, we will assume neutrinos obey the
same Boltzmann equations as photons. Neutrinos have a distribution function very
similar to photons, and neutrinos have no collision term. If we were to retrace the steps
of our derivation for photons, we would find that neutrinos also obey equation 53, with
the term on the right equal to zero. This is equivalent to setting the baryonic source
term to zero. If we assume neutrinos have small higher moments, then the Boltzmann
equations governing neutrinos will be precisely equations 57 and 58. In fact, for the
rest of this paper we will combine the neutrino and photon perturbations, treating
them as radiation perturbations. This is justifiable if photons and neutrinos have the
same initial condition. Indeed, when we discuss inflation, the primordial mechanism
that produced the initial conditions, we will assume it does not differentiate between
photons and neutrinos. For the rest of this paper, we will replace © with ©,., our new
symbol for radiation perturbation.

2.1.2 Boltzmann Equations for Matter

Now that we have solved the Boltzmann equations for radiation, it is time to turn
our attention to matter. Again, we will focus our discussion solely on the dark matter
perturbations . We follow the same general steps outlined for photons. We expand the
left-hand side of the unintegrated Boltzmann equation in terms of partial derivatives.
We use the equations of general relativity to solve for dx?/dt, dE/dt, and dp®/dt.
One difference from the photon derivation is the constraint equation. Photons are
massless particles, and therefore the norm of its four momentum is zero. The norm
of the four-momentum of dark matter particles is given by

9u P*PY = —m?® (59)
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where m is the mass of a dark matter particle. This is the constraint equation for
dark matter.

The general relativity formalism leads to an expanded form of the distribution
function for dark matter.

Ofim | Oim V' _ Ofim [ v 200 pOV] _ (60)
ot oxr* aE  OF E  E ot aodxt

These are the terms that are zero in first order in the gravitational perturbations.

Dark matter has no collision term, and as a result we set the time derivative of the

distribution function equal to zero. The presence of the p?/E factors differentiate the

above equation from the time derivative of the photon distribution function. Indeed,

in the limit of no mass, both equations are equal.

To solve this equation for the dark matter perturbations, we must use the fact
dark matter is assumed to be non-relativistic. This means that p/E is small, and
we can therefore ignore the thermal fluctuations of dark matter. The important
consequence of these approximations is that we do not need a form for the dark matter
distribution function. Instead, we may take moments of the unintegrated Boltzmann
equation. The quantities that become important are ¢ and v, the perturbations we
defined earlier in this section. d quantifies the over and under-densities of the dark
matter. v quantifies the velocity of the dark matter. Although we can ignore thermal
fluctuations, the inhomogeneous matter distribution will induce coherent velocities.

We take the first moment by integrating equation 60 over momentum phase space
units d®/(2m)3. The integral of the zero order terms leads to a cosmological continuity
equation, leading to the conclusion that the zero order number density of dark matter
scales a—3. This is what we surmised in section I. The integral of the first order terms
contains the information about the evolution of the perturbations. The first order
part leads to

96 10 0P
ot adw ot
We take the second moment by integrating equation 60 over momentum phase
space unit, tacking on a factor of p’/E. This factor weights each term in the integral
by its momentum. Ignoring the zero order terms and evaluating the integrals of the
first order terms leads to

0 (61)

o’ 10V
Ho'4 - —— = 2
8t+ U+a8xl 0 (62)

Equations 61 and 62 are the Boltzmann equations that guide the evolution of dark
matter perturbations. It is important to note that only the first two moments of the
dark matter distribution were needed. This is, again, because dark matter is non-
relativistic. Higher order moments depend upon p/E to higher and higher powers.
This factor is very small in non-relativistic particles, so we need only focus on the
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first two moments.

We would like to rewrite both equations in terms of conformal time and Faurier
transform each into k-space. As was the case with radiation perturbations, this
simplifies the time derivatives and decouples the differential equations. The final
versions of the two Boltzmann equations for matter perturbations are

04 ikv+ 3 =0 (63)

b+ Hu +ik¥ =0 (64)

where our perturbation variables are now functions of the mode k rather than .

2.1.3 Einstein Equations for Gravity

Using the Boltzmann formalism, we have derived four differential equations that cou-
ple the evolution of six perturbation variables. We need to more differential equations
to solve this system. To find this last two equations, we turn to Einstein’s equation.
Einstein’s equation G% = 81 GT}' relates the metric to the energy-momentum tensor.
We explored the zero-order consequences of this equation in section I, and arrived
at two fundamentally important results relating the scale factor to the energy and
pressure of the universe. We will now incorporate our perturbations into Einstein’s
equations. We will follow these perturbations through first order to derive two new
differential equations relating their evolution.

We first consider the time-time component of Einstein’s equation. The time-time
component of Einstein’s tensor is given by

1 R
GOO == gOO[RQ() — EggoR] = (-1 + 2\1/)R00 — 5 (65)

where R, is the Ricci tensor and R is the Ricci scalar. We are interested in the first
order change to this tensor caused by the gravitation (V) and spacial curvature (P)
perturbations to the metric. This change is given by
0 9 k2®
a
We must now equate this first order change to Einstein’s tensor with the first order
change to the energy momentum tensor. Referring to equation 6, the time-time
component of the energy momentum tensor (—77) is the total energy density of all
the cosmic constituents in the universe. We would like to find the first order change

to this value caused by matter (§) and radiation (©,) perturbations.
The energy density of matter to first order in 0 is trivial to find. By definition

T% = pam[l + 6] (67)
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To determine the energy density of radiation to first order in ©,, we must return
to Boltzmann statistics. The energy density of radiation can be found by integrating
the distribution function times the energy over momentum space. To first order, this
is given by

3 (0)
TOO = _2/ (zcjr)gp |:f(0) - pig—pgr} - _pr[l + 4@7",0] (68)
The first term in the integral picks out the zero order energy density of the radiation.
The second term requires an angular integral, which ends up picking out the monopole
term of the perturbation with a factor of four.
Equating the first order changes in the energy density of the cosmic constituents
with the first order change in Einstein’s tensor, we have

k2 4+ 3H(® — HV) = 471G a*[pgmd + 49,0, 0] (69)

where the time derivatives are with respect to conformal time 7. We have found
the evolution equation for ® and ¥ using Einstein’s equations. In the absence of
expansion, this equation simplifies to a simple Poisson differential equation. The
expansion terms play a key role, however, in determining the evolution of modes that
are on the order of the Hubble radius H .

To find our last equation guiding the evolution of our cosmic perturbations, we
focus on the spacial components of Einstein’s equation. The formalism pertaining to
the spacial components of Einstein’s equations is very similar to the time components,
so I just quote the result. The second equation guiding the evolution of ® and ¥ is

(D + 0) = —321Ga*[p, 0] (70)

Note that the sum of our gravitational perturbations depends upon the quadrupole
moment of the radiation perturbation. Continuing with our assumption that all mo-
ments higher than the dipole moment our negligible, the right-hand side of equation
70 becomes zero. Our second Einstein equation then tells us that ¥ = —®. This is a
nice result and will make the calculations that follow in the paper much simpler.

We have two equations that determine how the gravitational perturbations to the
metric evolve in a perturbed universe. We have found these two equations, however,
without considering all of the components of the Einstein tensor. It turns out that
considering the other components of the tensor will not give us any new information.
Everything that we learn will be redundant. Nevertheless, the equations we find by
considering the other components of the Einstein tensor will be in a different form.
There is one form, known as the algebraic form of Einstein’s evolution equations, that
will be particularly later on in this paper. It is given by

3aH

E2® = 4nGa? Pamd + prOro + .

(ipdmv + 4pr@r,1) (71)
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We have now derived all six Einstein-Boltzmann equations that govern the evolu-
tion of the six perturbation variables. They are summarized in the list below.

Oro + kO, = —d (72)

O,.1 g@no = —gqf (73)

0 +ikv+ 3P =0 (74)

o 4 Hv 4 ikW = 0 (75)

20 + 3H(d — HY) = 47Ga?[pamd + 4p,O,0)] (76)
U=— (77)

The first two equations are radiation evolution equations, the second two are matter
evolution equations, and the last two are gravitational evolution equations. Our next
objective is to establish the initial conditions of these six differential equations.

2.2 Determining Initial Conditions With Inflation

We have derived the six Boltzmann-FEinstein equations that govern the evolution of
the cosmic perturbation. We now turn our attention briefly to the phenomenon of
inflation. Inflation refers to the very rapid expansion of the universe at very early
times, and can be used to explain the initial conditions of our perturbations. To fully
derive the initial conditions set by inflation requires scalar field theory, a topic beyond
the scope of this paper. Instead, we will focus upon how inflation solves the horizon
problem, and then quote the numerical result of the initial conditions.

Before we delve into the theory of inflation, however, we will narrow our task.
By considering our six evolution equations at early time, we will relate the initial
conditions of all to perturbation variable to ®. Thus, we only need determine the
initial conditions of ® to set the initial conditions for our evolution equations.

2.2.1 Relating the Initial Conditions

Inflation occurs at very early time scales, so our initial conditions arise when 7 is
small. We will assume kn < 1 to be true at the times of interest. This inequality
allows us to simplify our equations. Consider equations 72 and 74. In each, the first
term is proportional to 7! while the second is proportional to k. Thus, the first term
is greater than the second by a factor of (kn)™', exactly the factor we assumed was
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large. We may drop the second term in each equation. This leaves

O,0=—d (78)

b=—d (79)

The velocity of dark matter and the first moment of radiation are both smaller than
the zero order moments by a factor of k7, and we set the initial conditions for these
perturbations to be zero.

The last equation remaining is equation (we already reasoned how the second
Einstein equation simplifies to W = —&, there is no more work to be done here).
Immediately, we can drop the first term because it is proportional to k2. We drop
the matter terms on the right because the initial conditions are set in the radiation
dominated era. The scale factor evolves proportionally with conformal time in this
era. Thus, H = 1/n for times concerned. Finally, 167Gp., = 6H? by the Friedman
equation. Note, that the critical density is equal to the radiation energy density in
the radiation dominated era. These equations and simplifications lead to

oy — U =20, (80)

We can eliminate ¥ from this equation using equation 77, and we can eliminate
O, by differentiating and using equation 78. This leads to the following differential
equation for ® in the early universe

Iy 449 =0 (81)

If we assume that the gravitational perturbation is a power of the conformal time,
then we arrive at ® = n°, n73. In the early universe, the gravitational potential has
two modes. However, the second mode (n~?) will decay as the universe ages, and will
not affect the universe. We will therefore focus our attention on the first mode (n°) as
it may be the seed that blossoms into the perturbations we observe today. Plugging
® = n° into equation 81, we find

d =20, (82)

It is important to note that this equation only holds at some early time in the universe,
after which the perturbations will evolve with the Boltzmann-FEinstein equations. The
equation only relates the initial conditions of our perturbations.

We relate the initial condition of the density perturbation to the initial condition
of the radiation perturbation by assuming our perturbations are adiabatic. Adia-
batic perturbations assume that the ratio of matter to radiation number density is a
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constant independent of space. This ratio is given by
Ndm . ndm(o) 1 + )
ny B nr(o) 3@r,0

The right side of this equation is only independent of space if the second quotient
equals one. This leads to

(83)

§=30,0 (84)

We have now successfully related the initial conditions of our perturbations to
the initial condition of the gravitational perturbation ® or argued that the initial
conditions of a perturbation is zero because it is negligible in the early universe.
Equation 82 relates the initial conditions of O, to ®, equation 84 relates the initial
conditions of ¢ to @, and equation 77 relates ¥ to ®. We argued that the velocity
and dipole moment of the radiation were negligibly small in the early universe.

2.2.2 Inflation

We still are not any closer at determining the mechanism, or for that matter the initial
value, that causes ® to be nonzero. For these answers, we must turn to inflation.
Inflation, as we already detailed, is the theory that the universe rapidly expanded
early on in its lifetime. Originally, inflation had no connection to the initial values of
the cosmic perturbations. Instead, it was supposed to explain another quandary in
cosmology - the uniform temperature of the Cosmic Microwave Background radiation.

The uniform temperature of the Cosmic Microwave Background temperature was
a problem we glossed over in section I. Indeed, on its face it does not seem like much
of a problem at all. But some digging into the physical processes that govern the
CMB raise some serious issues. To understand this process, we need to develop the
idea of the cosmic horizon.

As we explained in section I, conformal time 7 is the maximum co-moving distance
that light can travel since the universe began. 7 sets the horizon. Points separated by
a distance greater than n are not causally connected. The physics of one cannot effect
the physics of another. When we made the approximation kn < 1, this means that a
given mode of a perturbation is larger than the cosmic horizon (note, A = 27 /k). kn
is roughly equal to the ratio of the co-moving horizon to the commoving wavelength.
When this ratio is much less than one, this indicates the mode in question has a
wavelength larger than the horizon. Causal physic cannot affect this mode.

How do modes that were once causally disconnected from the rest of the universe
reconnect? Because the conformal time grows as the universe ages, whereas the
co-moving wavelength of the perturbations remain constant. Modes that were once
larger than the horizon eventually become absorbed into causal physics as the universe
expands.

Our intuition of the horizon 1 and causal physics conflicts with observations of
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the CMB. Observations of the CMB on all modes have found it to be very isotropic
with a constant temperature. This applies to modes that have very large wavelengths
and have only entered the universe very recently, after recombination. These modes,
which were causally disconnected until they entered the horizon, entered the horizon
after recombination, by which time the photons of the CMB were free-streaming and
no longer interacted. These large CMB modes seemingly could not have physically
interacted with the rest of the CMB photons, and yet they have the same temperature
and other physical properties. This is highly suspicious. Furthermore, cosmologists
have observed CMB radiation from opposite sides of the universe that could not have
been connected at the epoch of decoupling but still have the same temperature. How
can this be?

It is because our picture of the expansion of the universe is not complete, and
in the very early universe, points that are causally separated today were once con-
nected. This logic is encompassed in the theory of inflation. To understand this
theory requires a careful treatment of conformal time, so we rewrite the definition:

t a /
[ 1 -
o at) Jo o dH(d)

The key component here that we will focus on is the co-moving Hubble radius
(aH)™!. We briefly touched on the physical Hubble radius (H~!) earlier this section.
It has units of [s], so it is a distance in general relativity. It is roughly equal to the
maximum distance a particle can travel over the course of the expansion time. The
scale factor in the denominator of equation 84, however, places our quantity on the co-
moving grid. The co-moving Hubble radius (aH)~! is roughly equal to the maximum
co-moving distance a particle can travel in one expansion time. Therefore, the co-
moving Hubble radius is another determinant of causality. Objects separated by
distances greater than the commoving Hubble radius cannot currently communicate.
Note, however, the subtle difference between the Hubble radius and conformal time as
determinants of causality. If two objects are separated by a distance larger than the
Hubble radius, they cannot currently communicate. If two objects are separated by
a distance larger than 7, they could never have communicated and must be causally
disconnected. This insight provides the foundation for the theory of inflation.

Cosmological experiments have shown that, up to the earliest ages of the universe
that we can probe, the Hubble radius has grown continuously with the scale factor.
How universe behaved at the very earliest times, however, we cannot be sure. The
energies of the cosmic plasma are too high to be probed experimentally. Thus, it
is possible that at the very beginning of the universe, the co-moving Hubble radius
started off very large and that its values decreased dramatically in the early epochs
of the universe. If this assumption were true, then distances which may have been
larger than the co-moving Hubble radius after inflation may once have been smaller
than the co-moving Hubble radius before inflation. Thus, the particles separated by
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these distances were in causal contact during inflation and only fell out of contact
after inflation. But the important fact remains that these particles once were able to
exchange physical information. This is a viable solution to the uniform temperature
of the CMB.

For the co-moving Hubble radius to decrease with time, (aH) must increase with
time. This leads to the following equation

d d*a

E[aH]:W>O (86)
This equation implies the scale factor must have been increasing at an increasing
rate for the co-moving Hubble radius to decrease. This is the origin of the term
inflation; the universe ballooned in size at a rapid rate so that the co-moving Hubble
radius decreased during this epoch. It is easy to understand this result intuitively if
we assume the physical Hubble radius is a constant during inflation (this is indeed
assumed in most theories of inflation). At the absolute beginning of the universe
when the scale factor was small, the co-moving Hubble radius was large. The physical
Hubble radius encompassed much (if not all) of the co-moving coordinate grid of the
universe. Most (if not all) particles were contained within the Hubble radius, thereby
causally connected. Then the universe expanded at a fantastic rate, the scale factor
blew up, and the co-moving Hubble radius became small. The physical Hubble radius
does not change in size, but the coordinate grid was pulled apart so drastically by
inflation that the physical Hubble radius now only encompasses a small portion of
this grid. Most particles in the universe are no longer in physical contact, but they
once were. Thus, inflation solves the horizon problem. The scales that today appear
causally disconnected were once in causal contact before inflation.

It is also possible to understand this result in terms of conformal time. The
universe before inflation was microscopically small, and all of its constituents were
causally connected. As inflation drove the rapid expansion of the universe, the
causally connected region also dramatically increased. The causally connected re-
gion is bounded by 7, so n must have blown up due to inflation. 7 is still increasing
today as the universe expands, but most of its value was accrued during inflation.
Because of inflation, our conformal time horizon covers enormous distances. The dis-
tances we previously assumed to be causally disconnected are actually still contained
within the conformal time horizon. This makes our old definition of conformal time
useless in the Boltzmann-Einstein equations. We redefine it so that

t dt/
n= / o (87)

where t. is the time at which inflation ends. This redefinition of 7 allows us to
consider the conformal time horizon beginning after inflation. It will be helpful when
we consider the evolution of perturbations to present times.
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Inflation is a beautiful theory that solves the horizon problem. Even though
objects may seem out of contact today because they are separated by distances greater
than the co-moving horizon, inflation tells us that very early on when the universe
was microscopically small, these distance were in causal contact. Inflation explains
this phenomenon by requiring a period during which the scale factor increases at an
increasing rate. This is an entirely new idea. The forms of energy that we discussed
in section I - matter and radiation - cause the universe to expand at a decreasing
rate. The second derivative of the scale factor is less than zero. Thus, some unknown
form of energy must have driven inflation.

It is easy to show this form of energy must have had negative pressure. All we
need are the two zero-order Einstein equations (equations 7 and 8). We can combine
these two equations to isolate the double time derivative of the scale factor. It reads

d*a/dt> 4G
a !
Inflation requires the second time derivative of the scale factor to be positive. Thus,
the left-hand side of the above equation is positive. For the right-hand side of the
above equation to be positive,

(p+3P) (88)

P< —g (89)

The energy density must always be positive, so inflation requires a form of energy
whos pressure is negative. This requirement leads us to consider a scalar field as the
unknown form of energy that drove inflation.

It is possible for a scalar field to have positive energy density and negative pressure.
Furthermore, it is possible to show that a scalar field results in perturbations to the
spacial curvature. Inflation driven by a scalar field may have set the initial conditions
of ®. Of course, none of this can has been verified imperially & inflation occurred at
energies too high to probe with modern day devices. For the purposes of this paper,
we assume that inflation was driven by a scalar field, and we will use the resultant
value of @ as the initial condition. A more thorough derivation requires scale field
theory, a topic beyond the scope of this paper. I will merely quote the result and give
a rough sketch of its justification.

Energy in the form of a scalar field causes ® to have a non-zero variance as it
emerges from inflation. During inflation, ® couples to the energy density of the scalar
field. The scalar field is a quantum mechanical object. The mean value of its energy
distribution goes to zero during inflation, but due to the Heisenberg uncertainty
principle, it has non-zero variance. Small quantum mechanical fluctuation exist in the
scalar field energy. ®, being coupled to this energy, picks up these small fluctuations.
After the end of inflation as the scalar field vanishes, the modes of ®(k) retain a
non-zero variance. These values will be our sought after initial conditions.

The variance of the modes of ® are usually encoded in a power spectrum Py (k).
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It is defined in the following way

(D(k)DT(K')) = (27)° Py (k)0° (k — K') (90)

where the term in the brackets is the quantum mechanical variance. The Dirac-delta
function enforces the independence of the variance of the different modes. The power
spectrum of the gravitational perturbations at the end of inflation caused by the
scalar fields is

_87T H?

- 3 2
9k €Mt lar—k

Py (k)

(91)

Note that the power spectrum is a function of the co-moving wavelength. The modes
of the spacial curvature perturbation decouple from the scalar field when the co-
moving wavelength of the mode becomes larger than the co-moving horizon. Re-
member that the co-moving horizon decreases during inflation, while the co-moving
wavelength remains constant. When the modes cross the horizon affects the ampli-
tude of their power. This accounts for the evaluation at aH = k.

The power spectrum is typically redefined in the following way

P =5 (1) o (o) <92)

This definition is by convention, and changes nothing of the content of equation 91. It
merely recodes it in a different way; it will become more clear why in the next section.
0y represents the amplitude of each mode as it crosses the horizon. n is known as
the spectral index, and controls the k dependence of the power spectrum. Different
models of the universe predict different values for the spectral index, although most
are very close to n = 1. Dq is the growth function of the perturbation. We will define
and elaborate on this in more detail in the next section, but it is conventional to
include this in the definition for the power spectrum of .

One final note on the power spectrum. By the definition in equation 90, the power
spectrum has units [m?®]. To normalize the power spectrum, we multiply by a factor
of k3. If the spectral index is equal to one, which it is very close to in many theories,
then k3Pg(k) is a constant, or scale-free. This is an important concept for if the
power spectrum is scale-free, then the amplitude of the mode ®(k) is independent of
the time it exits (and re-enters) the co-moving horizon.

We have now successfully found the initial conditions for ®. Armed with this
knowledge, and the six Boltzmann-Einstein evolution equations, we can solve for the
distribution of dark matter inhomogeneities as they appear today.
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3 Distribution of Matter Over-Densities Today

In the previous section, we developed the formalism that allows us to deal with
perturbations to the smooth universe. We derived six differential equations, known as
the Boltzmann-Einstein equations, that govern the evolution of our six perturbation
variables. We related the initial conditions of each to the initial condition of ®. We
then discussed inflation as the source of the non-zero initial condition for ®, and
quantified this initial condition in the form of a primordial power spectrum.

In this section, we will use the primordial power spectrum of ® and the Boltzmann-
Einstein equations to derive an analogous expression for the power spectrum of the
dark matter perturbations in the universe today. This is the end goal that motivated
our formalism. The power spectrum of the dark matter perturbation is the theoretical
tool with which we can quantify the inhomogeneities of matter in the universe.

Once we have derived this expression, we will use the power spectrum to evalu-
ate the variance in the over-densities of matter contained within a sphere of radius
R. We will plot the variance as function of the scale R for different cosmological
models of the universe. This plot will be bounded by empirical cosmological data.
These bounds should provide a strong insight into which cosmological models most
accurately represent our universe.

3.1 The Power Spectrum of Dark Matter Perturbations in
the Late Universe

Before we embark on the difficult journey of solving the evolution equations for the
power spectrum of matter (Ps(k, a)), it is helpful to have some physical insight into
the processes that govern the distribution of matter. The two forces that affect dark
matter are pressure and gravity. Gravity is an attractive force, sucking the matter
into over-dense regions causing clumps. Pressure increases as density increases due
to random thermal motion, and it causes matter to flow outward. Thus, if we were
to sketch Newton’s law for density perturbations it would look something like

6 = [Gravity - Pressure]d (93)

Gravity and pressure are the two competing forces that guide the evolution and
distribution of dark matter in the universe. These equation will be contingent upon
certain cosmological conditions, like the dominant form of energy in the universe,
but it will be helpful to ground our formal results within this physically intuitive
framework.
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3.1.1 Method

It is now time to lay the framework for our derivation of the power spectrum of . It
is defined in an analogous way to the power spectrum of @,

(0(k)8" (k) = (2m)° Py(k)o* (k — k') (94)

Because the power spectra of 4 and ®, are defined in the same way, we can find a
relation between the power spectra if we can find a relation between the perturbations.
Equation 71 provides the first step in deriving this relationship. It relates § to ® (this
is not ® primordial). Because we are interested in the values of their power spectra
today, we can drop the radiation density term. Radiation is a negligible form of
energy density today. A second simplification arises because the modes of interest
today have long since entered co-moving horizon. As a result, aH/K < 1 and we can
drop the last term in equation 71. This leaves

_ E®(k,a)  2K*®(k,a)a
 4nGpna? 3Q,,H?

This only holds for a > au. where a;. denotes an epoch well into the matter
dominated era (ajate > Geq.- Equation 95 relates present day values of 0 and ®. If
we can find a relationship between @, imordiar and @4z, then we can find the power
spectrum of § today from the known primordial power spectrum of ®.

Finding @4 from @, imordiar Will be a thorny endeavor. It will involve under-
standing how each independent mode ®, evolves over time. Each of these modes is
coupled to the other perturbations throughout its evolution. To complicate matters
more, each mode re-enters the horizon at different times. After inflation ends, the
horizon is very small. Most modes of the cosmic perturbations are super-horizon,
kn < 1. As the horizon grows, smaller modes will enter the universe at much earlier
times than larger modes. Thus, we must understand the super-horizon and sub-
horizon evolution of each mode ®; and how to relate the two.

To reduce the complexity of this problem, we introduce two new functions: the
transfer function (T'(k)) and the growth function (D;(a)). These two functions relate
the primordial values of ®(k) to its values today. The evolution of ® can be broken
into two stages. It turns out that once the perturbation modes are well in to the
matter dominated era (a > @), they evolve independently of their mode. They
only evolve as a function of the scale factor. Up until this point (@ < @), the
evolution of each mode ®;, is dependent upon k. Nevertheless, the large-scale modes
of ® are super-horizon until the matter dominated era. While they are super-horizon,
they remain roughly constant. The large-scale modes of ® at a;,. are roughly equal
to the primordial values. We therefore define the transfer function by

d(k,a)

(95)

@(k‘, alate)

d (klarge—scale 3 alate)

T(k) = (96)
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and define the growth function by

Dy(a) _  ®(a)
a q)(alate)

With the transfer and growth functions defined in this way, we can relate ®,(k) to
its values in late epoch ®(k,a). The relation is given in the following equation

(a > aiate) (97)

Bk, a) = %CIDP(k)T(k:)Dl(a) (0> i) (98)

The transfer function propagates each mode of ®,(k) to its appropriate value at
a = aqe. After this epoch, the perturbations evolve as a function the scale factor,
independent of the mode. The growth function accordingly scales the perturbations
during the matter dominated era and beyond (a > a;ate). The factor of 9/10 is present
because the large-scale modes decrease by a factor of 9/10 from their primordial values
during their super-horizon evolution.

The transfer and growth functions equate the primordial gravitational perturba-
tion to its value today. Equation 95 equates the gravitational perturbation to the
dark matter over-density today. Combining these two equations, we can express the
0 as a function of our initial condition from inflation. It is given by

3k?
50, Ho®
With this relationship between 6 and ®,, we can find the power spectrum of the dark
matter over-density perturbations. It will be function of the ®, power spectrum, the
transfer function, and the growth function. Using the definition in equation 94 and
replacing (®(k)®T(k’)) with our primordial power spectrum of ®, we find the power
spectrum of the dark matter over-density is

0, 252 kT2 (k) D (a) ?
P(k,a) = 21673, i <D1(a — 1)> (100)

where we have input the analytical solution for the primordial power spectrum of
®. From here, we need only derive analytical solutions for the transfer function and
growth function to completely determine the power spectrum of the dark matter
over-densities.

The transfer and growth functions provide much needed structure for our deriva-
tion of the dark matter power spectrum, but we have yet to mathematically justify
their place in equation 98. We have no particular reason, for instance, to believe
the evolution of ® becomes independent k£ during the matter dominated era, or that
large scale modes of ® are roughly constant while they are super-horizon. In the fol-
lowing subsection, we will use the Boltzmann-Einstein equations to derive analytical
expression for the transfer and growth functions, and in the process defend the basic
arguments the led to their definitions and usefulness.

o(k,a) = ®,(k)T(k)D1(a) (a > ajate) (99)
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3.1.2 Transfer Function

Determining the analytic form of the transfer function will be a difficult business,
like we discussed above. The transfer function encodes the entire k-dependence of
the evolution of ® until ;.. The perturbations stay mostly constant when they
are super-horizon, as we would expect because they are outside the realm of causal
physics. The main difficulty in finding the transfer function is determining the sub-
horizon evolution of each mode ®;, and connecting it with the super-horizon evolution.
In fact, it is not possible to solve this riddle for all modes. Instead, we will inves-
tigate the behavior of large and small-scale modes. Once we have determined their
k-dependence, we will spline together our results to arrive at an analytic transfer
function that covers all k-values.

Large-scale modes remain super-horizon until they enter the universe in the matter
dominated era. We have already said the super-horizon evolution of all modes is
solvable. The most important information, then, is that the sub-horizon evolution
of the large-scale modes takes place when the radiation energy density is negligible.
We can use fact to drop the radiation terms in our Boltzmann-Einstein equations,
allowing us to solve analytically for the evolution of ®,,4.. Similarly, small-scale
modes remain super-horizon for a short period of time and enter the universe in the
radiation dominated era. Thus, we can drop the matter terms in our Boltzmann-
Einstein equations to find the evolution of ®,,,; during the radiation era. The small
scale perturbations of ® will experience decay due to the large pressure of radiation.
This decay will allow us to analytically track the perturbations through the epochs
of equality and radiation domination.

We cannot analytically solve for the k-dependence of intermediate modes precisely
because we cannot utilize any of the above approximations. Intermediate modes enter
the horizon around the time of matter-radiation equality. All perturbation terms will
have an important effect. Without the ability to simplify our evolution equations in
some way, they are unsolvable analytically. We will have to be content with splining
together our results of large and small scale modes to determine the k-dependence of
intermediate modes.

Now that we have outlined our logic for finding ®, it is time to delve into the
specifics of the Boltzmann-Einstein evolution equations. Note that there is not an
overarching blueprint for how to solve these equations. Instead, we must make smart
approximations and choose our equations wisely based upon the specific evolution we
are studying.

We start by considering the evolution of super-horizon evolution of large-scale
modes. In this limit, the approximation kn < holds. We can drop all terms propor-
tional to k, and the velocity and dipole perturbations decouple from the evolution
equations. We can simplify our 3 first order evolution equations to two using the
initial condition from equation 83. § = 30,.¢ is in fact a solution to the super-horizon
evolution at all times. Plugging 6/3 = ©, into equation 72, we are left with two
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coupled first order differential equations. They are

o = —3®3H (H(I) + cb) = 4G a® pamd (1 + ;—y) (101)

where y = (pam/pr) = (a/aey). To solve a pair of couple first order differential
equations, we must derive and then we can eliminate one variable. The price is a
second order derivative. This procedure in terms of our new variable y gives

21y + 54y + 32 1
_l’_
0By +4)(y+1)  yBy+4)(y+1)

This second order differential equation has an analytic solution. With the proper
initial condition, the solution is given by

®(0)

- 10y3

This equation describes the large-scale super-horizon evolution of ®. At small y, ®
simplifies to its primordial value (& = ®(0)) as it should. At large y, the equation
asymptotes to 9/10 the primordial value of ®. This justifies our inclusion of the factor
of 9/10 in equation and support the argument that large-scale modes are roughly
constant as they cross the horizon.

To finish our discussion of the evolution of large-scale modes of &, we must de-
termine how they evolve when they enter the horizon in the matter dominated era.
In this limit, the radiation perturbations are unimportant. We would like to show
that ¢ is a constant in the matter dominated era. To do this, all we need to show
is that @ = 0 is a solution to the Boltzmann-Einstein equations. We know from our
discussion of the super-horizon evolution of large modes that ® = 0 is the initial
condition. Therefore, if constant ® is a solution to the evolution equations, it must
be the unique solution to the evolution equations.

The Boltzmann-Einstein evolution equations in the no-radiation limit are

=0 (102)

(9y® + 2y* — 8y + 16(y + 1)'/* — 16) (103)

04 ikv =0 (104)
0+ aHv = ik® (105)
3 3aHi
K0 = S(aH)? (5 + “k “’) (106)

where we have chosen to use the algebraic form of Einstein’s equations. We use the
third of these equations to eliminate o from the first equation. Then, we use the
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second equation to eliminate © from the resultant equation. This leaves:

This equation, along with equation 106, form our pair of coupled first order differential
equations. Remember, we would like to show ® = (' is a valid solution to our system
of differential equations. This is true if the second order decoupled equation is of the
form A® + B® = 0. We would like to show, therefore, the second order equation
has no terms proportional to . To do this, we differentiate equation 107, replace
¥ terms using equation 105, and keep only the terms proportional to ®. The terms
proportional to ¢ are given in the following expression:

3iaHv

(® terms) — — [ + cb] (9(aH)* + k?) (108)
The term in the brackets is proportional to ® by equation 107. Therefore, there are
terms proportional to ® in the second order differential equation. ® = constant is
the unique solution that describes the evolution of large-scale ® perturbations in the
matter dominated era. This result agrees with our physical intuition. In the matter
dominated era, there is no pressure. Therefore, there is no outward to dampen the
potential and it remains constant.

Aside from the factor of 9/10 that comes during the super-horizon evolution, the
large-scale modes of ® remain constant and independent of k. Thus, the transfer
function for large scale modes is T'(k) = 1. This approximation holds to about 10%
accuracy for modes such that k < k., /3, where k.q = a.,H (aq)-

Finding transfer function at small-scale modes requires a different technique than
we just used for large-scale modes. We cannot focus solely on the potential perturba-
tions. Instead, we use the potential perturbations to find the evolution of the density
perturbations. We will track the density perturbations through the radiation era and
epoch of equality, and use our finding to derive a transfer function.

Small scale modes re-enter the horizon deep in the radiation era. The dark mat-
ter perturbations have no effect on the potential, but the evolution of the potential
radiation still shapes the dark matter perturbations. To solve for ¢ at small scales in
the radiation era requires two steps. First, we must find how ® evolves as it couples
with ©,. Then we solve for § using ® as a driving force in the differential equation.

Ignoring the dark matter perturbations in the radiation era, the evolution equa-
tions become

O+ kO = —d (109)
.k k
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3aH

2
b — 167Ga’p, _@m} (111)

k? k
Again, we have chosen the algebraic form of Einstein’s equation. The same procedure
to solve this coupled system follows. We used the third equation to eliminate ©, o from
the two radiation equations. We are left with a pair of coupled first order equations.
We differentiate and isolate one variable. The final second order differential equation
is

o

. 4. k2
P4+ -P4+ —d=0 112
oo+ 3 (112)

whose solution is a spherical Bessel function of the first order. Thus,

sin(kn/v/3) — (kn/v/3)cos(kn/V'3)
(kn/V/3)?

The above equation demonstrates that ® decays in the radiation era. After it decays,
it oscillates around zero. This behavior is expected given the high pressure in the
radiation era. The high pressure causes O, to oscillate. The expansion of the
universe, however, dilutes its density. Therefore, we see the oscillating decay of ®. ®
oscillates with ©,.¢, but it’s amplitude decreases as 1.

To find 6§, we treat ® as a driving force in our coupled equations 74 and 75. First,
we isolate 0 by differentiating equation 74 and eliminating v and ©. This leaves

§1l5— 36264120 (114)
n n

The possible solutions to a linear inhomogeneous second order differential equation
are a linear combination of the two homogeneous solutions and the particular solu-
tion. The particular solution can be found using Green’s function. The homoge-
neous solutions are given by a constant term and a natural log of the conformal time
C1 + Cayln(n). At early times, ¢ is constant and the particular solution is small. The
coefficient of the logarithmic term must be zero, and constant term must equal the
initial condition Cy = (3/2)®,. The particular solution, found by integrating the
source term with a Green’s function, is proportional to In(kn). Thus, we expect the
dark matter perturbation to take the form

O =30,

(113)

d(k,n) = A®,In(Bkn) (115)

The logarithm can be expanded to the sum of a constant term and a term proportional
to In(kn) as required by the above argument. Finding A and B requires the evaluation
of a Green’s function integral. The appropriate values are A = 9.mp6 and B = 0.44.

Equation 115 tells us that the dark matter perturbations grow even in the radiation
dominated era, albeit at a logarithmic rate. Again, the pressure due to radiation slows
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the growth of the perturbations. Equation 115 also incorporates a k-dependence. This
will be significant in determining the transfer function.

Before we can determine the transfer function for small-scale modes, however,
we must track the evolution of § through the epoch of equality and into the matter
dominated era. We need the k-dependence of the small scale modes at ajq.. We
are saved by the fact that pg,0 becomes greater than p,0,, at some point before
Pr = pam- This is because the radiation pressure suppresses ©,, while § grows
logarithmically. At some point long before matter-radiation equality but far after
the small-scale modes have crossed the horizon (ay < a < ae,), the gravitational
potential stops coupling to ©, and starts coupling to 6. We will solve for the the
evolution of ¢ in this limit, and match it to the evolution of § deep in the radiation
era given in equation 115.

To simplify our evolution equations, we make two approximations. First, we drop
the radiation perturbations because they become suppressed. Second, we assume
aH/k < 1 because the small-scale modes are well within the horizon at this point.
These approximations only hold in the limit a > ap, where ay is the value of the
scale factor when the small-scale modes crossed the horizon. In this limit, our three
coupled equations become

k
5+ a;yv — 30 (116)
ik
v+ % - aqu (117)
3
2P = 5 i 5 (aH)*s (118)

where we have written the equation in terms of the parameter y we defined earlier.
To solve this system of differential equations, we go through the same routine. We
differentiate the first of the three equation, and eliminate v. To arrive at a second
order equation that isolates 0, we must assume that ¢ is much larger than & on sub-
horizon scales. This approximation is justified because ®, like ©, ¢ is suppressed in
the radiation era. The second order differential equation is then

2+ 3y 3
5 + § — 0=0 (119)
y(y+1)  2y(y+1)
This equation is known as the Meszaros equation. It governs the evolution of the
cold dark matter perturbations after radiation perturbations have been suppressed.

There are two solutions to the Meszaros equation. They are given by

vVit+y+1
Vity—1

Dy =y+2/3D, = (y+2/3)1n{ }—2 1—y (120)

40



NATHANIEL DicKk 3 DISTRIBUTION OF MATTER OVER-DENSITIES TODAY

As y becomes large, D; scales as y while D, scales as y~3/2. D is the growing
solution and D, is the decaying solution. Indeed, in the next section we will see that
the large-y limit of D; is equal to the growth function during the matter dominated
era. Neither of these solutions has a k-dependence.

The general solution to the Meszaros equation is a linear sum of its two solutions.

§(k,y) = C1D1(y) + CoDs(y) Y>> yn (121)

To determine the constants, we must match the above equation with equation 115,
the evolution equation for § deep in the radiation era. To appropriately match the
equations, we must find an epoch during which both evolution equations are valid.
The general solution to the Meszaros equation holds in the limit that the small-
scale modes have become significantly sub-horizon (y > yg). Equation 115 holds
deep in the radiation-dominated era (y < 1). Therefore, the matching epoch occurs
after the small-scale modes have become significantly sub-horizon but remain deep
in the radiation era (yy < ¥, < 1). This is only possible because the gravitational
perturbation couples to the dark matter perturbations before the epoch of equality.
Matching the two evolution equations yields

Ad
y_ - CID/l(ym) + C2D/2(ym) (123)

The matching conditions will determine the constants C;andC} in the general solution
to the Meszaros equation. By matching this solution to the evolution of § in the
radiation era, we have patched together a function that describes the evolution of
the small scale modes of § from their entry into the horizon through to ;.. epoch in
the matter dominated era. We must now turn this evolution function into a transfer
function from small-scale modes.

To find the transfer function, we are interested in the large-y limit of the general
solution to the Meszaros equation. The Dy term decays in this limit, so we are only
interested in the first term. Using equation to solve for 'y, we find

Ch (124)

2
Plugging this constant into equation 121 and dropping the decaying term, we find

_ 3AD,(k) In [4Baeq6_3]
G

d(k,a) =

3AD, (k) I {43@6,16_3
aH

] Di(a) (a>> a.q) (125)

This equation give the small-scale dark matter perturbations long after matter-
radiation equality. Comparing this with equation 99, we derive an expression for
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the transfer function at small scales:

T(k) = 12 (kﬁq) In [8:@} (126)

We have found expressions for transfer function at large and small-scales. We can
spline these results together to determine an approximate function that describes the
transfer function on all scales. The exact analytic solution is given by the BBKS
transfer function. It is

In(1+40.171z)
0.171z

1/4

T(z =k/key) = [1 4 0.284x + (1.18z)* 4 (0.399z)" + (0.4902)*]

(127)
This exact equation agrees with both the large scale and small scale forms of the
transfer functions that we found. On small scales, the BBKS transfer function goes as
In(k)/k? and on large scales the transfer function goes to 1. Note that the logarithmic
dependence of the growth function is entirely due to the logarithmic growth of the

dark matter perturbations in the radiation dominated era.

3.1.3 Growth Function

Up until this point, we have entirely glossed over the growth function. We have shown
that large-scale potential perturbations remain constant in the matter dominated era,
and although we have not shown it, potential perturbations on all scales are constant
in the matter dominated era. Why then define a growth function for a > a4, if the
gravitational potential is constant?

The growth function is really included only to account for the fact that the dark
matter perturbations grow with the scale factor during the matter dominated era.
We only defined it in terms of the gravitational potential so that we could relate its
primordial values to its present day values. The growth function during the matter
dominated era does not affect the gravitational potential.

We have in fact already derived the growth function. Equation 121 is the general
solution to the Meszaros equation. Although we derived this equation for small-scale
modes, this solution holds for all modes in the matter-dominated era. The approxima-
tions we made to derive the Meszaros equation were (1) the radiation perturbations
were negligible and (2) the modes were contained well within the horizon. These ap-
proximations hold for all modes of interest in the matter dominated era. The growth
function is the large-y (or large-a) limit of equation 121. The second term, which de-
cays as the scale factor grows, drops out and the growing term asymptotes to D = a.
The prefactor, remember, is included in the transfer function, so we leave it out of
the growth function. Thus, the form of the growth function in the matter dominated
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era is

Di(a) =a (a > aate) (128)

If another form of energy were to dominate our universe, like dark energy, then
the form of the growth function could change. This would require re-deriving the
Meszaros equation allowing for other forms of energy. This growth function would
affect all perturbations and could cause the gravitational potentials to no longer
remain constant.

This concludes our discussion on the present day power spectrum of the dark
matter perturbations. The dark matter power spectrum, given in equation 100, de-
pends upon the primordial power spectrum of the gravitational potential, the transfer
function, and the growth function. We have derived all of these. Equation 92 gives
the primordial power spectrum of ®, equation 127 gives the transfer function, and
equation 128 gives the growth function. All that is left is to explore the implications
this power spectrum has on the distribution of matter in the universe, and to compare
these predictions to observed cosmological data.

3.2 Bounding the RMS Over-Densities of Different Models

The beauty and force of the formalism we have just developed lies in its ability
to predict the inhomogeneities of matter in our universe. We can use the power
spectrum of the dark matter over-densities to derive theoretical formulas that attempt
to characterize the statistical distribution of matter. The statistical measurement that
we focus on is the expected RMS over-density.

ok = (0(2)) (129)

dr(z) = /dgm'é(x)WR(:v — ) (130)

Here, Wg(z) is the window function. For points within a distance of radius R center
at a point z, the window function is equal to one. For all other points, the window
function is equal to zero.

Phyiscally, the expected RMS over-density o% predicts the variance in the over-
densities contained within a sphere of radius throughout the universe. It gives us an
idea of how much the over-densities, contained within a sphere, vary as we change
the position of the sphere. A high RMS over-density values suggests that clumping is
very prevalent while a low value suggests a relatively smooth distribution of matter.

To derive a theoretical formula for RMS over-density, we must Faurier transform
equation 130. This leads to an integral in k-space over the dark matter power spec-
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Figure 1
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Figure 1: A plot of the variance of the matter over-densities as a function of the mass
scale. On large scales, the variance is small and the universe appears smooth. On
smaller scales, clumping becomes prevalent.

trum. It is given by the following equation

272

Here, we see that the power spectrum plays an essential role in determining this
statistical measure. Each mode of § does not contribute equally to the total over-
densities in the universe. The power spectrum allows us to weight each mode of the
over-densities appropriately.

Combining our solution for the dark matter over-density power spectrum with
equation 131, we can plot the expected RMS over-density against the size of our
sphere. Figure 1 shows the resulting curve. We have used a mass scale to determine
the size of the sphere rather than its radius. Because we know (2, and p,, it is
simple to switch between the mass contained within a sphere of radius R using M =
4/3(m R3S per-

To calculate the numerical values in Figure 1, we used conventionally accepted
values for cosmological parameters (6%, Hy, and ,,, and n) found in equation 100.
Note that the variance in the matter over-density decreases as the mass scale increases.
This is consistent with our knowledge that the universe appears homogeneous on large
scales.

The beauty of equations 100 and 131, however, is that they are completely general.
Equation 100 determines the expected form of the dark matter power spectrum and

oh = /OOO ﬁ1<:2P(1<:)Vvl?%(k;) (131)
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Figure 2
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Figure 2: A plot of the variance in the matter over-densities for different values of
the spectral index. The error bar represents an empirically-observed bound. For the
cosmological values used, this plot suggest the spectral index equals 1.

equation 130 determines the form of the RMS over-density, but they quantify these
values in terms of a few cosmological parameters. Different cosmological models
predict different parameters, and we can use plots of the RMS over-density to compare
these models.

Furthermore, the variance in the matter over-density of the universe is something
we can determine observationally. We use observational bounds of the variance in
the over-densities of the universe to help decipher between the validity of different
cosmological models. We have done just this in Figure 2. Figure 2 shows three
different RMS over-density curves, each with a slightly different value for the spectral
index. Also plotted is a bound on the RMS over-density for a given mass scale. This
bound was taken from a recent cosmological study that empirically determined the
value of RMS over-density for a given mass scale. The bound suggests that, for the
values of the cosmological parameters given above, n = 1 is the only reasonable value
for the spectral index.

Figure 2 is an example of how the theoretical formula for the RMS over-density of
matter in the universe acts as a bridge between observations today and the processes
that governed the evolution of the universe far in its past. Remember that the spectral
index was a property of inflation. The bound in Figure 2 can help us determine what
exactly its value is. By measuring the distribution of matter in our universe today,
we can explore the physics of the universe even in its earliest epochs.
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