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Introduction to Cosmology

On astronomical scales, the motion of particles, stars, galaxies, and all of matter is governed

primarily by gravity. Gravity is described through general relativity and the Einstein field equa-

tions, which relate the presence of mass and energy to the curvature of the universe:

Gµν = 8πGTµν (1)

In principle these equations can be solved to give the equations of motion for matter in the

universe, but the general form of the equations leads to a set of nonlinear differential equations

that can only be solved through complicated numerical computations.

Luckily, the observed universe exhibits two important characteristics collectively known as

the cosmological principle that help reduce the Einstein equations significantly, and it is through

this process that a simple analytic solution can be obtained. The cosmological principle states

that on the scale of millions of light years, the universe is seen to be homogeneous and isotropic.

This means that large scale structure looks the same from any location (homogeneity) and in any

direction (isotropy). Mathematically, our description of the constituent matter in the universe,

namely its density and momentum given by the energy-momentum tensor, is invariant under
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translations and rotations. Furthermore, these symmetries must also be seen in the metric gµν ,

which describes the geometry of the universe and establishes notions of length, angle, time, etc.

The general form of a metric in spherical coordinates that fits the cosmological principle is the

Friedmann-Robertson-Walker (FRW) metric gµν with associated line element ds2:

ds2 = −dt2 + a(t)2

[
dr2

1− kr2
+ r2(dθ2 + sin2(θ)dφ2)

]
(2)

gµν =


−1 0 0 0

0 a(t)2

1−kr2 0 0

0 0 a(t)2r2 0
0 0 0 a(t)2r2sin2(θ)

 (3)

This metric differs from flat spacetime with the inclusion of a scale factor a(t) by which

space is stretched, and a constant curvature k equal to -1, 0, or 1 for open, flat, and closed

spacetimes respectively. The scale factor arises from the fact that the cosmological principle

only finds the universe to be homogeneous across distances and not times, leaving the scale

factor a(t) unspecified in general. Homogeneity and isotropy do not rule out a curved spatial

surface, but only a constant curvature agrees with the cosmological principle, forcing k to take

fixed value.

From this viewpoint, the universe is treated as a roughly evenly distributed collection of

galaxies, approximately modeled as a perfect fluid. This allows the energy momentum tensor

to be given by

T µν = gνλT
µν = gνλ[(ρ+ P )uµuν + Pgµν ] (4)

for density ρ, pressure P, velocity u, and inverse metric gµν , which can be seen to be diagonal in

the fluid’s rest frame where uµ = (1, 0, 0, 0):

T µν =


−ρ 0 0 0
0 P 0 0
0 0 P 0
0 0 0 P

 (5)
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This leaves two important equations: one for T00, and one for Tij . Before these equations can

be evaluated, the left side of Einstein’s equation needs to be expressed in terms of a known

quantity: the metric (and its derivatives). The Einstein tensor is defined by the Ricci tensor Rµν

and its trace, the scalar curvature R = gµνRµν , with the equation:

Gµν = Rµν −
1

2
guvR (6)

In turn, the Ricci tensor is defined by

Rµν = Γρµν,ρ − Γρρµ,ν + ΓρρλΓ
λ
µν − ΓρνλΓ

λ
ρµ (7)

where Γ are the Christoffel symbol symbols given by

Γρµν =
1

2
gρλ(gµλ,ν + gνλ,µ − gµν,λ) (8)

with partial derivatives denoted by indices after a comma. From the definition of the Christoffel

symbols and that of the FRW metric given by (2), the nonzero Christoffel symbols can be

computed directly, giving:

Γ0
ij = gijaȧ (9)

Γi0j = δij
ȧ

a
(10)

Γiij =
1

2
giigii,j (11)

Γijj = (2δij − 1)
1

2
giigjj,i (12)

From this, R00 is quickly computed:

R00 = −Γi0i,0 − Γi0jΓ
j
0i

= −3

[
d

dt
(
ȧ

a
) + (

ȧ

a
)2

]
= −3

ä

a
(13)
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Before the T00 equation can be fully simplified and computed, the Ricci scalar must be found,

requiring Rij be computed as well:

Rij = Γρij,ρ − Γρρi,j + ΓρρλΓ
λ
ij − ΓρjλΓ

λ
ρi

= gij

[
d
dt

(aȧ)

a2
+ 3(

ȧ

a
)2 − 2(

ȧ

a
)2 +

2k

a2

]

= gij

[
2(
ȧ

a
)2 + (

ä

a
) +

2k

a2

]
(14)

Note that this is the same as in flat space except for the last term containing the curvature. From

equations (13) and (14), the scalar tensor R is computed:

R = gµνRµν

= −R00 + gijgij

[
2(
ȧ

a
)2 +

ä

a
+

2k

a2

]
= 6

[
ä

a
+ (

ȧ

a
)2 +

k

a2

]
(15)

With R, R00, and Rij computed, Einstein’s equations are finally ready to be computed:

G00 = R00 −
1

2
g00R

= −3
ä

a
+ 3

[
ä

a
+ (

ȧ

a
)2 +

k

a2

]
= 3

(
ȧ

a

)2

+ 3
k

a2

= 8πGT00 = 8πGρ (16)

Gij = Rij −
1

2
gijR

= gij

[
2(
ȧ

a
)2 +

ä

a
+

2k

a2

]
− 3

[
ä

a
+ (

ȧ

a
)2 +

k

a2

]
= −gij

[
2
ä

a
+ (

ȧ

a
)2 +

k

a2

]
= 8πGTij = 8πGgijP (17)

The general solution given above allows for the possibility of an open or closed universe.

However, observational data, including measurements of the Cosmic Microwave Background
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(CMB) from the Planck and WMAP satellites, has determined with a roughly three sigma level

of certainty that the universe is flat, allowing us to set k=0 and simplify Einstein’s equations

even further: (
ȧ

a

)2

=
8πG

3
ρ (18)

2
ä

a
+

(
ȧ

a

)2

= −8πGP (19)

A linear combination of these equations can be taken to eliminate the ȧ
a

term, leaving the equa-

tion:
ä

a
= −4πG

3
(3P + ρ) (20)

The recurring quantity (ȧ/a), found most notably in equation (18), is called the Hubble

parameter H(t), and describes the rate of growth of the scale factor. First observed as an

empirical fit to the data showing distant galaxies appearing to move away from us faster based

upon how far away they are, the Hubble parameter gives an intuitive sense to the time variation

in the scale factor, and currently has a value of roughly H0 = 70 km s−1mpc−1. The analysis

so far has not involved expressing quantities in terms of the Hubble parameter, and while it is

sufficient to use (ȧ/a), thinking in terms of the Hubble parameter can help give a more physical

understanding of the larger picture of the evolution of the universe.

Before going further, the pressure and density must be related to the scale factor, which will

require an analysis of the energy momentum tensor. To find this relationship, the condition that

the covariant derivative vanish is evaluated:

T µν;µ =
∂T µν
∂xµ

+ ΓµλµT
λ
ν − ΓλµνT

µ
λ = 0 (21)

The ν = 0 equation simplifies this, as the only nonzero T 0
µ term is T 0

0 = −ρ, yielding an

equation that can be solved to give ρ(a) if the relation between pressure and density is specified:

∂ρ

∂t
+ Γµ0µρ+ Γλ0µT

µ
λ =

∂ρ

∂t
+ 3

ȧ

a
(ρ+ P ) = 0 (22)
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The first case to consider is non-relativistic matter such as planets, dust and stars, which can

be approximated as stationary when compared to the speed of light, setting the pressure to 0.

Solving (22) leads to the relation:

ρ(a)NR =
ρ0

a3
=
ρ0

V
(23)

where V is the volume of a hypothetical box of length a. The relation is explained intuitively

through the analogy of a gas of fixed number of particles at constant (rest) energy, whose number

density and therefore energy density are inversely proportional to the volume of the container.

On the other end of the spectrum is ultra-relativistic matter such as photons and neutrinos,

whose velocity is either exactly or nearly the speed of light. These particles travel along null

geodesics, and the contraction gµνT µν = T µµ = 3P −ρ = 0 can be made, leading to an equation

of state P = 1
3
ρ for ultra-relativistic matter. With this pressure-density relation established,

ρ(a) can again be computed, this time giving the relation for ultra-relativistic matter:

ρ(a)UR =
ρ0

a4
(24)

At first this seems surprising, as energy density is not inversely proportional to volume and

total energy is not conserved, but this does not actually generate a contradiction. When the

scale factor a(t) was introduced into the metric of spacetime, the property of time-invariance,

normally taken for granted and used to generate the conserved quantity of energy, was lost.

Radiation is simply the first case presented where energy is clearly seen to not be conserved.

This is achieved by a stretching of the wavelength of an ultra-relativistic particle as the scale

factor grows, leading to an inversely proportional relation between the energy of a particle and

the scale factor. Combined with the conservation of total number of particles just as in the non-

relativistic case that lead to an a−3 proportionality, the total energy density can be seen to vary

as a−4.
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A third case of interest is for a substance with equation of state P = −ρ, given the term

cosmological constant after its historical (and coincidental) invention by Einstein, alternatively

called dark energy today. In this case the equation for energy density time evolution reduces to

∂ρ/∂t = 0, giving constant energy density even as the universe expands:

ρ(a)λ = ρ0 (25)

The properties of a type of matter that acts in this way are not well understood, but its existence

in our universe today is strongly supported by measurements of the CMB and of redshifts of

distant galaxies, and its gravitation effects can be computed as easily as for normal matter.

With knowledge of ρ(a) for the relevant forms of matter, equation (18) can be solved to

give an expression of the time evolution of the scale factor a(t). In a matter dominated non-

relativistic universe, setting ρ(a) = ρ0/a
3 leads to a solution of the form:

a(t)NR ∝ t
2
3 (26)

Similarly, a radiation dominated universe sets ρ(a) = ρ0/a
4, yielding the solution:

a(t)UR ∝ t
1
2 (27)

Dark energy is the most surprising case, as the constant energy density causes exponential

growth (or decay) of the scale factor:

a(t)λ ∝ eH0t (28)

The real picture of the universe is more complicated than any of these isolated solutions, as all

three types of matter are present. In this case, the total energy density is described by

ρ(a) = ρNR + ρUR + ρλ (29)

One point to note is that equation (18) holds regardless of the matter composition, and thus

the total energy density is fixed - with one exception - by the Hubble parameter. The caveat
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to this approach is the possibility that the universe is not flat and instead has either positive

or negative curvature. The presence of curvature would then serve to balance any perceived

discrepancy between the energy density and the Hubble parameter as given in equation (18).

Looking back, curvature was omitted on empirical grounds to simplify equations (16) and (17)

to (18) and (20), but influenced the value of H similarly to an energy density proportional to

1/a2. This leads to the definition of the critical density ρc = 3H2/8πG, defined to be the value

for a given measurement of H such that the universe is indeed flat. Putting all the terms together

and expressing energy densities as their current fraction Ωi of the critical density allows the

Hubble parameter to be expressed simply in terms of current values:

H2

H2
0

=
ρ(a)

ρc
=

ΩUR

a4
+

ΩNR

a3
+

Ωk

a2
+ Ωλ (30)

Since today H = H0 and a = 1, a simple relation between each fractional density is created:

1 = ΩUR + ΩNR + Ωk + Ωλ. This allows measuring the values of ΩUR, ΩNR, and Ωλ from

observational data on the CMB as well as the redshift of supernovae and distant galaxies to

serve as a probe on the value of Ωk. This has been done, and the values of the density fractions

is as follows: ΩUR = 8.24 × 10−5, ΩNR = 0.27, Ωλ = 0.73, leaving the curvature of the

universe to have a measured value of Ωk = 0.01± .01.

This seems to paint a nearly complete picture of the current energy density makeup of the

universe (leaving out the physical understanding behind the existence of dark energy or its

properties), but there is in fact a second mystery - dark matter. Normal, non-relativistic matter

is understood very well, and is found to clump heavily into brightly glowing stars; for example,

the Sun contains 99.8% of the solar system’s mass. This allows a statistical analysis of stars

within the Milky Way to determine a mass-luminosity relation that accurately determines the

mass of a star of a given brightness, neglecting significantly smaller sources of mass such as

planets and dust. Alongside other techniques such as measuring the velocity dispersion, the
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total (baryonic) mass of distant galaxies can be estimated. Then, sampling a large number of

galaxies allows for the density of baryonic matter to be measured, which should agree with

the value of ΩNR found previously. However, performing this analysis reveals that baryonic

matter is only observed to contribute to 4.4% of the critical density, leaving an unexplained

23 percentage-points of non-relativistic matter, 85% of all non-relativistic matter, dubbed dark

matter for its lack of electromagnetic interactions. It is worth noting that dark matter is inferred

in other, independent, analysis such as measuring the velocity profile of galaxies from their

rotation curve and using equations of motion and gravity to solve for the matter profile, which

again differs greatly from measurements of visible matter via mass-luminosity relation. As

such, the existence of dark matter is strongly established.

The CMB has been mentioned a few times as an incredibly useful source of observational

data on determining cosmological parameters, but its composition and origin have not yet been

explained. The CMB is a stream of microwave photons reaching us from every direction. The

frequency profile of the CMB is that of a blackbody - because it was emitted from one - char-

acterized by the temperature 2.73K. This immediately begs the question of what omnipresent

medium exists in the universe at 2.73K as the source of this radiation, but the answer is a bit un-

expected. The source of the CMB photons is a 13.6 billion year old plasma, the baryonic matter

present in the early universe. This age corresponds to a redshift of z = 1100, meaning that dis-

tances between particles were shorter, boosting interaction frequencies compared to what might

be expected from the universe today. As an ionized plasma, the hydrogen gas is optically dense

to photon radiation, scattering light and reducing the mean free path of photons well below the

radius of the universe. At the time of last scattering, the cooling of the universe as it expanded

lead to the recombination of electrons with nuclei, de-ionizing the hydrogen gas and allowing

photons to travel relatively unimpeded. From this time to today, photons emitted from the an-

cient hydrogen plasma have traveled on a direct path to their observer, us. As explained with
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the evolution of radiation density, photons’ wavelengths are stretched as the universe expands,

redshifting them toward lower and lower frequencies and energies, giving the microwave ra-

diation at 2.73K observed today. Because photons before last scattering interacted frequently

with baryonic matter, the two were necessarily in thermodynamic equilibrium, sharing the same

temperature. From measuring the CMB temperature today (2.73K) and the redshift of the CMB

(z = 1100 ≈ 1/a), the temperature of photons and thus all baryonic matter at the time of last

scattering can be measured to be approximately 4× 1012K.

Because the ionized hydrogen scattered photons, we are unable to look past the time of last

scattering to directly observe the universe at earlier times, just as on a cloudy day an observer

on the ground cannot look past the clouds that block the view of the sky and stars above. Any

analysis of the universe before this time will have to come from more clever, indirect methods.

The theory of inflation is the result of such an analysis. When we look at the CMB in different

directions, it appears very isotropic, with deviations from the mean temperature of only one part

in 105. This suggests that these photons coming toward us were previously in thermal equilib-

rium, for a coincidence of such similar temperatures in every direction is far too improbable.

However, CMB radiation has been traveling toward us at the speed of light for 13.6 billion

years, and although distances were smaller in the past from a smaller scale factor, our model of

a radiation dominated early universe does not allow for the possibility that these distant regions

could have made causal contact in the 380,000 years between the big bang and the time of last

scattering. Inflation attempts to solve this paradox as well as others through the introduction of

a period of exponential growth totaling roughly 60 e-folds in the early universe, well before the

time of last scattering.

The picture presented by inflation describes a universe where quickly following the big bang

distances between points were incredibly small, and baryonic matter was able to reach thermal

equilibrium across all of what will later become the observable universe for us today. Then, at
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roughly 10−36 seconds the energy density of the universe became dominated by the hypothetical

inflaton, a scalar field φ with associated potential V (φ). The potential energy of the inflaton far

outweighed the kinetic, and the slope of V (φ) is very shallow so that V (φ), and therefore the

total energy density, is nearly constant. As seen in the case for a universe dominated by dark

energy, a constant energy density leads to the exponential growth of the scale factor. As the

inflaton slowly slides down the potential well, exponential growth continues until ultimately the

scale factor has grown by a factor of e60. At this time, the inflaton has reached the bottom of

the potential well, and its energy is mostly kinetic, which it then imparts on the normal matter

in the universe. By the end of inflation the inflaton is trapped at the bottom of its potential well

with negligible potential and kinetic energy, causing it to no longer significantly influence the

growth of the universe, and leaving no direct evidence of its existence.

Before focusing on the specifics of inflation, it is worth discussing some of its other con-

sequences, notably those that solve other former paradoxes of cosmology. First there is the

flatness problem, which states that in general the universe need not be as close to perfectly flat

as it is (current values place the total energy density within 1% of the critical energy density,

less than one standard deviation away from complete agreement and zero curvature). This is

an even larger problem in the early universe, where the value of Ωk is far smaller due to the

increase in ρUR, putting Ωk as low as 10−62 at the Planck era. By increasing the scale factor

immensely while maintaining a constant energy density, inflation reduces the relative weight

of the k/a2 term in equation (16) governing expansion. This allows the big bang to create a

universe with largely arbitrary energy density compared to the critical density before inflation

suppresses the effects of curvature. Then, over the next 13.6 billion years the relative strength

of curvature grows as it only varies as 1/a2 compared to non- and ultra-relativistic matter which

vary with 1/a3 and 1/a4 respectively, allowing Ωk to take the current value of 0.01± .01 today.

One bonus result that inflation gives us for free is the explanation for the origin of density
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perturbations that eventually grow to form galaxies. Like any field, quantum mechanics dictates

that the value of the field is in constant fluctuation. However, unlike other areas where quan-

tum fluctuations do not directly influence the macroscopic world, inflation provides the means

for these quantum fluctuations to create small under- and over-densities, which then proceed to

gravitationally attract and grow in size over time. These density perturbations are formed when

the inflationary expansion of space is uneven because of the fluctuations in φ, V (φ), and there-

fore H. Expanding space by 60 e-folds then causes these previously microscopic perturbations

to be stretched to galactic scales, creating the origin for large scale structure across the universe.

Matter in a Perturbed FRW Metric

To calculate the growth of density perturbations, we first need to formulate equations governing

how each type of matter interacts with perturbations in the metric, both in terms of generating

perturbations and reacting to them. It is worth noting that the focus of this section is to generate

equations of motion for ultra- and non-relativistic matter in the presence of gravity. As such,

the section is heavily focused on computation following the description given in Dodelson’s

Modern Cosmology.

The first area of interest is how ultra-relativistic matter responds to a perturbation, followed

by the non-relativistic case. Scalar metric perturbations are considered here because they are

coupled to matter, but it is also possible to have tensor and vector perturbations. For scalar

perturbations though, the metric is rewritten into the general Cartesian form:

ds2 = −(1 + 2Ψ(xµ))dt2 + a(t)2(1 + 2Φ(xµ))[dx2 + dy2 + dz2] (31)

gµν =


−1− 2Ψ 0 0 0

0 a(t)2(1 + 2Φ) 0 0
0 0 a(t)2(1 + 2Φ) 0
0 0 0 a(t)2(1 + 2Φ)

 (32)
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This tells us that scalar perturbations are defined by two functions: Ψ, the Newtonian gravita-

tional potential, and Φ, the spacial curvature perturbation. However, this definition hides the

fact that a choice of gauge has been taken to get this form, particularly Conformal Newtonian

gauge. In full generality, scalar metric perturbations can be described by four functions (includ-

ing Ψ and Φ), but two degrees of freedom allow us to reduce this description to two functions, as

detailed in Mukhanov, Feldman, and Brandenberger 1992. Conformal Newtonian gauge is used

here due to its readability, as it directly presents the familiar Newtonian gravitational potential

Ψ. Keeping this metric in mind, the time evolution of matter perturbations can be computed.

The first problem to tackle is the time evolution of photons, governed by the Boltzmann

equation:
df

dt
= C(f) (33)

Starting with the left side, we can express f = f(t, x, p) with the basis of derivatives in the

time, position, and momentum that f depends explicitly on

df(t, x, p)

dt
=
∂f

∂t
+
∂f

∂xi
dxi

dt
+
∂f

∂pi
dpi

dt
(34)

or more explicitly in terms of the magnitude of the momentum p =
√
gijpipj and the normalized

directional momentum p̂i = pi

p
subject to δij p̂ip̂j = 1:

df(t, x, p)

dt
=
∂f

∂t
+
∂f

∂xi
dxi

dt
+
∂f

∂p

dp

dt
+
∂f

∂p̂i
dp̂i

dt
(35)

The first simplification is to notice that that both ∂f/∂p̂i and dp̂i/dt are first order perturbations,

making the product second order and thus negligible. The zero order distribution f(t, x, p)

depends only on the magnitude p and not p̂i, forcing ∂f/∂p̂i to be first order. Additionally,

dp̂i/dt measures the change in direction of the photons’ velocity, which can only caused by

the presence of a gravitational potential as they follow geodesic paths, causing this term to be

linear in Ψ and Φ as well. Thus the combined term is a second order contribution and becomes

negligible.
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Looking at dxi/dt, we note that pµ ≡ dxµ/dτ , so that dxi/dt = dxi/dτ × dτ/dx0 = pi/p0.

Invoking the constraint that photons follow a null geodesic and dropping higher order terms of

Ψ allows p0 to be expressed in terms of Ψ and p:

p · p = gijp
ipj = −(1 + 2Ψ)(p0)2 + (p)2 = 0 (36)

p0 =
p√

1 + 2Ψ
= p(1−Ψ) (37)

Furthermore, we can express pi in terms of p and Φ using the definitions of p and pi = Cp̂i:

p =
√
gijpipj = Ca(t)

√
(1 + 2Φ)δij p̂ip̂j = Ca(t)(1 + Φ) (38)

pi = Cp̂i =
p(1− Φ)

a
p̂i (39)

Notice that in the absence of a gravitational potential, the photon’s momentum takes the classi-

cal value p(1, p̂i). Finally, the ∂f/∂xi × dxi/dt term can be computed, making use of the fact

that ∂f/∂xi is first order for the same reason ∂f/∂pi was, and thus must be multiplied by a

zero order term in dxi/dt to not drop out:

∂f

∂xi
dxi

dt
=
pi

p0

∂f

∂xi
=
p̂i

a

∂f

∂xi
(40)

The next term to consider is dp/dt, which will require analyzing the geodesic equation for

photons:

Γλµν
dxµ

dτ

dxν

dτ
+
d2xλ

dτ 2
= 0 (41)

Γ0
µνp

µpν = −dp
0

dτ
= −dp

0

dt

dt

dτ
= −p0dp

0

dt
= −p(1−Ψ)

[
dp

dt
(1−Ψ)− pdΨ

dt

]
(42)

Writing dΨ
dt

= ∂Ψ
∂t

+ ∂Ψ
∂xi

dxi

dt
= ∂Ψ

∂t
+ p̂i

a
∂Ψ
∂xi

and rearranging, equation (42) becomes:

dp

dt
= p

[
Ψ,0 +

p̂i

a
Ψi

]
− (1 + 2Ψ)

p
Γ0
µνp

µpν (43)
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To go further, the Christoffel symbol term must be computed from the definition of the Christof-

fel symbol:

Γ0
µνp

µpν =
−1 + 2Ψ

2
(g0µ,ν + g0ν,µ − gµν,0)pµpν

=
−1 + 2Ψ

2
(−2g00,µp

µ − 2g00,νp
ν − gµν,0pµpν) (44)

Expanding the last term in parentheses shows:

gµν,0p
µpν = g00,0(p0)2 − gij,0pipj

= −2Ψ,0 p
2 + a2[2Φ,0 +2H(1 + 2Φ)]δijp

ipj

= −2Ψ,0 p
2 + 2[Φ,0 +H(1 + 2Φ)]p2(1− 2Φ)

= 2p2[−Ψ,0 p
2 + Φ,0 +H] (45)

Γ0
µν

pµpν

p
=
−1 + 2Ψ

2
[−4Ψ,µ p

µ + 2pΨ,0−2p(Φ,0 +H)]

= p(−1 + 2Ψ)[−Ψ,0 +2Ψ,i
p̂i

a
− Φ,0−H] (46)

Bringing this term back into equation (43) for dp/dt yields:

dp

dt
= −p

(
Φ,0 +

p̂i

a
Ψ,i +H

)
(47)

There is one final term to the left side of the Boltzmann equation that needs calculating,

∂f/∂t. To accomplish this, the photon Bose-Einstein distribution is adjusted for a fractional

temperature distribution Θ = δT/T :

f =
1

e
p

T (1+Θ) − 1

≈ f (0) +
∂f (0)

∂T
δT

≈ f (0) − p∂f
(0)

∂p
Θ (48)
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We are interested in the first order component of the Boltzmann equation, and specifically we

can use the first order expansion given above to compute ∂f/∂t:

∂f

∂t

∣∣∣∣
f.o.

= −p ∂
∂t

(
∂f

∂p
Θ

)
= −p∂f

(0)

∂p
Θ,0−pΘ

dT

dt

∂2f (0)

∂T∂p

= −p∂f
(0)

∂p
Θ,0 +pΘH

∂

∂p

(
p
∂f (0)

∂p

)
(49)

The last equality arises from the fact that for photons T ∝ a allowing dT
dt
/T to be replaced by

H . Finally returning to the Boltzmann equation with all the substitutions we established and

omitting zero order terms we get:

df

dt

∣∣∣∣
f.o.

= −p∂f
(0)

∂p
Θ,0−pΘ,i

p̂i

a

∂f (0)

∂p
− p∂f

(0)

∂p

(
Ψ,0 +

p̂i

a
Ψ,i

)
= −p∂f

(0)

∂p

(
Θ,0 +

p̂i

a
Θ,i +Φ,0 +

p̂i

a
Ψ,i

)
(50)

With the left hand side of the Boltzmann equation fully calculated, it is time to evaluate

the right hand side, C(f). The collision function for photons is primarily determined by the

Compton scattering off of electrons via the reaction:

e−(~q) + γ(~p)↔ e−(~q′) + γ(~p′) (51)

The photon has energy E(p) = p of course, while the electron’s energy can be approximated

E(q) ≈ me + q2/2me ≈ me, with the same done for E(q′). The collision term can then be
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written as:

C(f(~p)) =
1

4m2
ep

∫
d3q

(2π)3

∫
d3q′

(2π)3

∫
d3p′

2(2π)3E(p′)

×M2(2π)4δ3(~p− ~p′ + ~q − ~q′)δ
(
p− p′ + q2

2me

− q′2

2me

)
[fe(~q′)f(~p′)− fe(~q)f(~p)]

=
π

4m2
ep

∫
fe(~q)d

3q

(2π)3

∫
d3p′

(2π)3p′
[f(~p′)− f(~p)]

×M2

(
δ(p− p′) + [Ee(q

′)− Ee(q)]
∂δ(p− p′ + Ee(q)− Ee(q′))

∂Ee(q′)

∣∣∣∣
Ee(q)=Ee(q′)

)

=
π

4m2
ep

∫
fe(~q)d

3q

(2π)3

∫
d3p′

(2π)3p′
[f(~p′)− f(~p)]

×M2

(
δ(p− p′) +

[(~p− ~p′) · ~q]
me

∂δ(p− p′)
∂p′

)
(52)

Here the second equality follows from the first by evaluating the d3q′ integral using the delta

function δ3(~p − ~p′ + ~q − ~q′) and, using the approximations fe(~q + ~p − ~p′) ≈ fe(~q) and

Ee(q) − Ee(q
′) ≈ (~p′ − ~p) · ~q/me because the electron momentum is much larger than the

photon momentum, and then expands the remaining delta function around this value. Finally,

the last equality uses the chain rule to differentiate with respect to photon momentum. Treating

M2 = 8πσTm
2
e as a constant and using the fractional temperature Θ expansion from equation

(48), along with the definition of the monopole component of the temperature perturbation,

Θ0(~x, t) ≡ 1
4π

∫
Θ(p̂′, ~x, t)dΩ′, helps simplify C(f) even further (and introduces a p′2 term

when switching to dΩ). The first step is to compute the integral of fe(~q)d3q which evaluates

to ne and replaces q/me with the electron’s velocity vb, and then use symmetry to remove the

~p′ · vb term by arguing that
∫
~p′ · ~vbdΩ = 0. This leaves only an integral over the magnitude of
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p, leaving the final function for C(f):

C(f(~p)) =
neσT
4πp

∫
d3p′

p′

[
f (0)(~p′)− p′∂f

(0)

∂p′
Θ(~p′) + f (0)(~p)− p∂f

(0)

∂p
Θ(~p)

]
×
(
δ(p− p′) + [(~p− ~p′) · ~vb]

∂δ(p− p′)
∂p′

)
=
neσT
p

∫ ∞
0

p′dp′

×
[
δ(p− p′)

(
−p′∂f

(0)

∂p′
Θ0 − p

∂f (0)

∂p
Θ(~p)

)
+ ~p · ~vb

∂δ(p− p′)
∂p′

(f (0)(~p′)− f (0)(~p))

]
= −pneσT

∂f (0)

∂p
[Θ0 −Θ(p̂) + p̂ · ~vb] (53)

With C(f) specified, we can finally create an explicit Boltzmann equation for photons.

Equating (50) with (53) yields:

Θ,0 +
pi

a
Θ,i +Φ,0 +

pi

a
Ψ,i = neσT (Θ0 −Θ + p̂ · ~vb) (54)

There are two final simplifications to be made. First, although equation (54) does describe

photon perturbations, it is more useful to express it using the Fourier transformed variable

Θ̃(~k) =

∫
d3x

(2π)3
ei
~k·~xΘ(~x) (55)

where ∂/∂xi becomes i~k with k2 = ~k · ~k. This is because each Fourier mode evolves indepen-

dently, allowing them to be evaluated one at a time instead of all coupled together. Secondly,

the normalized dot product ~k · p̂/k can be expressed in terms of the angle µ between ~k and p̂:

cos(µ) ≡ ~k · p̂/k, and by assuming that electrons move along the temperature gradient we can

set ~vb · p̂ = ṽbµ. Rewriting the photon Boltzmann equation then gives:

Θ̃,0 +
ikµ

a
Θ̃ + Φ̃,0 +

ikµ

a
Ψ̃ = neσT (Θ̃0 − Θ̃ + µ~vb) (56)

The next matter constituent of interest is cold dark matter (CDM). Solving the Boltzmann

equation for dark matter will follow the same approach as for photons, namely expanding df/dt

18



with a basis and computing each component one at a time. The first parallel to be drawn

comes from the momentum vector of a dark matter particle, which can be taken almost directly

from that of the photon. The primary difference between the two is the nonzero contraction

gµνp
µpν = −m2 for dark matter, leading to an energy E =

√
−g00p0p0 =

√
(p)2 +m2 (where

the definition p =
√
gijpipj was kept from the photon case). The analogies to equations (37)

and (39) for CDM then become:

p0 = E(1−Ψ) (57)

pi = pp̂i
1− Φ

a
(58)

Since p0 differs for CDM by a factor of E/p, any term containing p0, such as dxi

dt
, will contain

this factor. Alongside the fact that dark matter does not collide, this makes the CDM Boltzmann

equation become:

dfDM
dt

=
∂f

∂t
+
∂f

∂xi
dxi

dt
+
∂f

∂E

dE

dt
+
∂f

∂p̂i
dp̂i

dt

=
∂f

∂t
+
pp̂i

aE

∂f

∂xi
− p ∂f

∂E
(H

p

E
+
p

E
Ψ,0 +

pi

a
Ψ, i) = 0 (59)

To reach equations of motion from the Boltzmann equation, we take zeroth and first mo-

ments by multiplying by d3p/(2π)3 and pp̂i(2π)3Ed3p respectively and integrating. The inte-

grals are then solved using the definitions nDM =
∫
d3pfDM/(2π)3 and vi =

∫
pp̂id3pfDM/[(2π)3EnDM ],

with the zeroth here and the first moment below:

∂

∂t

∫
d3p

(2π)3
fDM +

∂

a∂xi

∫
pp̂id3p

(2π)3E
fDM − (H + Φ,0 )

∫
p2d3p

(2π)3E

∂fDM
∂E

− Ψ,i
a

∫
pp̂id3p

(2π)3

∂fDM
∂E

=
∂nDM
∂t

+
∂(nDMv

i)

a∂xi
+ 3(H + Φ,0 )nDM = 0 (60)

The last term on the first line was omitted as it is higher order, and the third term was integrated

by parts after taking the angular integral over dΩ by setting dv = dp∂fDM/∂p. Both of these
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techniques are used again for the first moment, giving the result:

∂

∂t

∫
pp̂jd3p

(2π)3E
fDM +

∂

a∂xi

∫
p2p̂ip̂jd3p

(2π)3E2
fDM − (H + Φ,0 )

∫
p3p̂jd3p

(2π)3E2

∂fDM
∂E

− Ψ,i
a

∫
p2p̂ip̂jd3p

(2π)3E

∂fDM
∂E

=
∂(nDMv

j)

∂t
+ 4HnDMv

j +
nDM
a

Ψ,j = 0 (61)

By writing nDM = n
(0)
DM(1 + δ) the nDM terms can be replaced with fractional density per-

turbation terms δ. Finally, the two equations generated from the zeroth and first moments are

transformed to Fourier space, giving the final equations for dark matter perturbations:

δ̃,0 +
ik

a
ṽ + 3Φ̃,0 = 0 (62)

ṽ,0 +Hṽ +
ik

a
Ψ̃ = 0 (63)

Perturbations to the Metric resulting from Matter Over-Densities

With the Boltzmann equations for ultra- and non-relativistic matter calculated, the effect of how

particles respond to a metric perturbation has been determined. This leaves the reverse effect

to be analyzed, how matter perturbations affect the metric. In the same style as unperturbed

FRW cosmology, we begin by computing the Einstein tensor through the definitions of the

Ricci tensor, Ricci scalar, and Christoffel symbols, using the perturbed metric as described

in equation (32). In Fourier space and neglecting higher order terms, the nonzero Christoffel

symbols are:

Γ0
00 = Ψ̃,0 (64)

Γ0
i0 = ikiΨ̃ (65)

Γ0
ij = δija[ȧ(1 + 2Φ̃− 2Ψ̃) + aΦ̃,0 ] (66)

Γi00 =
iki
a2

Ψ̃ (67)

Γij0 = δij(H + Ψ̃,0 ) (68)

Γijk = iΦ̃(δijkk + δikkj − δjkki) (69)
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Using the same trick as always where higher order terms are omitted to simplify the calculation,

the Ricci tensor is calculated:

R00 = Γµ00,µ − Γµ0µ,0 + ΓµµνΓ
ν
00 − Γµ0νΓ

ν
0µ

= Γi00,i − Γi0i,0 + ΓiiνΓ
ν
00 − Γi0νΓ

ν
0i

=
−k2

a2
Ψ̃ + 3

(
HΨ̃,0−2HΦ̃,0−Φ̃,00−

ä

a

)
(70)

Rij = Γµij,µ − Γµiµ,j + ΓµµνΓ
ν
ij − ΓµjνΓ

ν
iµ

=
(
Γ0
ij,0 − Γ0

i0,j + Γ0
0νΓ

ν
ij − Γ0

jνΓ
ν
i0

)
+
(
Γkij,k − Γkik,j + ΓkkνΓ

ν
ij − ΓkjνΓ

ν
ik

)
= kikj(Φ̃ + Ψ̃) + δij

[
k2Φ̃ + a2(Φ̃,00 +6HΦ̃− Ψ̃,0 ) + (1 + 2Φ̃− 2Ψ̃)(aä+ 2ȧ2)

]
(71)

From these terms the Ricci scalar can be computed, but unfortunately it is a complete mess.

Keeping in mind that only the kikj(Φ̃ + Ψ̃) component of Rij depends on the value of i, the

scalar can be computed to be:

R = gµνRµν = g00R00 + gijRij

= (−1 + 2Ψ̃)

[
−k2

a2
Ψ̃ + 3

(
HΨ̃,0−2HΦ̃,0−Φ̃,00−

ä

a

)]
+

(
1− Ψ̃

a2

)[
kikj(Φ̃ + Ψ̃) + δij

[
k2Φ̃ + a2(Φ̃,00 +6HΦ̃− Ψ̃,0 ) + (1 + 2Φ̃− 2Ψ̃)(aä+ 2ȧ2)

]]
= 6(1− 2Ψ̃)

[(
ȧ

a

)2

+
ä

a

]
+
k2

a2

(
3Φ̃ + 2Ψ̃

)
Ψ̃ + 6(Φ̃,00 +4Φ̃,0−Ψ̃0) (72)

With these computed, the Einstein tensor can be computed. Because of cancellations in gµν , it

is easier to find the values in mixed form. One simplification to be made is that we will only

be interested in the first order perturbations terms, as the zeroth order terms both in Gµν and

Tµν have already been computed and analyzed, allowing us to subtract them off without losing
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anything:

G0
0,f.o. = g00R00 −

1

2
R

= −6
ä

a
Ψ̃ +

k2

a2
Ψ̃ + 3Φ̃,00−3

ȧ

a
(Ψ̃,0−2Φ̃,0 )

+ 6

[(
ȧ

a

)2

+
ä

a

]
Ψ̃− k2

a2
Ψ̃− 3Φ̃00 + 3

ȧ

a
(Ψ̃,0−4Φ̃,0 )− 2k2

a2
Φ̃

= 6

(
ȧ

a

)2

Ψ̃− 6
ȧ

a
Φ̃,0−

2k2

a2
Φ̃ (73)

The benefit of finding the mixed form of the Einstein tensor is that T 0
0 is just the total energy

density of all the forms of matter. For dark matter and baryons the definition of the fractional

density perturbation δ immediately leads to the realization that these elements contribute ρδ to

the total energy density perturbations. For photons, since the temperature perturbation was used

instead of the density perturbation, we need to write out the energy density using the definition

of the probability density function and explicitly integrate to find the density perturbation in

terms of the temperature perturbation. Writing out the photon distribution using the same ex-

pansion in Θ as before quickly reveals the unperturbed energy density integral as the f (0) part.

Integrating the linear term over dΩ gives the monopole term dΩ0 by definition, and integrating

∂f (0)

∂p
by parts as before gives a coefficient of 4 when differentiating p4 (after gaining a p2 from

switching to spherical):

T 0
0,γ = −2

∫
pd3p

(2π)3

(
f (0) − p∂f

(0)

∂p
Θ

)
= −ργ(1 + 4θ0) (74)

Doing the same for neutrinos (which are definitely ultra-relativistic) of temperature perturbation

N and bringing all the matter terms together for the Einstein equation gives:

−3

(
ȧ

a

)2

Ψ̃ + 3
ȧ

a
Φ̃,0 +

k2

a2
Φ̃ = 4πG(ρDMδDM + ρbδb + 4ργΘ0 + 4ρνN0) (75)
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The second equation to consider is that for Gi
j . A neat mathematical trick will allow us to elim-

inate the trace of Gi
j (and T ij ), allowing us to focus only on the traceless component. Looking at

the definition of Gi
j and our expressions for R and Rij , it is clear that the only non-diagonal

term is kikj
a2 (Ψ̃ + Φ̃), coming from Rij . Therefore when we apply the projection operator

(k̂ik̂j − (1/3)δji ) that removes the diagonal component, we need only compute this term:

(k̂ik̂j − (1/3)δji )G
i
j = (k̂ik̂j − (1/3)δji )(Ψ̃Φ̃) =

2

3a2
k2(Ψ̃ + Φ̃) (76)

Applying the operator to the energy-momentum tensor yields a factor of cos2(µ) − 1/3 multi-

plied to the integral (where µ is the angle between k̂i and k̂j), which integrates to two thirds of

the second Legendre polynomial, leaving the second moment of the matter distribution (which

is 0 for non-relativistic matter): T ij = 8
3
(ργΘ2 + ρNN2). Equating this to the Gi

j terms yields a

second equation describing the gravitational potentials:

(Φ + Ψ) = −32πGa2

k2
(ργΘ2 + ρNN2) (77)

The Growth of Quantum Perturbations to the Inflationary Field

As described earlier, inflation is a model designed to fix some of the paradoxes found at the heart

of classical FRW cosmology, including the horizon problem of causality and thermal equilib-

rium of the CMB, the flatness problem, and the existence of modern day galaxy sized density

perturbations. The mechanism of inflation is a valid solution to general relativity in a FRW

universe (as evidenced by dark energy today), but there is no consensus on the physical expla-

nation motivating the existence of this mechanism at the 10−36s regime. However, there are

proposed models including extensions to the standard model of particle physics or the existence

of axions that could potentially lead to an inflationary era. Therefore, it is still worthwhile to

analyze the specifics of inflation to make predictions on proposed inflationary models, such as

by establishing bounds on energy levels for candidate particles.
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The conceptual idea of inflation rapidly expanding the universe, allowing distant locations

today to have previously been in causal contact is appealing, but it is important to understand

mathematically why this solution works. This motivates the concept of the Hubble radius,

defined to be 1/H , the inverse of the Hubble parameter. Conceptually, the Hubble radius is

approximately how far a particle can interact in the time it takes the universe to double. Thus,

sections of the universe separated by distances larger than the Hubble radius will not reach

thermal equilibrium through causal interactions.

Remembering that H2 is proportional to ρ from the FRW time-time Einstein equation, we

can see that the Hubble radius decreases as ρ grows larger. For matter and radiation dominated

eras where ρ is proportional to a3 or a4 respectively, looking backwards in time (and thus in

scale factor) shows a decreasing Hubble radius. This is essentially a rewording of the horizon

problem, by which the Hubble radius shrinks faster than the scale factor (as you run the uni-

verse backwards). An even more direct interpretation is to use comoving coordinates, where

comoving distances are not scaled by the scale factor and thus two physical locations remain

the same comoving distance apart regardless of time. The comoving Hubble radius then be-

comes 1/aH , and because H grows faster than a shrinks as the universe is run backwards, the

comoving Hubble radius can be seen to shrink, reducing the range of causal connections in the

early universe.

Inflation solves this issue by proposing that energy in the early universe was largely stored in

the potential energy of a hypothetical inflaton, whose equation of state gives it constant energy

density. This prevents ρ from increasing further as time is rewound, and therefore allows the

comoving Hubble radius 1/aH to expand rapidly as a shrinks by 60 e-folds as you look back

to the beginning of inflation. By growing the comoving Hubble radius, regions of space that

otherwise would have existed outside of causal contact can immediately be seen to now exist

within each other’s sphere of influence, allowing thermal equilibrium to be reached.
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Historically, inflation was implemented by a scalar field trapped in a local -but not global-

potential well, called a false vacuum. Stuck at the local minimum of the potential, the inflaton

would maintain near constant potential energy, giving the desired exponential growth of the

scale factor. However, the only way for inflation to end was for the inflaton to quantum tunnel

across a potential barrier into the global minimum. Since this occurrence is inherently random,

there is no way to coordinate the transition of the inflaton across various locations, preventing

inflation from ending in a synchronized fashion and creating huge non-homogeneities that are

not observed in the universe today.

Instead of using a false vacuum, modern inflation theories instead rely on other models,

most famously the slow roll model. This model puts the scalar field in a potential with a very

shallow potential gradient, causing the scalar to transition toward the true vacuum without any

quantum tunneling barrier present. However, since the gradient is small, the scalar field only

slowly moves down the potential, similar to a ball on a gentle slope. Additionally, a slow roll

allows the potential energy to be greater than the kinetic, giving a negative pressure necessary

for inflation. Mathematically, the scalar field has total energy density kinetic plus potential, and

pressure kinetic minus potential:

ρ =
1

2

(
dφ

dt

)2

+ V (φ) (78)

P =
1

2

(
dφ

dt

)2

− V (φ) (79)

Substituting these into the Einstein equations (18) and (20), the equation of motion for the scalar

field is found to be:

d2φ

dt2
+ 3H

dφ

dt
+ 3V̇ = 0 (80)

So when does slow roll inflation stop being a slow roll, and thus stop being inflation? To
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describe and define a period of slow roll inflation, a pair of slow roll parameters are used:

ε =
d

dt

(
1

H

)
= − Ḣ

aH2
(81)

δ =
1

H

φ̈

φ̇
= − 1

Hφ̇
(3Hφ̇+ V̇ ) (82)

The first parameter ε is just the rate of growth of the Hubble radius. Truly time invariant expo-

nential growth would have a constant Hubble radius and set ε to zero, but slow roll inflation is

an approximate form of exponential growth, and instead inflation is defined as the period when

ε < 1. Because of the slow roll, δ also takes small value during inflation. In theory an infinite

basis of slow roll parameters could be created to completely describe the dynamics of inflation,

but because this is a low order approximation in the (dφ/dt)2 << V (φ) regime, higher order

parameters do not need to be considered.

The process of computing the power spectrum of density perturbations begins by analyzing

quantum perturbations to the inflationary field, and will eventually involve following these per-

turbations through the radiation and matter dominated eras. To begin, the scalar field is written

as a homogeneous zeroth order component φ(0) plus a perturbation δφ. Invoking the conser-

vation law for the energy momentum tensor given by equation (21) rewritten below gives an

equation for the power spectrum of quantum fluctuations to the scalar field.

T̃ µ0;µ =
∂T̃ µ0
∂xµ

+ ΓµλµT̃
λ
0 − Γλµ0T̃

µ
λ = 0

= T̃ 0
0,0 + 3HδT̃ 0

0 + ikiδT̃
i
0 −HδT̃ ii (83)

By dropping higher order effects, each of these terms can be found:

δT̃ 0
0 = −

˙̃φ(0)δ ˙̃φ

a2
− V̇ δφ̃ (84)

δT̃ i0 =
iki
a2

˙̃φ(0)δφ̃ (85)

δT̃ ij = δij(
˙̃φ(0)δ ˙̃φ− ˙̃V δφ̃) (86)
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Putting these all together, a second order differential equation of δφ̃ in conformal time is estab-

lished. Furthermore, with the variable swap φ̃′ = aφ̃ the dδφ̃/dη term can be removed allowing

for an easy solution to be generated:

0 =
d2δφ̃

dη2
+ 2aH

dδφ̃

dη
+ k2δφ̃

=
d2δφ̃′

dη2
+

(
k2 − d2a/dt2

a

)
δφ̃′ (87)

Since we are looking at quantum fluctuations in φ, we treat φ as a quantum operator and realize

that the equation just established is that for a quantum harmonic oscillator. This lets us write a

solution in terms of the raising and lowering operators:

δ ˆ̃φ′ = v(k, η)âk + v∗(k, η)
ˆ
a†k (88)

v =
e−ikη√

2k

(
1 +

1

ikη

)
(89)

Here k2 >> d2a/dt2

a
is assumed by looking at equation (20) and noticing that for inflation this

goes to zero. With φ′ and therefore φ specified, the variance can be taken using bracket notation

and the power spectrum found:

< ˆ̃φ′(k, η)| ˆ̃φ′(k, η′) > =
1

a2
< ˆ̃φ(k, η)| ˆ̃φ(k, η′) >

=
1

a2
|v(k, η)|2(2π)3δ3(~k − ~k′)

=
1

a2
(2π)3δ3(~k − ~k′)Pδφ(k)

Pδφ(k) ≈ H2

2k3
(90)

From the power spectrum of inflationary perturbations we want to find the power spectrum

of metric perturbations at the time they cross outside the horizon and freeze out until re-entry.

To do this, it is easiest to first transform gauge to a metric with a time-space component but still

a spatially flat slicing:

ds2 = −(1 + 2A)dt2 − 2aB,i dx
idt+ δijdx

idxj (91)
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By using Bardeen’s velocity v = ikB− ik ˙̃φ(0)δφ̃/(ρ+P )a2 we can construct a gauge invariant

variable ζ which will let us link inflation power spectra with metric power spectra.

ζ = −aHB − iaH

k
v

= − aH
˙̃φ(0)

δφ̃ (92)

This is achieved by recognizing that at the end of inflation ζ takes on the value−3ψ̃/2, allowing

us to immediately express ψ in terms of δφ̃ and thus relate the power spectra at the time of

horizon crossing (when k = aH for each k mode):

ζ = − ikiHδT
0
i

k2(ρ+ P )
− Ψ̃ = −3aHΘ̃1k − Ψ̃ = −3

2
Ψ̃ (93)

PΨ =
4

9
Pζ =

4

9

(
aH
˙̃φ(0)

)2 ∣∣∣∣
k=aH

=
8πGH2

9εk3

∣∣∣∣
k=aH

(94)

Now we need only to evaluate how the metric perturbation power spectrum evolves once the

horizon expands to meet each wave mode. Because each Fourier mode of density perturbations

has a different wavelength, it will re-enter the horizon and ”unfreeze” at a different time. The

transfer function T (k) attempts to express how each mode has evolved based on how long it has

had to develop and what value the Hubble parameter took at that era resulting from the makeup

of the energy density in the universe. Mathematically, the transfer function is defined to be

the ratio of the scalar potential Φ for wavenumber k measured today divided by the primordial

value of that scalar potential:

T (k) =
Φ(k, alate)

Φprim(k, alate)
(95)

To fully create the transfer function, the entire set of Einstein equations and Boltzmann equa-

tions for each matter constituent must be used in combination to solve for how over-densities

grow. Luckily, a number of approximations and simplifications can be made to help reach an

analytic solution. First is the realization from equation (77) that in the absence of anisotropies
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in the form of second moments of the distributions (which we will assume are very small), we

can set Ψ = −Φ. Secondly, by considering only either very small or very large wavelength

modes we will only have to deal with predominantly one matter constituent at a time: the radi-

ation dominated era or the matter dominated era. Then, once we have equations for both these

extremes, we can try to bring them together and solve for the transfer function around the time

of radiation-matter equality.

The first case to consider is the regime of large wavelength perturbations, which re-enter the

horizon at late times and therefore the matter dominated era. Because of the large wavelength,

we can make the approximation kη << 1 and simplify the Boltzmann equations (56) and (62)

to the following:

Θ̇0 = −Φ̇ (96)

δ̇/3 = −Φ̇ (97)

Combining these equations leads to the simplification that Θ0 = δ/3, which can be used to help

solve the Einstein equation (75):

3H(HΦ̃ + ˙̃Φ) = 4πGδ(ρ+
4

3
ργ) (98)

Making the substitution y = a/aeq = ρDM/ργ allows this equation to be solved analytically

after a tedious amount of algebra and calculus. In the end, an equation for Φ(y) and thus the

transfer function on large scales is established:

Φ(y)

Φ(0)
=

1

10y3
[16(

√
1 + y − 1) + 9y3 + 2y2 − 8y] (99)

Notice that on the largest scales (y− > ∞) Φ decreases by a tenth, and decreases further

for smaller values of y. However, as the matter era dominates, the potential Φ begins to take

constant value. Since matter over-densities are proportional to aΦ, a constant potential means a
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linearly growing matter perturbation. This agrees with what we would expect, that gravity will

cause dense regions of space to grow and continue to attract matter and increase in over-density.

To analyze small scale modes, one trick to help simplify equations is to notice that since the

universe is radiation dominated, baryonic and dark matter do not affect the gravitational poten-

tials and can be dropped from those equations. With this in mind, taking a linear combination

of equations (75) and (77) allows us to generate:

Φ̃ =
6a2H2

k2

[
Θ̃0 +

3aH

k
Θ̃1

]
(100)

In addition to the Einstein equation given above, we will use the two Boltzmann equations for

radiation, now with the k terms included since we are dealing with small wavelengths:

˙̃Θ0 + kΘ̃1 = − ˙̃Φ (101)

3 ˙̃Θ1 − kΘ̃0 = −kΦ̃ (102)

Using the Einstein equation and the second Boltzmann equation, we are able to reduce the first

Boltzmann equation to:
dΦ̃

dη
+

1

η
Φ̃ = − 6

kη2
Θ̃1 (103)

Differentiating with respect to η, substituting out for dΘ̃1

dη
, and using the new variable u = Φ̃η

gives a second order differential equation in u gives a second order differential equation whose

solution is the spherical Bessel function:

Φ

Φp

= 3

(
sin(kη/

√
3)− (kη/

√
3)cos(kη/

√
3)

(kη/
√

3)3

)
(104)

The factor of η−3 indicates that for modes that enter the horizon in the radiation era their po-

tential Φ will decay, agreeing with intuition that ultra-relativistic matter perturbations have too

great a pressure to grow larger from gravitational attraction.
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In addition to radiation perturbations, matter perturbations will begin to evolve in the radia-

tion era. For them, the governing Boltzmann equations become:

˙̃δ + ikv = −3 ˙̃Φ (105)

v̇ + aHv = ikΦ̃ (106)

Differentiating the first equation and using both equations to eliminate v and v̇ leaves a differ-

ential equation in δ:

δ̈ +
1

η
δ̇ = S(k, η) (107)

However, the source term is composed of Φ and its derivatives, and it was just shown that

these decay quickly and thus are small in the radiation era. This lets us take the approximation

S(k, η) = 0 and solve the homogeneous equation in δ, giving logarithmic solutions of the form:

δ(k, η) = AΦpln(Bkη) (108)

This shows that even in the radiation dominated era matter perturbations still grow, although

they are suppressed from linear growth in the matter dominated era to logarithmic growth here.

Eventually, matter perturbations will outgrow radiation perturbations even within the ra-

diation era, because the fractional matter over-density will be large enough compared to the

radiation over-density to compensate for a smaller background matter density. At these times,

and continuing to the times near or at the era of matter-radiation equality, the approximations we

have made so far begin to fall apart. At this point computing the transfer function is much more

difficult, and best left to numerical solutions either in full or in an attempt to patch together

the early very small and very large wavelength perturbations for which approximate analytic

solutions were calculated above.

In contrast to the transfer function, the growth function is concerned with the evolution

of perturbations at late times when every mode has crossed into the horizon. This means that
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different modes are no longer treated differently by an expanding universe because for the scope

of the growth function they are all present from the beginning to the present. As a result, the

growth function does not depend on wavenumber k, because as long as all the modes have

crossed into the horizon they will react the same way to the expansion of the universe. As

such, the growth function is set up as an extension of the Meszaros equation at late times and

potentially in the presence of new matter elements such as dark energy:

D(a) =
5Ωm

2

H(a)

H0

∫ a

0

da′

(a′H(a′)/H0)3
(109)

The growth factor can be easily calculated numerically by solving for H via the Einstein equa-

tions using observed values for the various matter components of the energy density.

Putting together the transfer function and the growth function, the gravitational potential Φ
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is defined to evolve through the radiation and matter eras to the present day by the equation:

Φ(~k, a) =
9

10
Φp(~k)T (k)

D(a)

a
(110)

The factor of 9/10 has been factored out of the transfer function so that T (k)− > 1 for large

wavelengths, and the growth factor has been scaled by a to account for the fact that as defined

the growth factor takes value a in a matter dominated regime around z = 10 before dark energy

becomes relevant.

The Mechanisms of Inflation

Now that density perturbations can be followed from their creation during inflation all the way

to a = 1 today, it is time to revisit the specific mechanisms of inflation. There are numerous

proposed potentials for the scalar field that could drive inflation, including V = 1
2
m2φ2, V =

λφ4, V = λ(φ2 − v2)2, V = λφ4ln(φ/mpl), V = V0(1 − λφp), etc. Here I will investigate the

some of the simple inflationary models and their predictions.

The first model to consider is the scalar mass potential V = 1
2
m2φ2. By writing the slow

roll parameters as

ε =
m2
pl

16π

(
V ′

V

)2

(111)

δ = ε−
m2
pl

8π

V ′′

V
(112)

(where V’ denotes a derivative with respect to φ) it is easy to understand and compute the

slow roll parameters once a potential is established. In this case, ε = m2
pl/4πφ

2 and δ = 0.

Additionally, the values of φ at the start and end of inflation can be calculated once the potential

is known. φε is the point at which inflation ends, defined by when ε ≥ 1, and takes value

mpl/2
√
π for the scalar mass potential. Keeping in mind that roughly 60 e-folds of inflation

occur, the starting value of φ can also be found by integrating the Hubble parameter, rewritten
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as:

N ≈ 60 =
8π

mpl

∫ φ0

φε

V ′

V
dφ (113)

From this, the starting value of the inflationary field becomes φ0 =
√

31/πmpl ≈ 9.869mpl.

Finally, the spectral index n of the power spectrum Pk ∝ kn can be computed from the previ-

ously computed slow roll parameters, using the equation n = 1 − 4ε − 2δ, giving a value of

n = 0.9677. Data from WMAP places the true value of n at n = 0.963 ± 0.012, which has

striking agreement with the value computed for the scalar mass potential given the simplicity

and unrefined nature of the computation performed. While the scalar mass potential is capable

of generating a spectral index that agrees with observation as seen here, there are other cosmo-

logical observations that fall outside the predicted value of parameters established by the model,

ruling out its candidacy. An example of a potential that does not generate strong agreement with

observation is the simple quartic potential V = λφ4. From this model it is quickly found that

ε = m2
pl/πφ

2 and δ = −ε/2. From this, the spectral index is computed to be n = 0.918, which

certainly falls outside the observational range of the spectral index as listed by WMAP above.

The resulting power spectra for both candidate potentials are shown below, alongside the power

spectrum in the absence of the transfer function.
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In many ways current models of inflation turn into a fine-tuning problem, where a potential

designed with appropriately valued parameters aims to agree with all sources of observational

data. As the field has evolved, many of the initial candidate potentials have failed to keep up

with the increasing precision of observational measurements, ruling out their candidacy as the

inflationary potential in the presented format.

To summarize the work presented thus far, we have gone from a general observation on

the nature of the universe at large scales, the cosmological principle, and a general description

of the motion of matter on these scales, Einstein’s general relativity, and proceeded to analyze

how matter perturbs our description of the metric, how metric perturbations affect the motion of

matter elements, and ultimately used these relations to describe how quantum fluctuations in the

inflationary field form density perturbations that grow over time into what are now seen to be
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galaxies. Toward the end of this analysis, two candidate potentials that could generate slow roll

inflation were proposed, and their prediction of the spectral index was computed and compared

with the observed value to narrow the viability of these potentials. It was found that the quartic

potential did not predict a spectral index in agreement with observations from WMAP, while the

quadratic potential did generate a spectral index in agreement. This simple analysis rules out

the quartic potential model, and leaves the quadratic model as a possible inflationary potential.
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