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Abstract

In this study, we explore the correspondence between gravity in anti-de Sitter
space (AdS) and quantum fields in conformal field theory (CFT). We first study
AdS and CFT individually before proceeding to establish their harmonious rela-
tionship. We show that the lengths of spatial geodesics along surfaces of constant
proper time in AdS are related to the degree of entanglement entropy harbored
in a one-dimensional spatial interval containing a free, massless, scalar field.
We discuss the AdS3/CFT2 correspondence in the broader context of the holo-
graphic principle, illustrating how physics in a curved D-dimensional spacetime
can be described in terms of physics in a corresponding flat (D−1)-dimensional
spacetime. Along the way, we also present original MATLAB code for making
approximate calculations for the entanglement entropy of a free, massless, scalar
quantum field in CFT. We show how these calculations produce results which
are consistent with the holographic principle.



Contents

1 Introduction 4

2 The Geometry of Anti-de Sitter Space 7

2.1 Coordinate Representations of AdS . . . . . . . . . . . . . . . . . 9

2.1.1 Global Coordinates . . . . . . . . . . . . . . . . . . . . . . 9

2.1.2 Static Coordinates . . . . . . . . . . . . . . . . . . . . . . 12

2.1.3 Conformal Coordinates . . . . . . . . . . . . . . . . . . . 13
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3 Quantum Information Theory & Quantum Field Theory 23

3.1 Quantum Information Theory . . . . . . . . . . . . . . . . . . . . 23

3.1.1 Quantum States & Normalization . . . . . . . . . . . . . 23

3.1.2 The Density Operator, Pure States, and Entropy . . . . . 24

3.1.3 Dividing a System into Subsystems . . . . . . . . . . . . . 26

3.2 Quantum Field Theory . . . . . . . . . . . . . . . . . . . . . . . . 28

1



4 Entanglement Entropy in Conformal Field Theory 30

4.1 Path Integral Representation . . . . . . . . . . . . . . . . . . . . 30

4.2 An Interval in the Complex Plane . . . . . . . . . . . . . . . . . 32

4.2.1 Conformal Transformations . . . . . . . . . . . . . . . . . 32

4.2.2 Imposing a Cutoff . . . . . . . . . . . . . . . . . . . . . . 33

4.3 Entropy Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5 Srednicki’s Theorem & Algorithm 36

5.1 Srednicki’s Holography Theorem . . . . . . . . . . . . . . . . . . 36

5.2 The Srednicki Entropy Algorithm . . . . . . . . . . . . . . . . . . 39

5.2.1 Two Coupled Harmonic Oscillators . . . . . . . . . . . . . 39

5.2.2 N Coupled Harmonic Oscillators . . . . . . . . . . . . . . 41

5.3 Entropy Computations from the Srednicki Algorithm . . . . . . . 42

5.3.1 One-Dimensional Interval . . . . . . . . . . . . . . . . . . 42

5.3.2 Original Computations of Entanglement Entropy Using
MATLAB . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

6 The Ryu-Takayanagi Proposal, the AdS3/CFT2 Correspondence,
and Holography 47

6.1 The AdS/CFT Model . . . . . . . . . . . . . . . . . . . . . . . . 47

6.2 Entropy as the Length of a Geodesic . . . . . . . . . . . . . . . . 48

6.2.1 Cutoffs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6.2.2 The Regulated Length of a Geodesic . . . . . . . . . . . . 50

6.3 Holography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

7 Conclusion 53

Acknowledgements 55

2



A General Relativity 57

B Complex Numbers and Transcendental Functions 58

B.1 Complex Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . 58

B.2 Logarithms & Exponentials . . . . . . . . . . . . . . . . . . . . . 58

B.3 Trigonometric Functions . . . . . . . . . . . . . . . . . . . . . . . 59

B.3.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . 59

B.3.2 Identities . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

B.3.3 Relationships with Exponential and Logarithmic Functions 60

B.3.4 A Few Short Theorems . . . . . . . . . . . . . . . . . . . 61

B.3.5 Double-Angle and Half-Angle Formulas . . . . . . . . . . 62

B.3.6 Reduction Formulas . . . . . . . . . . . . . . . . . . . . . 62

B.3.7 Taylor Series and Small-Angle Approximations . . . . . . 62

C Linear Algebra 63

C.1 Diagonalizing a Matrix . . . . . . . . . . . . . . . . . . . . . . . . 65

D Miscellaneous 66

D.1 Hermite Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . 66

D.2 Infinite Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3



Chapter 1: Introduction

Every physical system can be, in principle, described by a comprehensive list
of all the information it contains. In a system consisting of classical point-like
particles, this information might take the form of a list of the positions and
velocities of all the particles at each moment of time, as measured in a certain
“laboratory” frame. This information could be summed up in terms of a time-
dependent position function for each particle – that is, a trajectory. One can
imagine using this method to describe the information contained in systems of
arbitrary size, with arbitrary numbers of constituent particles.

If one is lucky, some of the system’s particles, which from this point forth
we will refer to as subsystems, will have trajectories which are correlated to one
another. For example, if the system is a completely rigid object, then the motion
of every subsystem can be described purely as a vector sum of the linear motion
of the object’s center of mass and the rotational motion of that subsystem about
the center of mass. Thus knowledge of the trajectory of any particular subsystem
greatly restricts the set of possible trajectories for the other subsystems. In this
case, a complete list of trajectories for every particle would not be necessary
to describe all elements of the system; such a list would have a great deal of
redundancy. In fact, the only information that would be necessary to deduce
the trajectory of a particular subsystem would be the trajectory of the overall
system’s center of mass, the position of that subsystem relative to the center of
mass, and the rotational velocity of the object. Because it takes comparatively
so little effort to describe all elements of this system, we say that this system
has a low entropy.

In undergraduate thermodynamics classes, students generally learn to asso-
ciate entropy with a system’s disorder. While this perspective is not incorrect,
it is often useful to associate a system’s entropy with the amount of information
the system contains – that is, to what degree is it possible to describe a sys-
tem in terms of patterns and correlations of its constituent subsystems, rather
than in terms of a comprehensive list? A system whose subsystems are greatly
correlated has a very low entropy, while a system for which there is no relation-
ship between the behaviors of its constituent subsystems is one with maximal
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entropy.1

Unfortunately, quantifying the entropy of a system is not always a sim-
ple task. There are various mathematical definitions for entropy, which de-
pend largely on whether one wishes to treat a system classically or quantum-
mechanically.

A natural question to ask is what the maximum amount of entropy – and
hence information – is that can be confined in a certain parcel of space. For a
d-dimensional parcel of radius R, it is natural to suspect that the maximum en-
tropy is proportional to Rd, scaling with the size of the parcel itself. However, it
has been becoming clear to physicists in the past few decades that in actuality,
the maximum entropy is proportional to Rd−1.2 This surprising result has come
to be known as the holographic principle, as it suggests that d-dimensional ob-
jects can be described in terms of information encoded in only (d−1)-dimensions,
just like how a hologram encodes information on a two-dimensional surface to
project a three-dimensional image.

The holographic principle provides us with a fascinating new perspective
on the nature of the universe, as it suggests that three-dimensional physical
objects may themselves be mere projections of information encoded on a two-
dimensional surface. In a sense, the holographic principle establishes a link
between physical phenomena occurring in two distinct physical spaces whose
dimensionality differs by one. A natural question to ask at this point is if this
principle can be extended across multi-dimensional spaces as a syllogism: If
phenomena in a d-dimensional space can be described in terms of information

1Almost paradoxically, some scholars prefer to describe entropy as the lack of information
or the amount of hidden information in a system. This is nothing more than a difference
of perspective regarding the precise definition of the word information: These scholars are
taking the perspective of a sentient observer, while this paper is taking the perspective of
the system itself. From their perspective, a closed system always has the same amount of
information but it is the subset of that information which is hidden from the sentient observer
that determines the entropy. When a system’s entropy is low, the observer can describe all
the information in the system very easily and hence very little information is hidden; but
after the entropy increases substantially (as the Second Law of Thermodynamics dictates it
eventually must), the observer will have very little access to the vast amounts of information
which the system contains because much of the system’s information has become hidden. So
from this perspective, higher entropy is associated with the loss of information because some
of the original accessible information has become hidden. From the author’s point of view,
there is just “information” – there is no such thing as “hidden information.” The system
starts out with very little information in the sense that it is very simple to describe; and
after a substantial entropy increase, it now harbors more information and therefore is more
difficult to describe. According to this perspective, the amount of information which the
system contains grows over time, and the word “information” could easily be replaced by the
word “complexity.” What we refer to in this paper as “information” is what others might refer
to as “hidden information.” We will continue to use language consistent with the author’s
perspective throughout the course of this paper.

2In the special case where d = 1, this maximum entropy scales with lnR. So a more
general statement would be that, for a d-dimensional parcel with radius R, the maximum
entropy scales with

∫
Rd−2dR.
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encoded in a (d−1)-dimensional space, and phenomena in a (d−1)-dimensional
space can be described in terms of information encoded in a (d−2)-dimensional
space, then can phenomena in a d-dimensional space be described in terms
of information encoded in a (d − 2)-dimensional space? If so, is it possible to
extend this syllogism to make an indefinite chain, thus boiling down phenomena
in arbitrary-dimensional spaces to information in a simple 1-dimensional space?

The answer to both these questions is no. What the holographic principle
tells us is that it is possible to draw a one-to-one correspondence between the
physical states of a d-dimensional gravity-free system and (d + 1)-dimensional
system which includes gravity. Or, expressed in an Einsteinian framework which
incorporates the temporal dimension, it is possible to establish a one-to-one
correspondence between a curved D-dimensional spacetime and its flat (D−1)-
dimensional spacetime boundary. It is apparently the presence or absence of
curvature – and hence gravity – which determines whether or not the information
content harbored within a region of spacetime can be expressed in terms of a
lower dimension. This means that the physics of quantum gravity in a given
region of spacetime can, in principle, be understood in terms of the gravity-
free quantum physics on the lower-dimensional flat boundary region. This is a
critical insight as it may help physicists better understand quantum gravity.

A fascinating case study for the holographic principle comes from the
AdS/CFT correspondence, which is the main subject of this paper. These
are two very different physics models which at first glance have nothing to do
with one another and have two completely different parent theories: AdS is a
vacuum solution of Einstein’s field equations for general relativity, while CFT
is a subtheory of quantum field theory. However, a deeper analysis establishes
a harmonious connection between these two theories, allowing us to learn about
one by studying the other.
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Chapter 2: The Geometry of Anti-
de Sitter Space

Anti-de Sitter space, often abbreviated AdS, is an exact solution of Einstein’s
field equations of general relativity characterized by a constant negative space-
time curvature and a vanishing stress-energy tensor (vacuum solution). It is
a close cousin of de Sitter space, a vacuum solution with a constant positive
spacetime curvature. In general, the cosmological constant Λ in AdS is nega-
tive, except in the lowest dimensional case, in which it is zero. This is unlike the
actual universe in which the stress-energy tensor does not vanish and in which
Λ appears to be small but positive, and so AdS is not an adequate description
of our physical universe. However, AdS can still provide insights into the nature
of the universe.

In a hypothetical spacetime model, let d denote the number of spatial di-
mensions and D denote the total number of spacetime dimensions. Typically,
there is only one time dimension, so D = d + 1, but one can consider models
in which this is not the case. In this study, we will be chiefly concerned with
the case where d = 2 and D = 3, but we will try to speak in more general
terms where possible. Let us consider a pseudo-Euclidean space of dimension
d + 2 with metric gµν = diag(−1,−1, 1, ..., 1). Let us denote the two timelike
coordinates u and v and the remaining d spacelike coordinates x1, ...xd. Now,
let us supplement the condition that:

−u2 − v2 +

d∑
i=1

(xi)2 = −r2
sk (2.1)

Here, rsk is a constant value known as the skirt radius. Its value is related to
the curvature of the space, with small values corresponding to sharp curvature.
In this pseudo-Euclidean space, the spacetime interval ds is given by:

ds2 = −du2 − dv2 +

d∑
i=1

(dxi)2 (2.2)
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In the case where d = 1, we could depict this in a three-dimensional Cartesian
coordinate system by a hyperboloid. See figure 2.1. Depicting anti-de Sitter
space in three spacetime dimensions is more challenging to illustratethe curva-
ture, but we can do our best with a cylinder. See figure 2.2. The boundary of
this cylinder, as we will see in later chapters, represents the corresponding CFT
space.

Figure 2.1: A hyperboloid depicting AdS2. Note the constant negative curva-
ture.

Figure 2.2: A cylindrical depiction of AdS3. The upward dimension repre-
sents time, and the horizontal circular slices (Poincaré disks) represent the two
curved spatial dimensions. The conformal boundary represents the correspond-
ing CFT2. Despite the finite depiction here, AdS3 has an infinite spatial extent
in both spatial dimensions and the temporal dimension.

From this point forth, we will concentrate on the d = 2 case (D = 3), as
this is the lowest dimension in which all the essential material for this study can
be captured. We will simply write x for x1 and y for x2. That is, our spacetime
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distance metric is given by:

ds2 = −du2 − dv2 + dx2 + dy2 (2.3)

2.1 Coordinate Representations of AdS

Like many curved geometries, AdS3 can be coordinatized in a variety of ways.
The next few pages detail several of the most common and most useful.

2.1.1 Global Coordinates

We introduce temporal coordinate τ and spatial coordinates ρ and θ such that:1

u = rsk cosh ρ cos(cτ)

v = rsk cosh ρ sin(cτ)

x = rsk sinh ρ cos θ

y = rsk sinh ρ sin θ

(2.4a)

(2.4b)

(2.4c)

(2.4d)

where c represents the speed of light.2 τ denotes a proper time coordinate and
is not in any way meant to suggest a Euclidean time coordinate.3 Notice how
these coordinates obey the relation u2 + v2 − x2 − y2 = 1, which is the d = 2
version of equation (2.1). Using the chain rule to relate u, v, x, τ , and ρ, the
spacetime interval is given by:

ds2 = −cosh2ρ dτ2 + dρ2 + sinh2ρ dθ2 (2.5)

Here, ρ ≥ 0 and θ is periodic with period 2π. All the relevant geometric quan-
tities can be calculated and are given as follows:

1The observant reader may notice that the arguments of some of the trigonometric func-
tions have units of length, despite the fact that trigonometric functions are always supposed
to take unitless arguments. This is because we have implicitly set the skirt radius rsk = 1
in the trigonometric arguments, even though we have chosen to include a factor of rsk as a
coefficient for each of the coordinates to emphasize the scaling nature of the skirt radius. From
this point forth, we will usually assume rsk = 1, unless explicitly stated. We will incorporate
rsk back into our equations in situations where it provides insight.

2For the remainder of this paper, we will set c = 1. In general, whenever a temporal
coordinate τ or t appears in the equations, it is implicitly multiplied by c so as to produce a
quantity with dimensions of length.

3The typical time coordinate t is reserved for the Poincaré coordinate formalism, in which
t no longer refers to the proper time.
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Metric tensor gab Inverse metric tensor gab

HHH
HHa
b

τ ρ θ τ ρ θ

τ −cosh2ρ 0 0 −sech2ρ 0 0
ρ 0 1 0 0 1 0
θ 0 0 sinh2ρ 0 0 csch2ρ

Christoffel symbols Γabc
HH

HHH

a
τ ρ θ

HHH
HHb
c

τ ρ θ τ ρ θ τ ρ θ

τ 0 tanh ρ 0 sinh ρ cosh ρ 0 0 0 0 0
ρ tanh ρ 0 0 0 0 0 0 0 coth ρ
θ 0 0 0 0 0 −sinh ρ cosh ρ 0 coth ρ 0

Riemann Curvature Tensor Rabcd

a = τ
HHH

HH

b
τ ρ θ

H
HHHHc

d
τ ρ θ τ ρ θ τ ρ θ

τ 0 0 0 0 −1 0 0 0 −sinh2ρ
ρ 0 0 0 1 0 0 0 0 0
θ 0 0 0 0 0 0 sinh2ρ 0 0

a = ρ
HH

HHH

b
τ ρ θ

HHH
HHc
d

τ ρ θ τ ρ θ τ ρ θ

τ 0 −cosh2ρ 0 0 0 0 0 0 0
ρ cosh2ρ 0 0 0 0 0 0 0 −sinh2ρ
θ 0 0 0 0 0 0 0 sinh2ρ 0
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a = θ
HHH

HH

b
τ ρ θ

H
HHHHc

d
τ ρ θ τ ρ θ τ ρ θ

τ 0 0 −cosh2ρ 0 0 0 0 0 0
ρ 0 0 0 0 0 1 0 0 0
θ cosh2ρ 0 0 0 −1 0 0 0 0

Ricci tensor Rab
HHH

HHa
b

τ ρ θ

τ 2cosh2ρ 0 0
ρ 0 −2 0
θ 0 0 −2sinh2ρ

Notice that Rab = −2gab. This is a fundamental property of AdS3.

Ricci Scalar R = −6

Note that the Ricci scalar is a constant negative number. In AdS, the curvature
does not depend on location or moment within spacetime; this makes sense
because the right-hand side of Einstein’s field equation also is independent of
location or moment within spacetime.4

Einstein tensor Gab
H
HHHHa

b
τ ρ θ

τ −cosh2ρ 0 0
ρ 0 1 0
θ 0 0 sinh2ρ

Notice how Gab = gab. We have demanded that the right-hand side of Einstein’s
field equation vanishes, so we demand the cosmological constant Λ be set equal
to −1.5

4In fact, the stress-energy tensor is identically equal to 0.
5In accurate units, Λ = −1/r2sk. Note the negative sign here indicates a negative cosmo-

logical constant, indicating a negative vacuum energy, a positive vacuum pressure, and hence
a positive contribution to gravitational attraction. This is unlike the actual universe, in which
there appears to be a positive cosmological constant, indicating a positive vacuum energy,
a negative vacuum pressure, and hence a negative contribution to gravitational attraction –
that is, gravitational repulsion.
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2.1.2 Static Coordinates

An alternate coordinate system can be obtained by introducing coordinate r
such that r = sinh ρ. (r ≥ 0) This coordinate system is particularly useful for
the study of black hole physics in AdS. The resulting metric tensor is given by:6

ds2 = −(1 + r2)dτ2 +
1

1 + r2
dr2 + r2dθ2 (2.7)

A summary of the relevant geometric quantities is as follows:

Metric tensor gab Inverse metric tensor gab

HHH
HHa
b

τ r θ τ r θ

τ −(r2 + 1) 0 0 − 1
r2+1 0 0

r 0 1
r2+1 0 0 r2 + 1 0

θ 0 0 r2 0 0 1
r2

Christoffel symbols Γabc
HH

HHH

a
τ r θ

HH
HHHb

c
τ r θ τ r θ τ r θ

τ 0 r
r2+1 0 r(r2 + 1) 0 0 0 0 0

r r
r2+1 0 0 0 − r

r2+1 0 0 0 1
r

θ 0 0 0 0 0 −r(r2 + 1) 0 1
r 0

Riemann Curvature Tensor Rabcd

a = τ
HH

HHH

b
τ r θ

HHH
HHc
d

τ r θ τ r θ τ r θ

τ 0 0 0 0 − 1
r2+1 0 0 0 −r2

r 0 0 0 1
r2+1 0 0 0 0 0

θ 0 0 0 0 0 0 r2 0 0

6If one prefers to use units in which the skirt radius rsk is not necessarily of unit length,
then we write r = rsksinh ρ and the metric tensor takes the form:

ds2 = −
r2sk + r2

r2sk
dτ2 +

r2sk
r2sk + r2

dr2 + r2dθ2 (2.6)

However, in our calculations of the geometric quantities for this coordinate system, we will
again set rsk = 1.
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a = r
HHH

HH

b
τ r θ

H
HHHHc

d
τ r θ τ r θ τ r θ

τ 0 −(r2 + 1) 0 0 0 0 0 0 0
r r2 + 1 0 0 0 0 0 0 0 −r2

θ 0 0 0 0 0 0 0 r2 0

a = θ
HHH

HH

b
τ r θ

H
HHHHc

d
τ r θ τ r θ τ r θ

τ 0 0 −(r2 + 1) 0 0 0 0 0 0
r 0 0 0 0 0 1

r2+1 0 0 0

θ r2 + 1 0 0 0 − 1
r2+1 0 0 0 0

Ricci tensor Rab
HHH

HHa
b

τ r θ

τ 2(r2 + 1) 0 0
r 0 − 2

r2+1 0

θ 0 0 −2r2

Ricci Scalar R = −6

Einstein tensor Gab
HH

HHHa
b

τ r θ

τ −(r2 + 1) 0 0
r 0 1

r2+1 0

θ 0 0 r2

2.1.3 Conformal Coordinates

The conformal coordinates can be obtained from the global coordinates by defin-
ing a new variable χ such that r = sinh ρ = tanχ. (0 ≤ χ < π/2) The resulting
metric is given by:

ds2 =
1

cos2χ
(−dτ2 + dχ2 + sin2χdθ2) (2.8)
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Notice this metric is conformally flat with conformal factor 1
cos2χ . That is, this

metric would be flat if not for that scaling factor.

Metric tensor gab Inverse metric tensor gab

H
HHHHa

b
τ χ θ τ χ θ

τ −sec2 χ 0 0 −cos2χ 0 0
χ 0 sec2χ 0 0 cos2χ 0
θ 0 0 tan2χ 0 0 cot2χ

Christoffel symbols Γabc
HHH

HH

a
τ χ θ

H
HHHHb

c
τ χ θ τ χ θ τ χ θ

τ 0 tanχ 0 tanχ 0 0 0 0 0
χ tanχ 0 0 0 tanχ 0 0 0 1

cos χ sinχ

θ 0 0 0 0 0 −tanχ 0 1
cos χ sinχ 0

Riemann Curvature Tensor Rabcd

a = τ
HH

HHH

b
τ χ θ

HHH
HHc
d

τ χ θ τ χ θ τ χ θ

τ 0 0 0 0 −sec2χ 0 0 0 −tan2χ
χ 0 0 0 sec2χ 0 0 0 0 0
θ 0 0 0 0 0 0 tan2χ 0 0

a = χ
HHH

HH

b
τ χ θ

H
HHHHc

d
τ χ θ τ χ θ τ χ θ

τ 0 −sec2χ 0 0 0 0 0 0 0
χ sec2χ 0 0 0 0 0 0 0 −tan2χ
θ 0 0 0 0 0 0 0 tan2χ 0
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a = θ
HHH

HH

b
τ χ θ

H
HHHHc

d
τ χ θ τ χ θ τ χ θ

τ 0 0 −sec2χ 0 0 0 0 0 0
χ 0 0 0 0 0 sec2χ 0 0 0
θ sec2χ 0 0 0 −sec2χ 0 0 0 0

Ricci tensor Rab
H
HHHHa

b
τ χ θ

τ 2sec2χ 0 0
χ 0 −2sec2χ 0
θ 0 0 −2tan2χ

Ricci Scalar R = −6

Einstein tensor Gab
H
HHHHa

b
τ χ θ

τ −sec2χ 0 0
χ 0 sec2χ 0
θ 0 0 tan2χ

2.1.4 Poincaré Coordinates

The Poincaré coordinates (t, x, z) are related to the conformal coordinates by
the following transformations:

t =
sin τ

cos τ + sinχ cos θ

x =
sin θ sinχ

cos τ + sinχ cos θ

z =
cos χ

cos τ + sinχ cos θ

(2.9a)

(2.9b)

(2.9c)

For these coordinates, the spacetime interval is given by:

ds2 =
1

z2

(
−dt2 + dx2 + dz2

)
(2.10)

If the skirt radius rsk is not already equal to 1, then one must multiply the
spacetime interval by r2

sk.
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Metric tensor gab Inverse metric tensor gab

HHH
HHa
b

t x z t x z

t − 1
z2 0 0 −z2 0 0

x 0 1
z2 0 0 z2 0

z 0 0 1
z2 0 0 z2

Christoffel symbols Γabc
HH

HHH

a
t x z

HH
HHHb

c
t x z t x z t x z

t 0 0 − 1
z 0 0 0 − 1

z 0 0
x 0 0 0 0 0 − 1

z 0 1
z 0

z − 1
z 0 0 0 − 1

z 0 0 0 − 1
z

Riemann Curvature Tensor Rabcd

a = t
HH

HHH

b
t x z

HHH
HHc
d

t x z t x z t x z

t 0 0 0 0 − 1
z2 0 0 0 − 1

z2

x 0 0 0 1
z2 0 0 0 0 0

z 0 0 0 0 0 0 1
z2 0 0

a = x
HH

HHH

b
t x z

HHH
HHc
d

t x z t x z t x z

t 0 − 1
z2 0 0 0 0 0 0 0

x 1
z2 0 0 0 0 0 0 0 − 1

z2

z 0 0 0 0 0 0 0 1
z2 0
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a = z
HHH

HH

b
t x z

H
HHHHc

d
t x z t x z t x z

t 0 0 − 1
z2 0 0 0 0 0 0

x 0 0 0 0 0 1
z2 0 0 0

z 1
z2 0 0 0 − 1

z2 0 0 0 0

Ricci tensor Rab
H
HHHHa

b
t x z

t 2
z2 0 0

x 0 − 2
z2 0

z 0 0 − 2
z2

Ricci Scalar R = −6

Einstein tensor Gab
HHH

HHa
b

t x z

t − 1
z2 0 0

x 0 1
z2 0

z 0 0 1
z2

2.2 The Poincaré Disk

The Poincaré Disk is a two-dimensional subspace of AdS3 obtained by holding
τ constant in the global, static, or conformal coordinate systems, or by setting
t ≡ 0 in the Poincaré coordinate system. That is, from the perspective of an
observer whose temporal coordinate is the proper time τ , all spacetime events
on a common Poincaré disk are simultaneous. From (2.5), we see the distance
metric in global coordinates is defined by:

ds2 = dρ2 + sinh2ρ dθ2 (2.11)

where 0 ≤ ρ < ∞ and 0 ≤ θ < 2π. Consider a radial segment emanating
outwards from the origin (dθ = 0). The length of that segment is given by:

s =

∫
ds =

∫
dρ = ρ+ cnst (2.12)
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where the constant is manually set equal to 0. This underscores one of the ad-
vantages of using the global coordinate system: one unit in the radial coordinate
ρ equals one unit of length. Clearly, this integral will diverge as ρ is permit-
ted to increase without bound. Hence the Poincaré disk represents an infinite
two-dimensional space. Nevertheless, it is depicted (as its name would suggest)
by a finite disk, though one is supposed to imagine that the disk’s boundary is
infinitely far away from any point in its interior. These points are called ideal
points, omega points, vanishing points, or points at infinity [19].

The global coordinates (ρ, θ) are related to the Euclidean polar coordinates
(rEucl, θEucl) by the relation:

ρ = ln

(
1 + rEucl
1− rEucl

)
= 2 tanh−1(rEucl)

θ = θEucl

(2.13a)

(2.13b)

where 0 ≤ rEucl < 1 and 0 ≤ θEucl < 2π [19].

2.2.1 Geodesics of the Poincaré Disk

Ordinarily in general relativity, the geodesics of principal interest are the time-
like and null geodesics, as these are the possible paths which a massive and
massless particle could take through spacetime, respectively. However, for pur-
poses of this study, we are primarily interested in a subset of the spacelike
geodesics – those with constant proper time, as those paths are confined to the
Poincaré disk.

Before solving for the geodesics in terms of the AdS coordinate systems
described in the previous subsection, let us first describe the geodesics in a
Euclidean framework: the geodesics of the Poincaré disk are given by circular
arcs which intersect the disk boundary at a pair of omega points such that a
line tangent to the circular arc is perpendicular to a line tangent to the Poincaré
disk boundary.7 Using this simple description, one can derive a general equation
for these circular arcs in terms of the Euclidean coordinates rEucl and θ.8 The
result is:

r2
Eucl + 1

2rEucl
cos α = cos(θ − θb) (2.14)

Here, θb is the angular coordinate of the omega point that lies on the unique
radial line bisecting the circular arc, and α is the angular separation between
θb and either omega point which intersects the arc. We can also depict these

7In the special case where these two omega points are directly opposite one another, the
geodesic connecting them is simply a straight line running through the center of the disk.

8Since θEucl = θ, the angular coordinate for the global, static, and conformal coordinate
systems, we can safely drop the subscript on this coordinate.
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Figure 2.3: “Angels and Devils” – an artistic rendition of the Poincaré disk by
M.C. Escher. One is supposed to imagine that all angels and devils have the
same area. The edge of the disk is infinitely far away from all points in the
interior.

circular arcs with Euclidean Cartesian coordinates (x, y). In those coordinates,
this relation is: (

x− cos θb
cos α

)2

+

(
y − sin θb

cos α

)2

= tan2α (2.15)

We are now ready to derive the formulas for the geodesics in terms of the
coordinate systems described in the previous subsection.9 Using λ as our affine
parameter,10 we apply the geodesic equations (A.9):

Global coordinates:
d2ρ

dλ2
− sinh ρ cosh ρ

(
dθ

dλ

)2

= 0

d2θ

dλ2
+ 2 coth ρ

(
dρ

dλ

)(
dθ

dλ

)
= 0

(2.16a)

(2.16b)

Solution: tanh ρ cos(θ − θb) = cos α (2.16c)

9Recall that we have imposed the constraint that τ is constant for the global, static, and
conformal coordinate systems. For the Poincaré coordinate system, we impose the condition
that t = 0, as this corresponds to taking τ = 0.

10This simply means that λ is some linear function of the distance s: λ = as+ b
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Static coordinates:
d2r

dλ2
− r

r2 + 1

(
dr

dλ

)2

− r (r2 + 1)

(
dθ

dλ

)2

= 0

d2θ

dλ2
+

2

r

(
dr

dλ

)(
dθ

dλ

)
= 0

(2.17a)

(2.17b)

Solution:
r√

r2 + 1
cos(θ − θb) = cos α (2.17c)

Conformal coordinates:
d2χ

dλ2
+ tanχ

[(
dχ

dλ

)2

−
(
dθ

dλ

)2
]

= 0

d2θ

dλ2
+

2

cos χ sinχ

(
dχ

dλ

)(
dθ

dλ

)
= 0

(2.18a)

(2.18b)

Solution: sinχ cos(θ − θb) = cos α (2.18c)

Poincaré coordinates:
d2x

dλ2
− 2

z

(
dx

dλ

)(
dz

dλ

)
= 0

d2z

dλ2
+

1

z

[(
dx

dλ

)2

−
(
dz

dλ

)2
]

= 0

(2.19a)

(2.19b)

Solution: Write x and z each as a function of g, which itself is a function of
the distance s [20]:11

x(g) =
l

2
cos g

z(g) =
l

2
sin g

g(s) = 2 tan−1 (es)

(2.19c)

(2.19d)

(2.19e)

The reader is free to verify that these formulas are indeed correct and that
they correspond to the Euclidean circular arcs as described in equations (2.14)
and (2.15).

11l is related to the quantity α by α = πl/L, where L is the Euclidean circumference of the
Poincaré disk.
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Figure 2.4: A sample geodesic in a Poincaré disk with omega points P and Q
and interior points A and B

[19]

2.2.2 Distance and Arc Length in the Poincaré Disk

To find the distance between two interior points A and B, draw the unique
geodesic that intersects both of them and extend the geodesic to the boundary.
Let the omega points where this geodesic intersects the boundary be denoted P
and Q. See figure 2.4.

The distance between A and B is then defined in terms of the Euclidean arc
lengths AP , BQ, AQ, and BP as follows [19]:

distance(A,B) ≡
∣∣∣∣ln(AP ·BQAQ ·BP

)∣∣∣∣ (2.20)

One can verify that the formula for ρ (2.13b) is valid by applying formula (2.20)
to the special case where B is the center of the disk and A is a point at Euclidean
radius rEucl from the center for the disk. One can also verify that any point on
the boundary is infinitely far away from any point in the interior:

Theorem 2.2.1. The distance between any point in the Poincare disk and any
ideal point is infinite.

Proof. Using the distance formula (2.20) for the Poincaré disk, let us calcu-
late the distance between interior point A and ideal point Q by making the
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substitution B = Q:

distance(A,Q) ≡
∣∣∣∣ln(AP ·QQAQ ·QP

)∣∣∣∣ (2.21)

Of course, QQ isn’t actually a line segment, but we can think of this as the
limiting case in which B approaches Q. Hence the numerator of this fraction is
infinitesimal (approaching zero in the limit), while the denominator is positive.
Hence the absolute value of the logarithm is increasing without bound in the
limit. If both points are ideal (A = P ), then the numerator is still zero and the
denominator is still non-zero, and hence we reach the same result. �

This theorem verifies that the Poincaré disk has infinite spatial extent. This
is important in that it means that length of all geodesics is infinite. As we will
see later, in order to speak of the “length” of a geodesic, we must impose a
manual cutoff.
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Chapter 3: Quantum Information
Theory & Quantum
Field Theory

The reader who is well-versed in quantum information theory and quantum
field theory can feel free to skip to the next chapter; this chapter details key
background material in these areas. However, even some advanced readers could
benefit from this brief overview.

3.1 Quantum Information Theory

3.1.1 Quantum States & Normalization

A quantum system in an n-dimensional state space has a wave function which
can be written:

|ψ〉 =

n∑
k=1

ak |ak〉 (3.1)

where |ak〉 represents a basis state with corresponding amplitude ak. The state

must be normalized:
∑n
k=1 |ak|

2
= 1. Often, it is helpful to choose a basis for

a system such that the basis vectors are the eigenvectors of the observable in
which one is most interested.

Some quantum observables may require a state space with an infinite number
of dimensions, sometimes uncountably infinite. The most typical example is
measuring the position of a particle along a one-dimensional axis – there are an
uncountably infinite number of possible locations, each of which corresponds to
its own unique eigenstate. In this case, it is most efficient to express the wave
function as an integral over all possible eigenstates:
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|ψ〉 =

∫
ak da |ak〉 (3.2)

where the upper and lower bounds on the integral correspond to the maximum
and minimum values of the observable. The normalization condition is then
written as:

∫
|ak|2da = 1.

3.1.2 The Density Operator, Pure States, and Entropy

For every state |ψ〉, we define a density matrix ρ (often regarded as an operator)
as follows:

ρ ≡ |ψ〉 〈ψ|
〈ψ|ψ〉

=
|ψ〉 〈ψ|
Z

(3.3)

where Z ≡ 〈ψ|ψ〉 is the partition function associated with the state |ψ〉. |ψ〉
is normalized if and only if Z = 1. That is, for any normalized state |ψ〉, its
corresponding density operator ρ satisfies the condition: tr(ρ) = 1. For much of
this paper (unless otherwise stated), we will assume that |ψ〉 has already been
normalized.

For all quantum states, tr(ρ2) ≤ 1 with equality if and only if |ψ〉 is a pure
state. We can think of this mathematical condition as being the definition of a
pure state, but from an experimentalist’s point of view, a pure state is a state
for which there exists a quantum observable such that there is a 100% chance
of obtaining a certain measured value if one performs a measurement of that
observable. Mathematically, this means that there exists a set of basis vectors
{ |ak〉 } spanning the state space such that the amplitudes for all but one of
these basis vectors is zero, with the remaining basis vector having an amplitude
of magnitude 1.

For a quantum state with density operator ρ, we define the von Neumann
entropy S as follows:

S(ρ) = −tr(ρ log ρ) = −
∑
x

λx log λx (3.4)

where λx represents an eigenvalue of the density matrix ρ.1,2 At this point, it
is very natural to ask what the von Neumann entropy of a quantum system in
a pure state is. Selecting the eigenvectors { |ak〉 } of the relevant observable to
be the basis vectors, we can write our state as: |ψ〉 =

∑
k δkj |ak〉 = |aj〉, where

1In the special case where λx = 0, we use the limiting case λx → 0 instead. So we have
0 log 0 ≡ 0.

2The base of the logarithm is not of great importance; however, for systems with an
n-dimensional state space (for finite n), the base is typically taken to be n. In general, a
popular choice for the base is Euler’s number e, corresponding to a natural logarithm. For
the remainder of this paper, the notations log and ln will be used somewhat interchangeably,
with ln being used to emphasize the natural base e in certain cases.

24



|aj〉 is the eigenstate of the system.3 All but one of the eigenvalues of ρ are then
0, with the lone exception being 1. The von Neumann entropy for a pure state
is then:

−
∑
k 6=j

[0 log 0]− 1 log 1 = −0− 0 = 0 (3.5)

This is an extremely important result and is in fact a biconditional: The von
Neumann entropy of a quantum state is 0 if and only if the state is pure.

Theorem 3.1.1. There is a correspondence between the von Neumann entropy
−tr(ρ log ρ) and the familiar Boltzmann entropy kB logΩ from standard ther-
modynamics.

Proof. We consider the case where the vector space is finite-dimensional, and the
argument easily generalizes to the infinite-dimensional case, whether countable
or not. Assume |ψ〉 is normalized. We expand out ρ in all its basis states:

ρ = |ψ〉 〈ψ| =
n∑
k=1

ak |ak〉
n∑
l=1

〈al| a∗l (3.6)

The (k, l) element of matrix ρ is akal. Taking the classical limit corresponds to
eliminate all off-diagonal entries, as this washes out the quantum interference
effects:

ρ =

n∑
k=1

n∑
l=1

δk,l ak a
∗
l |ak〉 〈al| =

n∑
k=1

|ak|2 |ak〉 〈ak| (3.7)

where |ak|2 now represents the probability pk of the system being in state |ak〉.4
Thus the eigenvalues of ρ are simply given by pk = |ak|2. The von Neumann
entropy is then given by:

S = −
n∑
k=1

pk log pk (3.8)

This is the Shannon entropy of classical information theory. To make contact
with classical thermodynamics, we introduce Ω as the number of microstates
corresponding to a particular macrostate. That is, we set: n = Ω. We now
impose one of the most fundamental assumptions of statistical mechanics: a
system is equally likely to be found in each of its microstates. So for a system
in a given macrostate with multiplicity Ω, the probability pk = 1/Ω for every
state. We now have:

S = −
Ω∑
k=1

1

Ω
log

(
1

Ω

)
= −Ω

1

Ω
log

(
Ω−1

)
= −− logΩ = log Ω (3.9)

3To be more precise, we could insert a coefficient of the form eiδk for some phase shift δk
to each basis vector |ak〉, but that is not relevant for what follows.

4In this case, the lack of certainty is purely classical. ρ is now effectively a one-dimensional
distribution function for the probability of the system being in state |ak〉.
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We now simply insert a factor of Boltzmann’s constant kB and arrive at the
famous result:

S = kB logΩ (3.10)

�

3.1.3 Dividing a System into Subsystems

Now suppose we can partition our system into disjoint subsystems A, B, C,
. . . .5 Often, we will have exactly two such subsystems, denoted A and B.6 In
this case, we now describe the von Neumann entropy and the density matrix for
each subsystem separately by tracing over the basis states associated with the
other subsystem:

SA = −trA(ρA log ρA), ρA = trB(ρ)

SB = −trB(ρB log ρB), ρB = trA(ρ)

(3.11a)

(3.11b)

Also note:

trA(ρA) = trA[trB(ρ)] = tr(ρ) = 1

trB(ρB) = trB [trA(ρ)] = tr(ρ) = 1

(3.12a)

(3.12b)

In this study, we will often think of our entire system A∪B as our entire model
universe, with A being the subsystem of interest and B being that subsystem’s
surroundings. In this case, we now refer to SA and SB as the entanglement
entropy of subsystems A and B, respectively, because this value quantifies the
degree of quantum entanglement within the subsystem. The entanglement en-
tropy satisfies three key properties [20]:

1. Entanglement entropy equivalence for complementary subsystems: given
two complementary subsystems A and B, SA = SB .7 This property is
profound in that it allows us to choose whether we wish to trace over a
subsystem’s density matrix or that of its complement when computing the
subsystem’s entropy.

2. Subadditivity: For any two disjoint subsystems C and D, SC + SD ≥
SC∪D.8

5The subsystems may share a small finite number of boundary points, but their intersection
is otherwise empty and their union is the entire system

6Some authors write B = Ā to emphasize that A and B are complements of one another.
7In this paper, we will only study systems in the idealized case of zero temperature. At

finite temperature, this property no longer holds.
8This property does not require that C ∪D is the entire system, merely that C and D are

disjoint.
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3. Strong subadditivity: For any three disjoint subsystems C, D, and E,
SC∪D∪E + SE ≤ SC∪E + SD∪E . Notice that in the special case where E
is empty, this simply reduces to the regular subadditivity property above.

These properties are stated here without proof.9 However, a version of property
(1) will be proved in Chapter 5 with Srednicki’s Holography Theorem. Property
(2) is particularly counterintuitive, as one naturally expects entropy to be an
extensive quantity and therefore additive: SC + SD = SC∪D. However, this is
not necessarily the case. The holographic principle teaches us that two disjoint
subsystems can contain complementary information, rendering at least some of
the information in their union redundant.

We define the family of Rényi entropies as follows:

S
(n)
A =

1

1− n
log [trA (ρnA)] (3.13)

with an analogous definition for S
(n)
B .

Theorem 3.1.2. The von Neumann entropy is a special limiting case of the
Rényi entropy:

SA = lim
n→1

S
(n)
A (3.14)

Proof.

S
(n)
A = − ln [trA (ρnA)]

n− 1
(3.15)

Taking the limit as n→ 1 requires the use of L’Hôpital’s rule:

lim
n→1

S
(n)
A = − lim

n→1

∂n (ln [trA (ρnA)])

∂n(n− 1)
= − lim

n→1

∂

∂n
(ln [trA (ρnA)]) (3.16)

This intermediate formula serves another alternate definition for the von Neu-
mann entropy. We continue to simplify the expression:10

lim
n→1

S
(n)
A = − lim

n→1

∂n [trA (ρnA)]

trA (ρnA)
= − lim

n→1

trA(ρnA ln ρA)

trA (ρnA)
=
−trA(ρA ln ρA)

trA (ρA)
(3.17)

The numerator is precisely the entanglement entropy of subsystem A and the
denominator is 1 for all density operators:

lim
n→1

S
(n)
A = SA (3.18)

�
9For proofs and more information on these properties, see Chapter 11 of Nielsen &

Chuang’s “Quantum Computation and Quantum Information” [16].
10The reader can check that ∂n

[
trA

(
ρnA
)]

= trA(ρnA ln ρA) by expanding out the trace of
a matrix as the sum of its eigenvalues and applying property (C.2).
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3.2 Quantum Field Theory

The central premise of quantum field theory is that every particle and every
wave in the universe can be thought of as an excitation of a quantum field
defined over all space and time [13]. Typically, we refer to this quantum field as
φ, often displaying its dependence on space and time coordinates: φ(t, ~x).11 φ
takes the place of the position coordinate x in elementary quantum mechanics.
Since x̂ is generally thought of as an operator in elementary quantum mechanics,
φ̂ must be thought of as an operator in quantum field theory.12 The field has
Lagrangian density:

L =
1

2

[(
∂φ

∂t

)2

− (∇φ)2 −m2φ2

]
(3.19)

In our study, there is only one spatial dimension and the field is massless. So
this reduces to:

L =
1

2

[(
∂φ

∂t

)2

−
(
∂φ

∂x

)2
]

(3.20)

We define the action S as a functional of φ:13

S[φ(t, x)] =

∫
Ldt =

∫ ∫
L dx dt =

∫ ∫
1

2

[(
∂φ

∂t

)2

−
(
∂φ

∂x

)2
]
dx dt (3.21)

where L is the Lagrangian, the integral of the Lagrangian density L. We define
the conjugate momentum density as:

π(t, x) ≡ ∂L
∂φ̇

(3.22)

where φ̇ is a shorthand for ∂φ
∂t . This conjugate momentum density π̂ is also

an operator and plays a very analogous role in quantum field theory as the
momentum operator p̂ plays in ordinary quantum mechanics. In this case,
π = φ̇. We introduce the Hamiltonian density:

H ≡ πφ̇− L (3.23)

The Hamiltonian is given by:

H =

∫
H dx (3.24)

11In this paper, we will only study quantum fields in (1 + 1)-dimensional spacetimes, so we
will drop the vector coordinate and simply write φ(t, x).

12However, for simplicity sake, we will often drop the operator symbol (̂ ), only using it
when it is particularly relevant.

13The action S is not to be confused with entropy, a quantity also frequently denoted with
a capital S. In this paper, the meaning of every S used should be clear from context.
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In our case, the Hamiltonian density evaluates to:

H =
1

2

[
φ̇2 +

(
∂φ

∂x

)2
]

(3.25)

The operators φ̂ and π̂ do not commute. Their commutation relation is given
by: [

φ̂(t, x), π̂(t′, x′)
]

= i~ δ(t− t′) δ(x− x′) (3.26)

Wave functions ψ(t, x) in quantum mechanics are replaced by wave functionals
Ψ[φ(t, x)] = 〈φ(t, x)|Ψ〉 in quantum field theory. These wave functionals must
solve the Schrödinger equation:

i~
∂

∂t
Ψ[φ(t, x)] = HΨ[φ(t, x)] (3.27)

The eigenstates of this equation take the form |φ(t, x)〉 for eigenvalue φ(t, x) and

operator φ̂(t, x):

φ̂(t, x) |φ(t, x)〉 = φ(t, x) |φ(t, x)〉 (3.28)

We now have the necessary background material to proceed to study con-
formal field theory in the next two chapters.
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Chapter 4: Entanglement Entropy
in Conformal Field The-
ory

In this chapter, we derive an expression for the entanglement entropy in (1 +
1)-dimensional conformal field theory. We will find a logarithmic relationship
between the length of an interval and the maximum entropy it can harbor.
This result will prove critical in Chapter 6 as we draw the connection between
entanglement entropy in CFT2 and geodesics in AdS3.

4.1 Path Integral Representation

Let us adopt the abbreviation: φ0(x) ≡ φ(t = 0, x). A wave functional Ψ has a
path integral representation given by:

Ψ [φ0(x)] = 〈φ0(x)|Ψ〉 =

∫ t=0, φ0(x)

t=−∞
[Dφ(t, x)] exp

(
i

~
S[φ]

)
(4.1)

Here, S[φ] denotes the action associated with the field and is not to be confused
with entropy. Similarly, the conjugate wave functional is given by:

Ψ∗ [φ′0(x)] = 〈Ψ|φ′0(x)〉 =

∫ t=∞

t=0,φ′0(x)

[Dφ(t, x)] exp

(
i

~
S[φ]

)
(4.2)

The partition function Z = 〈Ψ|Ψ〉 is computed by performing a path integral
over the entire space at a given moment in time (t = 0 in this case). This
amounts to inserting the complete set of basis states

∫
D [φ0(x)] |φ0〉 〈φ0| as

follows:

Z =

∫
D [φ0(x)] 〈Ψ|φ0〉 〈φ0|Ψ〉 =

∫
D [φ0(x)] Ψ∗ [φ0(x)] Ψ [φ0(x)] (4.3)
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Now suppose that we divide our spatial interval into two segments, A and B.
The state |Ψ〉 of the entire system can be decomposed into the direct product∣∣ΨA

〉 ∣∣ΨB
〉

1, representing the portions of |Ψ〉 in regions A and B separately.

The partial density matrix ρA is given by 1
Z

∣∣ΨA
〉 〈

ΨA
∣∣. Inserting a complete

set of basis states, we have [17]:

ρA =
1

Z

∫
D
[
φB0 (x ∈ B)

] 〈
φB0
∣∣ΨB

〉
|ΨA〉 〈ΨA|

〈
ΨB

∣∣φB0 〉
=

1

Z

∫
D
[
φB0 (x ∈ B)

] 〈
φB0
∣∣Ψ〉 〈Ψ∣∣φB0 〉 (4.4)

This matrix is a path integral that traces over the states of φ0 in region B but
not region A. Recall that φ0 denotes φ at t = 0 and that 〈φ0|Ψ〉 and 〈Ψ|φ0〉
denote the path integrals of φ from t = −∞ to t = 0− and from t = 0+ to
t =∞, respectively. We now consider a matrix element of ρA, denoted:

[ρA]ab ≡
〈
φAa
∣∣ ρA ∣∣φAb 〉 =

1

Z

∫
D
[
φB0 (x ∈ B)

] 〈
φAa
∣∣ 〈φB0 ∣∣Ψ〉 〈Ψ∣∣φB0 〉 ∣∣φAb 〉 (4.5)

where φaA ≡ φaA(t = 0−, x ∈ A) and φbA ≡ φbA(t = 0+, x ∈ A) are boundary
conditions of the field φ in region A at t = 0− and t = 0+, respectively.2 So
with this integral representation, we can clearly see how the states in the entire
spacetime picture have been traced over, with the exception of the states in the
region A at the exact moment t = 0. We now execute the integral over the
entire (1 + 1)-dimensional spacetime:

[ρA]ab =
1

Z

∫
D [φ(t, x)] eiS[φ]/~ ·

∏
x∈A

δ
[
φ(0+, x)− φAb (x)

]
δ
[
φ(0−, x)− φAa (x)

]
(4.6)

We now consider an expanded spacetime Mn created by “sewing” together n
copies of this spacetime model, each with a discontinuous “cut” along A. The
density matrix for this state is ρnA. Let Zn ≡ Z[Mn] denote the partition
function for this expanded spacetime. Then we have:

trA(ρnA) =
Zn

(Z)n
(4.7)

Now, with the value for SA derived in equation (3.16) as part of theorem 3.1.2,
we have [17]:

SA = − lim
n→1

∂

∂n

(
ln

[
Zn

(Z)n

])
= − lim

n→1

∂

∂n
(lnZn − n lnZ) (4.8)

1The A and B here are indices denoting the portions of the field φ located in regions A
and B. They are not exponents. All superscripts labelled A, B, a, or b in this chapter are
indices, not exponents, unless otherwise stated.

2The analogous “boundary conditions” for region B would simply be φB0 (x), which is
precisely the quantity over which we are integrating.
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Figure 4.1: The complex plane. Note the black & white symbol at the origin
and the gray unit circle. The light blue, green, red, and purple symbols which lie
on the unit circle represent the numbers l/2, il/2, −l/2, and −il/2, respectively.

4.2 An Interval in the Complex Plane

We consider an interval of length l in the complex plane. This interval is situated
along the real axis such that its endpoints lie at z = −l/2 and l/2.

4.2.1 Conformal Transformations

We now execute a pair of conformal transformations to make the analysis sim-
pler. First, define a transformation ζ : C\{z = l/2} → C as follows [17]:

ζ ≡ z + l/2

z − l/2
(4.9)

This maps the semi-open interval [−l/2, l/2) to the semi-infinite line (−∞, 0]
and “flips” the interval in the process. See figures 4.1 and 4.2.

We now execute another conformal transformation from the complex plane
to the cylinder w : C→ R× S1 given by [17]:

w ≡ τ + iϕ =
L

2π
ln ζ (4.10)

where τ, ϕ ∈ R and L is the circumference of the cylinder. To take the logarithm
of a complex number ζ, refer to (B.5). Notice that the behavior of ϕ is periodic,
so we can restrict its domain to 0 ≤ ϕ < L and impose periodic boundary
conditions: ϕ ∼ ϕ + kl for k ∈ Z. Also note how the interval in which we are
interested behaves under this transformation: it maps from the semi-infinite line
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Figure 4.2: A graph depicting the complex mapping ζ(z) = z+l/2
z−l/2 . The origin

gets mapped to −1, and the interval (−l/2+a, l/2−a) gets flipped and mapped
to (−l/a, −a/l).

Figure 4.3: A graph depicting the complex mapping w(z) = L/(2π) ln z.

(−∞, 0] to another copy of the semi-infinite line (−∞, 0], scaling logarithmically
in the process. See figures 4.3 and 4.4.

4.2.2 Imposing a Cutoff

It is well-known in quantum field theory that, if excitations are allowed to be
unrestricted, then arbitrarily small-scale behavior generally yields a divergent
contribution to physical quantities such as entropy. As this cannot physically
be the case, we are compelled to introduce a manual cutoff to the ends of
our interval, much in the same spirit that Max Planck introduced his famous
constant to explain blackbody radiation. We ignore all points within a small
radius a of either endpoint z = ±l/2. Physically, a corresponds to the smallest
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Figure 4.4: A graph depicting the combined complex mapping w(ζ(z)) =

L/(2π) ln
(
z+l/2
z−l/2

)
. This stretches out the original interval along the real (hor-

izontal) axis, with enpoints at τ = ± L
2π ln

(
l
a

)
. It is on this transformed space

which we perform the key entropy calculations.

scale at which an observer is capable of distinguishing a subsystem A within
the interval with the remainder of the interval B, which should be thought of as
the surroundings of A. At extremely small scales, the classical intuitive notions
of space are no longer applicable anyway, so it is completely reasonable that a
should have some finite value.

With this cutoff introduced, our interval now ranges from −l/2+a to l/2−a.
Under transformations (4.9) and (4.10), our interval gets mapped to the line at
ϕ = 0 (the real number line), with endpoints at τ = ± L

2π ln
(
l
a

)
. Let us denote:

β ≡ L

π
ln

(
l

a

)
(4.11)

The choice to call this parameter β is deliberate, as it is meant to suggest the
Boltzmann factor:

β =
1

kBT
(4.12)

for a classical thermodynamic system with temperature T and Boltzmann con-
stant kB , and:

β =
it

~
(4.13)

for a quantum system. Then the partition function of our cylinder is given by
[17]:

Z[Mn] = 〈0| e−βH |0〉 (4.14)

for ground state |0〉. The Hamiltonian H of this system, stated here without
rigorous proof, is given by [17]:

H =
2π

nL

(
L0 + L̄0 −

c

12

)
(4.15)
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where L0 and L̄0 are creation and annihilation operators3 that will cancel out
when applied in formula (4.14) and c is the central charge of this particular
conformal field theory. We now solve for the logarithm of the partition function
by plugging in our results from formulas (4.11) and (4.15):

lnZ[Mn] = −〈0|βH |0〉 = 〈0|
[
c

6n
ln

(
l

a

)]
|0〉 =

c

6n
ln

(
l

a

)
(4.16)

We now plug this value into equation (4.8) to solve for the entanglement entropy
[17]:4

SA = − lim
n→1

∂

∂n

[
c

6n
ln

(
l

a

)
− n · c

6
ln

(
l

a

)]
= − c

6
ln

(
l

a

)
lim
n→1

∂

∂n

[
1

n
− n

]
= − c

6
ln

(
l

a

)
lim
n→1

[
−1

n2
− 1

]
= − c

6
ln

(
l

a

)
[−1− 1] =

c

3
ln

(
l

a

)
(4.17)

This is a very important result. It agrees with the holographic principle, which
states that in a one-dimensional space, the maximum entropy capacity should
vary logarithmically with the length of an interval. This result will also be of
great importance in the following chapter as we look to draw the relationship
between AdS and CFT.

4.3 Entropy Results

Our final result for the entanglement entropy of subsystem A is [3]:

SA =
c

3
ln

[
L

πa
sin

(
πl

L

)]
(4.18)

where l is the length of subsystem A, L is the length of the total system A∪B, a
is the ultraviolet cutoff (lattice spacing), and c is the central charge of the CFT.
In the case where subsystem A is very small relative to the entire system (that
is, l � L), then we can apply the small angle approximation (B.23b) formula,
obtaining:

SA =
c

3
ln

[
l

a

]
(4.19)

These results will be of vital importance in the next chapter where we will
draw the relationship between AdS and CFT.

3These creation and annihilation operators are not to be confused with the Lagrangian
density L.

4Note that Z[Mn] is simply Z in the special case where n = 1.
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Chapter 5: Srednicki’s Theorem
& Algorithm

Before turning to the Ryu-Takayanagi Proposal on the AdS/CFT correspon-
dence, we devote a chapter to the contributions of Mark Srednicki to the subject
of entanglement entropy and holography. We flesh out a theorem which suggests
that the entanglement entropies of complementary subsystems are identical,
leading us to the conclusion that entropy cannot be an extensive quantity. That
is, S ∼ R2 for a three-dimensional region. We then describe a matrix algorithm
for estimating the entanglement entropy of a quantum field by treating it as a
series of quantum harmonic oscillators. The author has built Srednicki’s matrix
algorithm using MATLAB to show that, for a one-dimensional region in CFT,
the entanglement entropy of a quantum field appears to vary logarithmically
with the length of the interval, for sufficiently small intervals.

5.1 Srednicki’s Holography Theorem

Let us consider a system consisting of a free, massless, scalar quantum field
residing in a large spherical region (in ordinary 3-dimensional Euclidean space)
of radius Rout. Let subsystem A consist of the field as restricted to a concentric
sphere of radius Rin (Rin < Rout). Naturally, the surroundings B to this
subsystem consist of the field at radii larger than Rin but less than Rout.

1 If
we like, we can make Rout extremely large – the surroundings B can effectively
represent the entire model universe except for the region inside the inner sphere.
We seek to calculate the respective von Neumann entropies Sin and Sout of the
inner and outer regions. Of critical importance here is the relationship between
the entropy S and the radius R of a region of interest. We will find that S ∼ R2

in three-dimensional space. In general, S ∼ Rd−1 in d-dimensional space, with

1The reader should note that, in this chapter, quantities associated with subsystem A
will often be designated with the subscript in to emphasize that subsystem A resides inside
the inner sphere; similarly, quantities associated with the surroundings B will often often be
designated with the subscript out; generic quantities will not be denoted with subscripts.
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Figure 5.1: The small sphere divides the overall region inside the large sphere
into inner and outer components. We seek to calculate the maximum entropy
in each region.

S ∼ log R in the special case when d = 1.2 See figure 5.1.

Theorem 5.1.1. Sin = Sout

Proof. Let |0〉 denote the non-degenerate normalized ground state of the entire
system and let ρ = |0〉 〈0| be the ground state density operator. Equations
(3.11a) and (3.11b) now read:

{
Sin = −trin(ρin log ρin) ρin = trout (|0〉 〈0|)

Sout = −trout(ρout log ρout) ρout = trin (|0〉 〈0|)
(5.1a)

(5.1b)

It is important to note that |0〉 itself consists of a direct product of ket vectors
|0〉in |0〉out, representing the substates of A and B, respectively. We can expand
this as: |0〉 =

∑
i,a ψia |i〉in |a〉out, for some tensor-like quantity ψia. The cor-

responding bra vector is given by:
∑
j,b 〈j|in 〈b|out ψ∗bj .3,4 In this notation, we

have:

2It should be noted, however, that these results are most applicable when Rin � Rout,
as this allows us to treat Rout as effectively infinite.

3The choice of index names is not important, so long as indices that vary independently
of one another have distinct names.

4A coefficient paired with a bra vector corresponds to a transposed matrix.
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ρin = trout

∑
i,a

∑
j,b

ψia |i〉in |a〉out 〈j|in 〈b|out ψ
∗
bj


=
∑
i,j,a

ψia |i〉in 〈j|in |a〉out 〈a|out ψ
∗
aj =

∑
i,j,a

ψia |i〉in 〈j|in ψ
∗
aj (5.2)

ρout = trin

∑
i,a

∑
j,b

ψia |i〉in |a〉out 〈j|in 〈b|out ψ
∗
bj


=
∑
i,a,b

ψai |i〉in 〈i|in |a〉out 〈b|out ψ
∗
ib =

∑
i,a,b

ψai |a〉out 〈b|out ψ
∗
ib (5.3)

where our notation is such that the order of the indices is always such that
the second index of the first matrix element matches the first index of the
second matrix element so that the matrix multiplication comes out cleanly.
This requires us to switch the order of the indices of ψ and ψ∗ in calculating
ρout, meaning the matrices are being transposed. The result is:

(ρin)ij =
(
ψψ†

)
ij

or ρin = ψψ†

(ρout)ab =
(
ψTψ∗

)
ab

or ρout = ψTψ∗

(5.4a)

(5.4b)

Consider the matrix ρ∗out = (ψTψ∗)∗ = ψ†ψ. By (C.9) and (C.10), the matrices
ρin, ρout, and ρ∗out must all be Hermitian and hence their eigenvalues must all be
real numbers. By (C.11), ρ∗out must have the same set of eigenvalues as ρout and
hence the same trace. Applying all these properties along with (C.3) together,
we conclude:

tr(ρin) = tr(ψψ†) = tr(ψ†ψ) = tr(ρ∗out) = tr(ρout) (5.5)

This implies that ρin and ρout have the same eigenvalues (if one of them has a
higher rank, then its remaining eigenvalues will be extra zeros). From (3.4), we
have:

Sin = −trin(ρin log ρin) = −
∑
x

λinx log λinx (5.6)

Sout = −trout(ρout log ρout) = −
∑
x

λoutx log λoutx (5.7)

But since ρin and ρout have the same non-zero eigenvalues, we can conclude:

Sin = Sout (5.8)

�
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This is an astonishing result. It says that the total entropy outside of subsys-
tem A is equivalent to the entropy inside of subsystem A, regardless of the size
of A. A could have an extremely small volume and yet this conclusion would
still hold. How can this be? Though this is not yet a definitive proof of the
intimate relationship between entropy and area, this result is quite suggestive.
The two-dimensional boundary between subsystem A and surroundings B is the
only common element of the two regions, regardless of their relative sizes. This
suggests that the area of this boundary is proportional to the entropy of each
region.

5.2 The Srednicki Entropy Algorithm

5.2.1 Two Coupled Harmonic Oscillators

Consider a system of two coupled one-dimensional harmonic oscillators, which
we will informally refer to as 1 and 2. Each oscillator is tethered to a fixed wall
by a spring of stiffness k0, and the oscillators are tethered to one another by
a spring with stiffness k1. For simplicity, let us set the mass of all oscillators
equal to 1. Let x1 denote the displacement from equilibrium for oscillator 1
and x2 denote the displacement from equilibrium for oscillator 2. Even without
knowledge of quantum mechanics, one can write down the Hamiltonian of this
system:

H =
1

2

[
p2

1 + p2
2 + k0(x2

1 + x2
2) + k1(x1 − x2)2

]
(5.9)

Before solving the Schrödinger equation, let us first define a few auxiliary quan-
tities:

x± ≡
x1 ± x2√

2
, ω+ ≡

√
k0, ω− ≡

√
k0 + 2k1 (5.10)

We now solve the Schrödinger equation and find the ground state wave function:

ψ0(x1, x2) =
(ω+ω−

π2

)1/4

exp

(
−
ω+x

2
+ + ω−x

2
−

2

)
(5.11)

Since this wave function is completely real, its complex conjugate is an identi-
cal copy, which we will denote using primed versions of our position variables:
ψ∗0(x′1, x

′
2). We now treat oscillator 1 as “inside” and oscillator 2 as “outside.”

The ground state density matrix ρ is of course formed by taking the trace over
the entire system, but ρout is formed by taking the partial trace over the “inside”
component of the system:

ρout(x2, x
′
2) =

∫ ∞
−∞

ψ0(x1, x2)ψ∗0(x1, x
′
2)dx1 (5.12)
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Before carrying out this integral, let us define a few more auxiliary quantities:

β ≡ (ω+ − ω−)2

4(ω+ + ω−)
, γ ≡ 2ω+ω−

ω+ − ω−
+ β (5.13)

Carrying out this integral on the wave function given by (5.11), the result is:

ρout(x2, x
′
2) =

√
γ − β
π

exp

(
−γ x

2
2 + x′2

2

2
+ βx2x

′
2

)
(5.14)

Let λn and fn(x) respectively denote the eigenvalues and eigenfunctions of the
operator ρout. That is:

∫ ∞
−∞

ρout(x, x
′)fn(x′)dx′ = λnfn(x) (5.15)

Once again, let us define a few more auxiliary quantities before solving for λn
and fn(x):

α ≡
√
γ2 − β2 =

√
ω+ω−, ξ =

β

γ + α
(5.16)

The solution to (5.15) is given by:

λn = (1− ξ)ξn, Hn(x
√
α)e−αx

2/2 (5.17)

where Hn is the nth degree Hermite polynomial, with argument x
√
α. Of course,

the eigenvalues are of great interest because they enter directly into the formula
for the entanglement entropy. Plugging in the appropriate values for λn into
formula (3.4), we have:

S = −
∞∑
n=0

(1− ξ)ξnln [(1− ξ)ξn] (5.18)

We can simplify this expression using formulas (B.3), (B.4), (D.3), and (D.5) to
obtain the following key result:

S = −ln(1− ξ)− ξ

1− ξ
ln(ξ) (5.19)

This result is extremely useful. Note that ξ is defined purely in terms of the
spring constants k0 and k1.
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5.2.2 N Coupled Harmonic Oscillators

We now seek to generalize the result obtained in the previous section to a more
complex system of N coupled harmonic oscillators. Such a system is described
with a Hamiltonian:

H =
1

2

N∑
i=1

pi
2 +

1

2

N∑
i,j=1

xiKijxj (5.20)

for a real symmetric matrix K with positive eigenvalues. Since K is real and
symmetric, we can express it as K = UTKDU for diagonal matrix KD and
orthogonal matrix U . Let us now define:

Ω ≡ UTK1/2
D U (5.21)

As one can easily verify, Ω2 = K. Let us adopt the abbreviation: x ≡
(x1, . . . , xN ). With these definitions, we can write the ground state wave func-
tion of the Hamiltonian as [22]:

ψ0(x) = π−N/4 (det Ω)
1/4

exp

[
−x · Ω · x

2

]
(5.22)

where the dot represents matrix-vector multiplication.5

Let us now divide our full set of oscillators into two disjoint subsets: denote
oscillators 1 to n the “inside” oscillators and oscillators (n+ 1) to N the “out-
side” oscillators. Let us also adopt the abbrevations: xin ≡ (x1, . . . , xn) and
xout ≡ (xn+1, . . . , xN ). Of course, x = xin⊗xout. Subsequent vector definitions
will have related definitions. We decompose the matrix Ω into submatrices as
follows:

Ω =

(
A B
BT C

)
(5.23)

where A is n × n, B is n × (N − n), and C is (N − n) × (N − n). We wish to
compute ρout by tracing over the first n oscillators:

ρout(xout;x
′
out) =

∫ n∏
i=1

dxiψ0(xin ⊗ xout)× ψ∗0(xin ⊗ x′out) (5.24)

Before computing ρout, let us define the following auxiliary quantities β ≡
1
2B

TA−1B, γ ≡ C − β. With these definitions, we have [22]:

ρout(xout;x
′
out) ∼ exp

[
− (xout · γ · xout + x′out · γ · x′out)

2
+ xout · β · x′out

]
(5.25)

We now diagonalize γ and using the appropriate change of basis matrix V : γ =

V T γDV .6 We now define a new vector yout as: yout ≡ xoutV
T γ

1/2
D . We define

5There is a unique way here in which one can arrange the rows and columns of these
vectors and matrices such that their multiplication is compatible: the first x must be a 1 × n
row vector, Ω is an n× n matrix, and the second x must be an n× 1 column vector.

6γD is diagonal and the change of basis matrix V is orthogonal.

41



a new matrix β′ as: β′ ≡ γ−1/2
D V βV T γ

−1/2
D . We diagonalize β′ as follows: β′ =

Wβ′DW
T for orthogonal matrix W . We now define zout ≡WT yout. Finally, let

β′i denote an eigenvalue of β′. With all these definitions, we can now express
ρout in terms of zout:

ρout(zout, z
′
out) ∼

N−n∏
i=1

exp

[
− (zout)

2
i + (z′out)

2
i

2
+ β′i(zout)i(z

′
out)i

]
(5.26)

Notice the resemblance to equation (5.14), the outside density matrix for the
N = 2 case. This resemblance means that the von Neumann entropy for arbi-
trary N is an expansion upon the entropy for the N = 2 case. Namely [22]:

S =
∑
i

S(ξi),with S(ξ) given by (5.19), and ξ =
β′i

1 +
√

1− (β′i)
2

(5.27)

This is a very general result and is the foundation for the major original contri-
bution of this paper, which will be detailed in the following section.

5.3 Entropy Computations from the Srednicki
Algorithm

With the algorithm detailed in the previous section, Srednicki has laid the
groundwork for entropy calculations of more general systems. Note that the
entropy is a quantity that is ultimately calculable from just two quantities:
K, the real symmetric matrix which comprehensively describes the interactions
amongst the N harmonic oscillators (K is N×N -dimensional), and n, the num-
ber of oscillators which are considered “inside” and are hence traced over.

5.3.1 One-Dimensional Interval

In this paper, we are chiefly concerned with the entanglement entropy harbored
by a one-dimensional spatial interval of length L due to a massless scalar quan-
tum field φ in its ground state. For such a system, the Hamiltonian H and
Hamiltonian density H are given by:

H =

∫
H dx =

1

2

∫ (
π2(x) + |∇φ(x)|2

)
dx (5.28)

where π(x) is the conjugate momentum field of φ(x), with canonical commuta-
tion relation:

[φ(x), π(x′)] = iδ(x− x′) (5.29)
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Of course, in one dimension, the gradient simply reduces to an ordinary deriva-
tive in x: ∇φ(x) = ∂

∂xφ(x). To discretize the field, we introduce a lattice spacing
a such that (N + 1) a = L. We then denote the field value at each point k by
φk, for k = 0, 1, 2, . . . , N, (N + 1); k = 0 denotes the inside extreme end and
k = N + 1 denotes the outside extreme end. We impose boundary conditions,
demanding that the field vanish at either extreme end: φ0 = φ(N + 1). The
discrete version of the derivative is:

∂

∂x
φ(xk) −→ φ(xk)− φ(xk−1)

a
(5.30)

Following the Hamiltonian model of Srednicki (5.20), we see that π(xk) here
plays the role of i and φ(xk) here plays the role of xi. We must now determine
the elements of the matrix K:

Theorem 5.3.1. For a system of periodic boundary conditions with N lattice
points and lattice spacing a, K is (up to a numerical factor of a) given by an
N -dimensional matrix such that all entries on the principal diagonal are 2, all
entries on either of the neighboring diagonals are −1, and all other elements
are 0. That is:

K =



2 −1 0 0 . . . 0 0
−1 2 −1 0 . . . 0 0
0 −1 2 −1 . . . 0 0
0 0 −1 2 . . . 0 0
...

...
...

...
. . .

...
...

0 0 0 0 . . . 2 −1
0 0 0 0 . . . −1 2


(5.31)

Proof. Let us adopt the shorthand notation φk ≡ φ(xk). We want to draw a
connection between the summation Hamiltonian (5.20) and the integral Hamil-
tonian (5.28). Just focusing on the part that involves matrix K, we have a
correspondence:

1

2

N∑
i,j=1

xiKijxj ←→
1

2

∫
|∇φ(x)|2dx (5.32)

Now, we discretize the integral by replacing it with a sum and using our dis-
cretized derivative formula (5.30):7

1

2

N∑
i,j=1

xiKijxj ←→
1

2

N+1∑
k=1

(
φk − φk−1

a

)2

a (5.33)

7We increase the summation to include the (N + 1)th lattice point so as to be symmetric
on both ends of the interval. Recall that φN+1 = 0 anyway.
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where a, the lattice spacing between points, has now taken the role of the dx
from the integral. Expanding out the right-hand side, we have:8

a

a2

[
(φ1 − φ0)2 + (φ2 − φ1)2 + · · ·+ (φN − φN−1)2 + (φN+1 − φN )2

]
=

1

a

[
(φ2

0 − φ0φ1 − φ1φ0 + φ2
1) + (φ2

1 − φ1φ2 − φ2φ1 + φ2
2) + . . .

+ (φ2
N−1 − φNφN−1 − φN−1φN + φ2

N ) + (φ2
N − φNφN+1 − φN+1φN + φ2

N+1)
]

=
1

a

[
φ2

0 − φ0φ1 − φ1φ0 + 2φ2
1 − φ1φ2 − φ2φ1 + 2φ2

2 + . . .

+ 2φ2
N−1 − φN−1φN − φNφN−1 + 2φ2

N − φNφN+1 − φN+1φN + φ2
N+1

]
(5.34)

Now, with periodic boundary conditions, we can set φ0 = φN+1 = 0. The result
is:

1

a
[ 2(φ2

1 + φ2
2 · · ·+ φ2

N )− φ1φ2 − φ2φ1 − φ2φ3 − φ3φ2 − . . .

− φN−1φN − φNφN−1] (5.35)

Note the pattern is exactly such that the this quantity (up to a factor of a)
could be reproduced by executing the matrix multiplication: φKφT , where K
is as given above and φ represents the row vector: (φ1, . . . , φN ).

�

5.3.2 Original Computations of Entanglement Entropy Us-
ing MATLAB

Using the algorithm described by Srednicki, one can build computer code to
perform the matrix calculations, which become increasingly rigorous for greater
values of N . The main body of the code can be applied to any system, as long
as the appropriate K matrix is selected. In this case, we adopt K as described
in the previous section. For an arbitrary system, one must derive the K matrix
from the Hamiltonian H. See figure 5.2.

The algorithm was run for N = 400 and the results are plotted in figure
5.3. The data generated from this algorithm closely follow a logarithmic curve,
particularly when n is less than about 200, or half N . The deviation from log-
arithmic behavior at high values for n is not worrisome because, as we have
argued, the holographic principle is most applicable when the “inside” subsys-
tem (in this case the n lattice points traced over) is considerably smaller than
the “outside” subsystem (the remainder of the points), such that the “outside”

8Since all fields φ are not ordinary numbers but rather operators, we do not make the
potentially naive assumption that field values at different points in space commute.
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Figure 5.2: Original MATLAB algorithm to compute the entanglement entropy
of a free, massless, scalar quantum field in a one-dimensional interval, modeled
as a series of coupled harmonic oscillators
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Figure 5.3: Computed values for entanglement entropy (S) as a function of
number of sites traced over (n), for total number of nontrivial lattice sites N =
400. The data have been fit to a logarithmic model, represented by the solid
red curve.

subsystem can be approximated as infinitely large. In fact, it is not at all sur-
prising that the data points rapidly descend at very high values of n; we expect
the entropy of the entire system to be 0 because the entire system is in a pure
state.
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Chapter 6: The Ryu-Takayanagi
Proposal, the AdS3/CFT2

Correspondence, and
Holography

We have now come to the point where we can tie together the material from
previous chapters, establishing a connection between anti-de Sitter space and
conformal field theory. In 1998, Juan Maldacena first proposed this AdS/CFT
correspondence as an example of the holographic principle [14]. Research into
this subject area has been ballooning ever since.

The argument given by Ryu and Takayanagi is valid in an arbitrary number
of dimensions, so long as the number of spacetime dimensions of the AdS is one
greater than the number of spacetime dimensions of the CFT. To be consistent
with our previous notation, we will let D be the number of spacetime dimensions
in the AdS, and D−1 be the number of spacetime dimensions in the CFT. (Both
the AdS and the CFT have exactly one temporal dimension, so d is the number
of spatial dimensions in the AdS and (d−1) is the number of spatial dimensions
in the CFT.) While this study is particularly interested in the lowest-dimensional
case (d = 2, D = 3), we will try to keep the argument general whenever possible.

6.1 The AdS/CFT Model

Consider a CFT on R ×Sd−1 and suppose a subsystem A has a (d − 2)-
dimensional boundary ∂A ε Sd−1. Now, let γA be the unique (d−1)-dimensional
static minimal curve in AdSd+1 with boundary ∂A.1 In the d = 2 case, this
model can be well represented by an upright cylinder whose boundary represents

1If d = 2, γA is a minimal curve and ∂A is simply a pair of endpoints; if d = 3, γA is a
minimal surface and ∂A is its one-dimensional boundary; if d = 4, γA is a minimal volume
and ∂A is its two-dimensional boundary; and so on.
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the CFT2 space and whose interior or “bulk” represents AdS3. The cylinder’s
height is the (proper) time dimension, with horizontal circular cross-sections
representing Poincaré disks. From differential geometry, it is known that a min-
imal curve on a two-dimensional surface is in fact a geodesic curve.2 As we will
prove in theorem 6.2.1, the boundary of this cylinder is a (1+1)-dimensional flat
spacetime to which we can apply the results of CFT from previous chapters. Let
L denote the circumference of the cylinder, which is also the length of the finite
spatial interval studied in the previous chapter. The two-dimensional boundary
is divided into two regions A and B along surfaces of constant θ.3 Let l denote
the length of subsystem A (l ≤ L). Then the angular breadth of A is 2πl/L
while the angular breadth of B is 2π(1 − l/L). These quantities can easily be
translated into the AdS language of Chapter 2: subsystem A is centered around
θ = θb and has an angular breadth of 2α. Therefore, α = πl/L.

6.2 Entropy as the Length of a Geodesic

According to Ryu and Takayanagi’s hypothesis (and expressed in natural units):4

SA =
Length of γA

4G
(d+1)
N

(6.1)

where G
(d+1)
N is a (d + 1)-dimensional version of Newton’s gravitational con-

stant.5 This formula establishes a clear link between CFT, represented by the
entanglement entropy on the left-hand side, and AdS, represented by the length
of geodesic γA on the right-hand side.

6.2.1 Cutoffs

As we saw in theorem 2.2.1, the AdS metric produces divergent values when
the radial coordinate is allowed to increase without bound. This would mean
that the length of any geodesic is infinite; according to equation (6.1), this
would imply that the entropy of the CFT interval is also infinite. To avoid this
nonsensical conclusion, we manually impose a cutoff on ρ: ρ ≤ ρ0, where ρ0 is a

2That is, curves of minimal length have the property that their tangent vectors remain
tangent to the curve when parallel transported along the curve.

3Recall the global coordinates (τ, ρ, θ) and the static coordinates (τ, r, θ).
4Of course, in the general d-dimensional case, the length of γA in formula (6.1) should be

replaced with the appropriate word describing the size of a spatial parcel of dimension d− 1.
5The precise value for such a constant does not have an a priori value unless d = 3, in

which case it is the familiar 6.67 · 10−11N·m2

kg2
. In an arbitrary number of dimensions, the

value G
(d+1)
N would need to be determined experimentally, just as Cavendish once did for our

universe in the late 18th century.
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large but finite constant. This approximates the boundary as a two-dimensional
region of large but finite size. In the dual CFT, this cutoff corresponds to the
ultraviolet cutoff associated with the lattice spacing a, with the relation between
these two cutoffs given by [21]:

eρ0 ∼ L/a (6.2)

Before we proceed further, let us verify that the 2-dimensional boundary
spacetime is indeed flat, as the holographic principle demands.

Theorem 6.2.1. The 2-dimensional boundary spacetime is nearly flat, with
perfect flatness in the limiting case where ρ0 →∞.

Proof. Working in global coordinates (2.5), the boundary space is obtained sim-
ply by setting the radial coordinate ρ = ρ0, hence dρ = 0. The space now only
has two coordinates: (τ, θ). The metric reads:

ds2 = −cosh2ρ0dτ
2 + sinh2ρ0dθ

2 (6.3)

where θ is now playing the role of the spatial coordinate σ is out (1+1)-
dimensional CFT space. As long as our cutoff value ρ0 is large,6 we can take
advantage of the following limit:

lim
ρ0→∞

tanh(ρ0) = 1 ⇒ sinh(ρ0) ≈ cosh(ρ0) ≡ U (6.4)

With this new constant U defined in this way, we can re-write the spacetime
metric in this limit as:

ds2 = U2(−dτ2 + dθ2) (6.5)

It is now a simple matter of rescaling and renaming the spacetime coordinates
to transform this into the famous Minkowski metric, the hallmark of a flat
spacetime: ds2 = −dt2 +dx2. Hence it is clear that the boundary of our anti-de
Sitter space is nearly flat and that, in the limiting case, it becomes perfectly
flat. �

In Chapter 2, we rigorously proved that the bulk AdS3 space is in fact
curved, and hence the holographic principle can be applied to this AdS/CFT
pair of spaces.7

6Recall ρ has no finite upper bound.
7Recall the holographic principle demands that one space have one more spacetime dimen-

sion than the other and that the higher-dimensional space be curved and the lower-dimensional
space be flat.
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6.2.2 The Regulated Length of a Geodesic

Now that we have imposed a cutoff on our radial coordinate value, we can
compute the regulated length s of a geodesic. It is easiest to compute the
desired result in Poincaré coordinates. Recall from equations (2.19) that we can
write the geodesic as: (x, z) = l/2(cos g, sin g), where g = 2 tan−1(es). z = 0
corresponds to the omega points, so we impose the cutoff on g: ε ≤ g ≤ π − ε,
where ε is related to the CFT lattice spacing a by: ε = 2a/l. Note that g is
defined such that ds = dg/sin g. So the regulated length is then given by:

Length(γA) = rsk

∫
ds = rsk

∫ π−ε

ε

dg

sin g
= ln

[
tan

(g
2

)]π−ε
ε

(6.6)

Now, evaluating the integral and applying the trigonometric identity (B.21c)
and the logarithm multiplication rule (B.3), we have:

Length(γA) = rsk ln

[
sin(π − ε)

cos(π − ε) + 1

]
− ln

[
sin ε

cos ε + 1

]
= rsk ln

 sin(π−ε)
cos(π−ε)+1

sin ε
cos ε+1


(6.7)

We now apply the reflected angle formulas (B.22c) and (B.22d), the small angle
approximation (B.23d), and the logarithm power rule (B.4):

Length(γA) = rsk ln

[
sin ε

−cos ε+1
sin ε

cos ε+1

]
= rsk ln

[
cos ε+ 1

− cos ε+ 1

]

≈ rsk ln
[

1− ε2/2 + 1

−(1− ε2/2) + 1

]
≈ rsk ln

[
2

ε2/2

]
= rsk ln

[(
2

ε

)2
]

= 2 rsk ln

[
2

ε

]
(6.8)

Since ε = 2a/l, 2/ε = l/a. So we have:

Length(γA) = 2 rsk ln

(
l

a

)
(6.9)

Now, according to the Ryu-Takayangi formula (6.1), the entanglement entropy
SA of a region A whose endpoints match those of this geodesic γA is given by:

SA =
rsk

2G
(3)
N

ln

(
l

a

)
(6.10)

Notice that this result matches the conformal field theory result (4.19) if we
demand that:

c =
3rsk

2G
(3)
N

(6.11)
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This equation establishes a link between c, the central charge of the conformal
field theory, and rsk, the skirt radius of anti-de Sitter space.

A more exact formula for the regulated length s of a geodesic is given in
terms of the global coordinates:

cosh(s/rsk) =
[
1 + 2sinh2 ρ0 sin

2(πl/L)
]

(6.12)

Theorem 6.2.2. The entanglement entropy of subsystem A is given by [20]:

SA '
rsk

4G
(3)
N

ln

[
e2ρ0sin2

(
πl

L

)]
=
c

3
ln

[
L

a
sin

(
πl

L

)]
(6.13)

Proof. We apply the approximation from theorem B.3.1 to equation (6.12):

s

rsk
≈ ln

[
2 cosh

(
s

rsk

)]
= ln

[
2

(
1 + 2sinh2 ρ0 sin

2

[
πl

L

])]
(6.14)

Now, from theorem B.3.1, we know we can approximate sinh(ρ0) by eρ0/2. So
we have:

s

rsk
≈ ln

[
2 + e2ρ0 sin2

(
πl

L

)]
⇒ s ≈ rsk ln

[
e2ρ0 sin2

(
πl

L

)]
(6.15)

where we have dropped the addition of 2 in the logarithm’s argument as it is
very small in comparison to the e2ρ0 term. We now plug this approximate result
into the Ryu-Takayanagi formula (6.1) to obtain the entropy:

SA '
rsk

4G
(3)
N

ln

[
e2ρ0 sin2

(
πl

L

)]
=

rsk

2G
(3)
N

ln

[
eρ0 sin

πl

L

]
(6.16)

where we have used the common logarithm power rule B.4 to simplify the re-
sult. We now recall the relationship between the cutoffs (6.2) and postulate a
numerical factor of π: eρ0 = L/(πa).8 We now see that this result matches the
conformal field theory result (4.18) under the condition:

c =
3rsk

2G
(3)
N

(6.17)

where c represents the central charge of our CFT.

SA '
c

3
ln

[
L

πa
sin

(
πl

L

)]
(6.18)

�

These results are very significant. They show that the maximum entropy
capacity of an interval in CFT with one spatial dimension scales logarithmically,
not linearly, with the size of the interval. This is a much more restrictive upper
bound than one would naturally expect.

8The relation (6.2) is a proportionality, not an equality. The factor of proportionality
depends on the particular system in question.
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Figure 6.1: A depiction of three bulk curves (in blue) inside a Poincaré disk.
The patterns of purple and black geodesics can be used to create a one-to-one
correspondence between each bulk curve and a set of (overlapping) intervals on
the boundary of the Poincaré disk. In this way, the bulk curves can be described
purely in terms of the information content residing on the conformal boundary.

[7]

6.3 Holography

The AdS3/CFT2 correspondence provides us with a blueprint for describing
two-dimensional objects in the bulk Poincaré disk in terms of one-dimensional
intervals on the CFT boundary. For any two-dimensional region within the disk,
we draw a set of geodesics which are all tangent to its boundary. The set of
endpoints of the geodesics correspond to a set of intervals on the CFT space
which can be studied using ordinary CFT methods from Chapters 4 and 5.
Thus the one-dimensional information on the conformal boundary is sufficient
for reconstructing the bulk curve which bounds the two-dimensional region of
interest. If we then wish to describe phenomena occurring within this bulk
region, we simply divide it into sub-regions and execute this process again.
There is no limit to how small we can make the sub-regions, and hence we can
describe the 2-dimensional phenomena in terms of the 1-dimensional intervals.9

See figure 6.1.

9For more information on the mathematical details, see references [6] and [7].
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Chapter 7: Conclusion

In this paper, we have presented a near-comprehensive description of the ge-
ometry of anti-de Sitter space and conformal field theory and shown how these
seemingly disparate theories are actually related as an example of the holo-
graphic principle. The lengths of geodesics (regulated by an ultraviolet cutoff)
are directly proportional to the entanglement entropy of an interval whose end-
points on the conformal boundary (CFT2) match the endpoints of the geodesic
in AdS3. In this way, we can draw a one-to-one correspondence between any
two-dimensional region within the bulk AdS3 with a set of one-dimensional in-
tervals on the conformal boundary simply by drawing all the geodesics which are
tangent to the boundary of the two-dimensional region and demarcating their
endpoints. This allows us to describe the entire physics of the curved (2 + 1)-
dimensional bulk spacetime in terms of physics on the flat (1 + 1)-dimensional
conformal boundary, suggesting that the (2+1)-dimensional spacetime is a mere
“holographic projection” of the information stored on the (1 + 1)-dimensional
spacetime surface.

We have also presented original MATLAB code for making approximate
calculations to the entanglement entropy of a free, massless, scalar quantum
field in a one-dimensional interval and shown how those results are consistent
with the holographic principle. Though this code has been designed with this
specific system in mind, it would not at all be difficult to modify this algorithm
to calculate the entanglement entropy of a system of one’s choosing – all one
needs to do is determine the appropriate K matrix for the system of interest.

The holographic principle is likely to be an important concept in physics
moving forward, as it provides us with a window into understanding theories
of quantum gravity in terms of quantum field theories which are already well-
understood. (And of course, finding a correct theory of quantum gravity has
been extremely challenging.) This principle also may help us better understand
the arrow of time, the observed increase of the entropy (information content)
of the universe at later times.1 Such a profound and surprising principle cries

1This is a particularly intriguing question in physics because almost all physical phenom-
ena are time reversal symmetric, making it difficult to understand how an asymmetry of time
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out for an explanation, likely in the number of degrees of freedom present in a
unified theory of spacetime and matter.

It is also conceivable that the holographic principle could have practical
benefits regarding information storage, potentially allowing engineers to dra-
matically reduce the size of information storage chips and devices. The universe
is remarkably efficient at storing information, so can humanity tap into this
potential? Only time will tell.

could emerge when studying macroscopic phenomena. It is the author’s belief that resolving
the tension between time reversal symmetry and the arrow of time may require an improved
understanding of the quantum measurement problem and possibly a reinterpretation of the
insights on the nature of time provided by the theory of relativity.
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Appendix A: General Relativity

ds2 = gabdx
adxb (spacetime interval & metric tensor) (A.1)

gabg
bc = δca (inverse metric tensor) (A.2)

Γabc =
1

2
gad(∂bgdc + ∂cgdb − ∂dgbc) (Christoffel symbols) (A.3)

Rabcd = ∂cΓ
a
bd − ∂dΓabc + ΓebdΓ

a
ec − ΓebcΓ

a
ed (Riemann curvature tensor) (A.4)

Rab = Rcacb (Ricci Tensor) (A.5)

R = gabRab (Ricci scalar/scalar curvature) (A.6)

Gab = Rab −
1

2
gabR (Einstein tensor) (A.7)

Gab + Λgab =
8πG

c4
Tab (Einstein field equations) (A.8)

In this study, we restrict ourselves to cases where Tab ≡ 0. This corresponds
to models in which there is no matter, energy, or momentum present, with the
exception of energy due to the cosmological term.

d2xa

dλ2
+ Γabc

dxb

dλ

dxc

dλ
= 0 (geodesic equation) (A.9)

where λ is an affine parameter.
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Appendix B: Complex Numbers and
Transcendental Func-
tions

B.1 Complex Numbers

Any complex number z can be written in two forms:

z = a+ bi
∣∣ a, b ∈ R (Cartesian form)

z = reiθ
∣∣ r > 0, 0 ≤ θ < 2π (polar form)

(B.1a)

(B.1b)

These two forms are related by the transformation:
a2 + b2 = r2

b

a
= tan θ

(B.2a)

(B.2b)

B.2 Logarithms & Exponentials

log(xy) = log x+ log y (Multiplication rule) (B.3)

log(xn) = n log x (Power rule) (B.4)

ln denotes a logarithm of base e and is called the natural logarithm. To take
the natural logarithm of a complex number z, write it in polar form. Then:

ln(reiθ) = ln r + ln(eiθ) = ln r + iθ (B.5)
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B.3 Trigonometric Functions

B.3.1 Definitions

Circular

Given periodic (circular) trigonometric functions sin x and cos x, we define:

tan x =
sin x

cos x

cot x =
cos x

sin x

sec x =
1

cos x

csc x =
1

sin x

(B.6a)

(B.6b)

(B.6c)

(B.6d)

Hyperbolic

And analogously for the hyperbolic trigonometric functions sinh x and cosh x:

tanhx =
sinh x

cosh x

coth x =
cosh x

sinhx

sech x =
1

cosh x

csch x =
1

sinh x

(B.7a)

(B.7b)

(B.7c)

(B.7d)

B.3.2 Identities

Circular

sin2x+ cos2x = 1

tan2x+ 1 = sec2x

cot2x+ 1 = csc2x

(B.8a)

(B.8b)

(B.8c)
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Hyperbolic

cosh2x− sinh2x = 1

1− tanh2x = sech2x

cot2x− 1 = csch2x

(B.9a)

(B.9b)

(B.9c)

B.3.3 Relationships with Exponential and Logarithmic Func-
tions

Euler’s famous formula eiπ + 1 = 0 and the Taylor series associated with
the trigonometric functions (both circular and hyperbolic) establish a link be-
tween exponential and trigonometric functions as follows:

cos x =
eix + e−ix

2

cosh x =
ex + e−x

2

sin x =
eix − e−ix

2i

sinh x =
ex − e−x

2

(B.10a)

(B.10b)

(B.10c)

(B.10d)

From these formulas, it is clear how to interpret an imaginary argument in
any trigonometric function. We can easily derive the relations:

cos(iθ) = cosh θ

cosh(iθ) = cos θ

sin(iθ) = −i sinh θ
sinh(iθ) = −i sin θ

(B.11a)

(B.11b)

(B.11c)

(B.11d)

We will also make use of the trigonometric addition formulas:

cos(a+ b) = cos a cos b − sin a sin b

sin(a+ b) = sin a cos b + cos a sin b

(B.12a)

(B.12b)

A combination of the above formulas tells us how we should evaluate a trigon-
metric function with a complex argument. Given a complex number z, write
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it as: z = a+ bi. Then:

cos(a+ bi) = cos a cosh b + i sin a sinh b

sin(a+ bi) = sin a cosh b − i cos a sinh b
(B.13)

B.3.4 A Few Short Theorems

Theorem B.3.1. For large x, we can approximate x ≈ ln [2 cosh x] ≈ ln [2 sinh x].

Proof. We write the hyperbolic cosine and sine functions in exponential form:

cosh x =
ex + e−x

2

sinh x =
ex − e−x

2

(B.14a)

(B.14b)

For large x, ex � e−x. So we can approximate:

cosh x ≈ ex

2
⇒ ex ≈ 2 cosh x⇒ x ≈ ln [2 cosh x]

sinh x ≈ ex

2
⇒ ex ≈ 2 sinh x⇒ x ≈ ln [2 sinh x]

(B.15a)

(B.15b)

�

Theorem B.3.2.

ln

(
1 + p

1− p

)
= 2 tanh−1(p) (B.16)

Proof.

tanh b =
sinh b

cosh b
=

(eb − e−b)/2
(eb + e−b)/2

=
(eb − e−b)
(eb + e−b)

=
(e2b − 1)

(e2b + 1)
(B.17)

⇒ tanh

[
1

2
ln

(
1 + p

1− p

)]
=

(e2· 12 ln( 1+p
1−p ) − 1)

(e2· 12 ln( 1+p
1−p ) + 1)

=
(eln( 1+p

1−p ) − 1−p
1−p )

(eln( 1+p
1−p ) + 1−p

1−p )
=

=

1+p
1−p −

1−p
1−p

1+p
1−p + 1−p

1−p
=

(1 + p)− (1− p)
(1 + p) + (1− p)

=
2p

2
= p (B.18)

Therefore:

ln

(
1 + p

1− p

)
= 2 tanh−1(p) (B.19)

�
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B.3.5 Double-Angle and Half-Angle Formulas

Given (B.12), we can derive the following double-angle formulas:

sin(2x) = 2 sin x cos x

cos(2x) = cos2 x− sin2 x = 1− 2sin2 x = 2cos2 x− 1

tan(2x) =
2 tan x

1− tan2 x

(B.20a)

(B.20b)

(B.20c)

We can use these formulas to calculate the half-angle formulas:

sin
(x

2

)
= ±

√
1− cos x

2

cos
(x

2

)
= ±

√
1 + cos x

2

tan
(x

2

)
= ±

√
1− cos x
1 + cos x

=
sin x

cos x+ 1
=
cos x− 1

sin x

(B.21a)

(B.21b)

(B.21c)

B.3.6 Reduction Formulas

sin(−x) = −sin x
cos(−x) = cos x

sin(π − x) = sin x

cos(π − x) = −cos x

(B.22a)

(B.22b)

(B.22c)

(B.22d)

B.3.7 Taylor Series and Small-Angle Approximations

sin x =

∞∑
n=0

(−1)n
x2n+1

(2n+ 1)!
= x− x3

3!
+
x5

5!
− . . .

⇒ sin x ≈ x for small x

cos x =

∞∑
n=0

(−1)n
x2n

(2n)!
= 1− x2

2!
+
x4

4!
− . . .

⇒ cos x ≈ 1− x2

2
for small x

(B.23a)

(B.23b)

(B.23c)

(B.23d)
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Appendix C: Linear Algebra

Given λa is an eigenvalue of matrix A and k is any positive integer:

tr(A) =
∑

diagonal elements of A =
∑
a

λa (C.1)

tr(Ak) =
∑
a

λka (C.2)

For two matrices A and B with dimensions m× n and n×m, respectively:

tr(AB) = tr(BA) (C.3)

For any matrix M , we denote its conjugate by M∗ (which is obtained by re-
placing each element with its own complex conjugate), its transpose by MT ,
and its conjugate transpose by M†.

(M∗)
∗

= M, (MT )
T

= M, (M†)
†

= M (C.4)

For any two compatible matrices C and D, the regular rule of complex conju-
gate multiplication holds:

(CD)∗ = C∗D∗ (C.5)

The transpose of C and D is given by:

(CD)T = DTCT (C.6)

And their conjugate transpose is given by:

(CD)† = D†C† (C.7)

A Hermitian matrix E is one which is equal to its own conjugate transpose:

E = E† (C.8)
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Eigenvalues of Hermitian matrices are always real numbers. Mathematically, if
λi denotes an eigenvalue of E, then:

λi ∈ R, ∀ i (C.9)

Let F be some arbitrary matrix and let G = FF †. Then G is Hermitian:

G† = (FF †)
†

= (F †)
†
F † = FF † = G (C.10)

If a matrix G is Hermitian, then it has the same set of eigenvalues λGi as its
conjugate G∗, λG

∗

i :

{λGi } = {λG
∗

i } (C.11)

The reason for this is as follows: Since G is Hermitian, there must exist some
basis in which it can be expressed in a diagonal form. In this basis, all ma-
trix elements must be real numbers since the diagonal elements are the eigen-
values, which are all real for a Hermitian matrix, and the off-diagonal ele-
ments are all zero. Therefore G∗ = G in this basis. But G∗ is also Hermitian:
G∗ = (G†)

T
= (G)T = (G∗)

†
, so it too must be diagonalizable. But we have

already found a basis in which G∗ can be expressed in diagonal form – the
same basis we used to diagonalize G. In this unique basis, the eigenvalues for
G and G∗ can simply be read off the diagonal of this matrix, and since G and
G∗ are identical in this basis, their sets of eigenvalues must also be identical.

The results of linear algebra can be applied to more general situations. For
example, our “vectors” can be thought of as functions, and the outer product
of two vectors could be thought of as a multivariable function which is the
product of two single-variable functions:

h(x, y) = f(x)g(y) (C.12)

This multivariable function can now be treated like a matrix with an uncount-
ably infinite number of entries. The trace of this multivariable function is
given by setting the arguments x and y equal and then integrating the func-
tion:

tr [h(x, y)] =

∫ ∞
−∞

h(x, x) dx =

∫ ∞
−∞

f(x) g(x) dx (C.13)

For a function with more than two entries, one can perform a partial trace by
only tracing over a subset of the variables. (In general, to trace over a pair
of variables, one sets those two variables equal to one another and then inte-
grates over all possible values for that common variable.)
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C.1 Diagonalizing a Matrix

A square matrix Q is said to be orthogonal if its rows and columns are or-
thonormal vectors. A necessary and sufficient condition for a square matrix Q
to be orthogonal is that its transpose and its inverse are equivalent:

QT = Q−1 (C.14)

A square matrix H is said to be diagonalizable if there exists an invertible
matrix P such that:

P−1HP = HD (C.15)

where HD is a diagonal matrix. HD can be thought of as H expressed in a
different basis. If H happens to be real and symmetric, then its eigenvectors
are orthonormal and so the change of basis matrix P will be orthogonal.
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Appendix D: Miscellaneous

D.1 Hermite Polynomials

The family of Hermite polynomials Hn(x) are each a general solution to the
differential equation:

H ′′n(x)− 2xH ′n(x) + 2nHn(x) = 0 (D.1)

for non-negative integer n. The Hermite polynomials are given by the Ro-
drigues formula:

Hn(x) = (−1)nex
2 dn

dxn

(
e−x

2
)

=

(
2x− d

dx

)n
· 1 (D.2)

where
(
2x− d

dx

)
is thought of an operator which, once raised to the nth power,

operates on the constant function 1.

D.2 Infinite Series

Given |x| < 1, the sum
∑∞
k=0 x

k is convergent and is given by:

∞∑
k=0

xk = 1 + x+ x2 + x3 + . . . =
1

1− x
(D.3)

One can differentiate both sides of this equation to obtain:

∞∑
k=0

kxk−1 = 0 + 1 + 2x+ 3x2 + . . . =
1

(1− x)2
(D.4)
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We can now start the sum at k = 1, as the k = 0 term will not contribute. We
can also multiply both sides of this equation by x to obtain a key formula:

∞∑
k=1

kxk−1 =
x

(1− x)2
(D.5)
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