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Quick, direct access to atomic force calculations is essential for efficient geom-
etry optimizations and molecular dynamics simulations, but current machine
learning simulations treat force calculations as secondary to energy calculations.
For situations when the force is desired more than the energy, a force-explicit
machine learning scheme could be used to obtain atomic forces more quickly.

We propose two force-explicit machine learning schemes and compare them
to each other and to a previously proposed scheme by Botu and Ramprasad
(2015) (and, independently, by Li, Kermode, and De Vita (2015)). The first pro-
posed scheme is based on the derivative of the Gaussian ”fingerprint” (a nu-
merical representation of an atom’s local environment) that was originally sug-
gested by Behler and Parrinello (2007). This scheme incorporates two-body and
three-body interactions in its representation of local environments. The second
proposed scheme creates a rotationally invariant force-explicit regression model
by using an intrinsic, natural coordinate system (in this case, the principal axes
of the moment of inertia tensor of each atom’s local environment) as the ba-
sis for the model. From testing on two example atomic systems, we find that
the scheme based on the derivative Gaussian fingerprint performs best overall.
The scheme that uses the moments of inertia basis performs sometimes worse
and sometimes better than the previously proposed scheme, and more testing
(specifically on a rotating atomic system) is required to determine if this basis is
preferable or not in general.

A force-explicit machine learning scheme could allow for robust simulation
with “real-time” force predictions in response to perturbations. To demonstrate
how such a simulation might work and lay the groundwork, we developed
a prototype of interactive atomic simulation software called “The Interactive
Atomistic Environment” (IntAE). We also created different multivariate visu-
alization options and interviewed ten potential users to evaluate both the effec-
tiveness of the visualization options and the system as a whole, determining that
visualizations which encoded variables into each atomic sphere were more intu-
itive and thus nearly unanimously preferred over visualizations which changed
the coordinates of the space in which the atomic system is displayed.
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Chapter 1

Introduction

1.1 Brief Background on Atomistic Calculations

Calculating forces between atoms is an important part of studying simulated
atomic and molecular systems. When systems become large and complicated,
however, calculating the forces between atoms can become computationally in-
tensive and often analytically impossible. The Hellmann-Feynman theorem (which
shows that the force on an atom is the same as the expectation value of the
derivative of the Hamiltonian with respect to the atom’s position) can be used
in conjunction with the Schrodinger equation or electronic structure methods to
determine atomic forces (Hellmann, 1937; Feynman, 1939), but these methods
quickly become impractical when the systems of interest have a large number of
atoms of different types.

The many-body Schrédinger equation can only be solved exactly for sim-
ple systems such as a single hydrogen atom. Since many systems of interest
are much more complicated than a single atom, various alternative electronic
structure methods have been developed to accurately approximate energies and
forces, including perturbation theory, Kohn-Sham density functional theory,
and Hartree-Fock theory (Cramer, 2013). All of these, especially density func-
tional theory, have seen significant success in facilitating study of atomic sys-
tems (Jones, 2015), but the computational cost of these methods typically grows
nonlinearly with size. Additionally, the number of possible geometrical config-
urations and compositions increases exponentially with the number and iden-
tities of atoms in the system. Because of these scaling issues and limitations in
current computational facilities, electronic structure methods are impractical for
studying systems with more than a few hundred atoms.

To address this problem, many attempts have been made to develop models
that can quickly approximate energies and forces of even large systems. Assum-
ing that each atomic energy contribution only depends on the local chemical
environment allows a model to learn from the energetics of many local environ-
ments and then predict the energetics of other systems with similar local envi-
ronments. Atomistic Machine-learning Package (Amp), a modular, open-source
software package developed here at Brown (Khorshidi and Peterson, 2016), uses
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relatively fast machine-learning models to interpolate the potential energy sur-
face of a reference data set (referred to as the “training” data set) which has been
prepared by a parent electronic structure calculator. The trained model can then
predict the potential energy surface of new atomic systems with similar local en-
vironments. After predicting the potential energy, Amp also calculates the forces
on each atom by differentiating the energy at each atomic position. More infor-
mation about how Amp predicts the potential energy surface of atomic systems
can be found in Section 2.1.

1.2 Motivation

Regression models based on machine learning (such as those used in Amp) al-
low for a general framework to predict atomic energies and forces in arbitrar-
ily complicated systems. The currently developed regression models, however,
focus on predicting the potential energy surface and then differentiating to ob-
tain the forces. While this works well in most situations, having quicker and
more direct access to atomic forces can allow for more efficient geometry op-
timizations and molecular dynamics simulations. In particular, this thesis will
partially focus on how force-explicit machine learning models should be able to
give sufficiently quick force predictions to allow for molecular dynamics simu-
lations with real-time interactivity. Additionally, a model which directly trains
on and predicts forces may be easier to fit than a model that attempts to predict
the potential energy surface.

Once a regression model in Amp has been trained, obtaining forces for new
systems can take as little as a few seconds, but even a few seconds is too long for
real-time interaction without a feeling that the simulation is lagging. By cutting
out the differentiation step and skipping straight to predicting the forces, a force-
explicit model in the Amp framework should be able to return atomic forces
almost immediately.

Currently, robust atomic simulation software with real-time interactivity does
not exist, but such an environment would likely be useful for facilitating under-
standing of atomistic-level phenomena in both an educational and a research ca-
pacity. Educational chemical laboratories with interactivity have been shown to
help students understand material. Shin et al. (2002) developed a Web-based, in-
teractive virtual laboratory system for unit operations and process systems engi-
neering education, and Stieff and Wilensky (2003) created an educational chem-
istry modeling and simulation package called ‘Connected Chemistry’. Both of
these studies found that students gained a better understanding of the mate-
rial by interacting with the chemical simulations. While these simulations were
only tested in an educational environment, this lends support to our belief that
a robust interactive simulation could be used in both education and research to
further understanding of the atomic systems depicted in the simulations.
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Before a robust interactive atomic simulation is possible, force-explicit ma-
chine learning schemes must be developed. Botu and Ramprasad (2015) put
forth an initial scheme for directly predicting atomic forces in a machine learn-
ing framework, and we expand on this work by investigating their scheme and
two novel schemes. The theory behind the different schemes and our machine
learning model can be found in Chapter 2, and the details of how the different
schemes perform can be found in Chapter 3.

In addition to investigating the abilities and efficiencies of different force-
explicit schemes, we created a prototype of a robust, interactive, multivariate
atomic simulation visualization software called IntAE (Interactive Atomistic En-
vironment). This prototype was created as a potential application of force-explicit
machine learning models, and is modular to be extensible as force-explicit mod-
els are developed. In addition to the simulation being interactive (allowing for
click-and-drag interactivity with the atoms), we focused on providing multivari-
ate visualization. Intuitive scientific visualization is important to ensure that in-
formation in simulations is being expressed efficiently, so we included different
visualization options in the software and interviewed potential users to deter-
mine their visualization preferences and overall feedback. A description of the
software and the evaluation interviews can be found in Chapter 4.

The contributions of this thesis are thus (1) a description of two novel force-
explicit machine learning schemes which could be broadly applicable to geome-
try optimizations and molecular dynamics simulations, (2) an investigation and
comparison of the novel schemes and a previously established scheme, (3) an
open-source prototype of interactive, multivariate atomic simulation visualiza-
tion software, and (4) a brief evaluation of multivariate visualization options in
atomic simulations.






Chapter 2

Theory

2.1 Amp’s Energy-Explicit Scheme

Regression models based on machine learning can be used to accurately ap-
proximate potential energies and forces in large atomic systems more quickly
than electronic structure methods (such as density functional theory) whose
computational costs increase significantly with system size. Atomistic Machine-
learning Package (Amp) successfully trains models to predict the potential en-
ergy surfaces of atomic systems using a “descriptor” to map the atomic positions
to feature vectors (also called “fingerprints”) that is used as input into a regres-
sion model. The fingerprint for a given atom is named such because it is an
identifier of the local environment around the atom. Fingerprints for each atom
in an atomic system are input into the regression model, and the model outputs
the potential energy surface (or, in the case of force-explicit models, it directly
outputs the forces on each atom).

Amp includes three different descriptors: Gaussian, Zernike, and Bispec-
trum, with Gaussian fingerprints being the default. The three descriptors are
described in detail in Khorshidi and Peterson (2016), but I will summarize the
Gaussian here. The Gaussian fingerprint was originally suggested by Behler
and Parrinello (2007). The fingerprint for atom ¢, G;, has two subvectors, GiI
and G}, respectively representing two-body and three-body interactions with
neighboring atoms. The components of G; are denoted f/:

atoms j within R,
distance of atom ¢

fl= 2 eTRRL(Ry) @)
J#i
where R;; = ||R; —Ril| is the distance between atoms i and j,  and R, are width

and center parameters which are varied several times to create the fingerprint
vector, and R, is a cutoff radius that defines the area of interest around atom «.
fe 1s a cutoff function that smoothly goes to zero as R;; goes to R,.. The cutoff
function is required to be smooth so that no discontinuities arise in the finger-
prints. Both f,. and its first derivative must be continuous to ensure that no
singularities appear when the energy-explicit model is used to predict forces.
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Three-body interactions are described in G{! via components denoted f/!:

atoms j, k within R,
distance of atom

flt =2 Z (1 + Acos Oijk)ce*”(RfjJrR?k)/Rg

.77k7é7’
(G7k)

X fC(Rij>fC(Rik)

where 0,5, = cos ' (R;;.Rix/(Ri;Rijx)) is the angle between all possible sets of
atoms i, j, and k centered on atom i within the cutoff radius, and (, A\, and 7 are
all parameters that are varied several times to create the fingerprint vector.

This scheme works well when one is directly predicting potential energy, but
it involves only distance and angle magnitudes and does not explicitly retain in-
formation about the direction of the distances between atoms. When predicting
a scalar energy, we can use a model that does not explicitly retain directionality,
but directionality is needed to efficiently predict force vectors. We have thus en-
deavored to investigate several different possible schemes with descriptors that
retain directionality.

2.2)

2.2 Force-Explicit Fingerprints

The development of a scheme that can numerically describe, or “fingerprint”,
atomic environments while retaining directionality is central to the goal of creat-
ing force-explicit machine learning models. Such a scheme should differentiate
between different configurations, be rotationally and translationally invariant,
and ideally be relatively simple.

2.2.1 Botu-Ramprasad

Botu and Ramprasad (2015) proposed this fingerprint function to represent the
k™ component of the force on atom i:

atoms j within R,
distance of atom % Rk

V= Z R_Ze_(Rij/ch(Rz‘j) (2.3)
i

where R}, is the scalar projection of R;; along the direction & and 7 is a parameter
that governs the extent of coordination around atom ¢ that needs to be captured.
As in Amp’s fingerprints, the n parameter is varied several times to create dif-
ferent components of the feature vector for each V;*. Also, once again the cutoff
/ damping function f. goes to zero as R;; approaches R. (where R, is the cutoff
radius that defines the area of interest around each atom):
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0.5[cos("2i) +1] ,if R; < R,

Rc

) (2.4)
0 , otherwise

fe(Rij) = {
This fingerprint requires three k-components along non-parallel directions; a
natural choice is the z, y, and z directions of your coordinate system. Addition-
ally, the fingerprint leads to symmetry-adapted forces. For example, if an atom
is in a centrosymmetric position and thus experiences no force, its fingerprint
will consist of all zeros.
Li, Kermode, and De Vita (2015) independently proposed a similar finger-
print.

ko _ R_Z —(Rij/Re)?
Ve =Y e (2.5)

gAY
where R, and p are varied. By selecting p = 2 and including a damping function,
this fingerprint is the same as that proposed by Botu and Ramprasad.

At a glance, equation (2.3) resembles equation (2.1), the f/ functions from
G! in the Behler Gaussian fingerprint. In fact, the Botu-Ramprasad fingerprint
closely matches the derivative of the components of Gf. Ignoring the cutoff
function and the R, parameter for the moment,

——5 T;—T4 i — Y5 Zi—2Z4 2
=3¢ o (/@i T+ (=) T+ (= 2))?) 2.6)
J#i
df»l —n —-1LR2
¢ = —2(1‘_37)6 R% J
i, =2 @ 2w
noA 2.7)
_=2 S Rbew
2 v
It J#i
df,

When you multiply dx{ by a cutoff function, you get almost the same func-
tional form as the Botu-Ramprasad fingerprint. Botu-Ramprasad has an ad-
ditional factor of 1/R;;. (Note: When testing the schemes, we briefly investi-
gated whether including or excluding this factor resulted in different results.
We found that the results were about the same; sometimes slightly better, some-
times slightly worse. This was not conclusive or intensely investigated, though.)

Because forces are obtained by taking derivatives of energy, having a force-
explicit fingerprint that is the derivative of an accepted energy-explicit finger-
print makes intuitive sense. Thus, while Botu and Ramprasad do not appear to
have created this fingerprint while thinking about the derivative of the Behler
Gaussian fingerprint, the Botu-Ramprasad fingerprint’s similarity to the deriva-
tive of f/ gives it some additional theoretical justification.
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2.2.2 Gaussian Derivative

Inspired by the similarity of the Botu fingerprint to the derivative of one com-
ponent of the Gaussian fingerprint, we decided to adapt the Botu fingerprint to
make it an exact derivative and to use this insight as a tool to create three-body
force-explicit fingerprints, which to our knowledge have not previously been
produced. This fingerprint (occasionally shortened to “dG” in this thesis) has
two components: V;"*, essentially the Botu-Ramprasad fingerprint, and V;'"*,
created from the derivative of the f/! function in the Behler Gaussian finger-
print.
Temporarily ignoring the cutoff function again,

2, 52
R +Ry

fl=21=¢ Z (1 + Acos Hijk)cefn( 7o) (2.8)
jkti
(G#k)
drll _o( BBy d(cos 0
dfx =21=¢ Z (1 + Acos i) [ e "~z )—(C(;Sx‘ i)
[ ki i
(J#k) (2.9)
Rzzj+R12
Aot 2™ )
1
+ (14 Acos k) i ]
Remembering that cosf;;; = 2‘] 7, taking the derivatives, and then rear-
ranging, we obtain:
d 17 +le
é; =21=¢ Z 1+)\0089Uk) - n(
¢ ki
b (210)
afjk + ozf .

where of;, = R}, (R Rig — R?, cos gz‘jk) is defined to allow for a more succinct
expression for the derivative. Generalizing to any k£ = z,y, or z and including
the cutoff functions:

_ (Rzzj+Rzzl)
VI —gt=¢ Z(l + Acosfy)S e TRz
j £
() o1
x [AZL T S @+ Qi 2R + RE)(1+ Acos )] |
RLRY  R? !

X fe( ij)fc( Ry)

This expression is much lengthier than the other proposed fingerprint func-
tions, but its computational run time is not significantly longer because R;;, R,
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and cos 6;;; can all be calculated once and reused. Additionally, its relation to the
G1!in the Behler Gaussian fingerprint makes it promising as a way to represent
three-body interactions in atomic local environments.

As mentioned, this function (ViH’k) would be used in conjunction with the
adjusted Botu-Ramprasad fingerprint (denoted V;""):

Fz’k = [V;I’k(nl)v ) ‘/iLk(nn)? V;I’k(Ch )‘17 771)7 ) ViLk<Cn7 )‘m nnﬂ (212)

where the feature vector includes several components of V;"* and V;"*, varying
the 7, ¢, and )\ parameters.

Because equation 2.11 is not particularly simple, a possible alternative would
be to use a simpler function with a similar functional form. For example, finger-
print functions that drop the term with o’s or the term with 21 could be tested
and compared to each other and to the full function. Some of our minor test-
ing suggests that the term with o’s is less important than the term with 21, but
this testing was not stringent. For the purposes of this thesis, we kept the entire
function when implementing this fingerprint.

2.2.3 Moments of Inertia

We also developed an alternative approach based on an initial transformation
out of Cartesian coordinates. The previous fingerprints require any three non-
parallel directions, typically taken to be the x, y, and z of your coordinate space.
Rather than fingerprinting for any arbitrary three directions, however, it might
be more natural and fruitful to fingerprint along the directions of an intrinsic,
natural coordinate system. Such a model would thus not depend on the coor-
dinate system we happened to choose for our atomic system. For this force-
explicit scheme, we chose to use the principal axes of the moment of inertia
tensor of each local environment to give us an intrinsic coordinate system that
can be used as the basis for a regression model.

The principal moment of inertia axes (MOI axes) are determined for the rigid
system of particles in the local environment around each atom. If we are de-
terming the MOI axes for atom 7, a sphere of cutoff radius R. is drawn around
the atom and we ”“collect” all of the atoms in the local environment. We then cal-
culate the principal axes for that sub-system about the position of atom i (rather
about than the center of mass). Figure 2.1 illustrates how this looks. Mathemat-
ically, each tensor is calculated:

N
Liomi = »_ m;[(rj *r))E — 15 @ 1y] (2.13)
j=1

where N is the number of atoms in the local environment around atom ¢, m; is
the mass of atom j, r;j is the distance of atom j from atom ¢ (the center of our
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o . ¢
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: ©

FIGURE 2.1: This diagram shows how a local environment is se-
lected (based on a given cutoff radius, R.) and then the principal
axes (of the moment of inertia tensor) of the local environment are
calculated. The machine learning model is based around the force
components in the MOI basis, not in the z, y, z basis. Note: These

axes are drawn as an example and are not necessarily correct for
the pictured system.

local environment), and E is the identity tensor.
E:e1®e1+e2®e2+e3®e3 (214)

where e;, 7 = 1,2, 3 are the three orthogonal unit vectors defining the original
coordinate system of the environment (aka z, y, z directions).
The components of the tensor are thus:

N

Ly =Y my(y; +27) (2.15)
j=1
N

Iy = Z mj(a:? - zf) (2.16)
j=1
N

Iy =Y my(a} +y)) (2.17)

J=1
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N

[12 = [21 = — ijxjyj (218)
j=1
N

Ly =1Iy ==Y myx;z (2.19)
j=1
N

123 = 132 = — ijijj (220)
j=1

The eigenvectors of I are the principal moment of inertia axes of the system.

We hypothesized that transforming into this rotationally invariant basis should
allow us to train more reliably. If we base our model in the z, y, z basis, the model
is not rotationally invariant; it changes as our system is rotated. If we use an in-
nate coordinate system, however, our model no longer depends on our external
coordinate system and the outputs will remain the same even when the entire
system is rotated.

While the moments of inertia provide a good innate coordinate system, we
have to verify that they are giving us what we want: a rotationally invariant
basis. As a system is rotated, we need to be sure that the MOI axes of the local
environments remain the same and do not flip directions. To check this, we
created an ozone molecule (O3) and rotated it while we continually checked the
force components on one of the atoms in both the z, y, z basis and the MOI basis.
The top graph in Figure 2.2 shows what happened to the force components in
the MOI basis as the system was rotated: the MOI axes occasionally switched
which direction was positive, resulting in the force components in the MOI basis
occasionally turning negative.

To have a unique definition of the principal axes and ensure that they do not
flip directions, we adopt the convention that coordinates of the center of mass in
the MOI basis (denoted Z, 7, and Z) must be positive. (Remember that the center
of mass is not the origin of the MOI basis because we calculated the inertia tensor
about the position of atom 7; atom ¢ is our origin.)

>0 (2.21)
7>0 (2.22)
>0 (2.23)

When this requirement is enforced, the force components in the MOI basis
remain constant as the ozone molecule is rotated (the bottom graph in Figure
2.2). It is possible that the flipping of the axes would not cause significant prob-
lems because the fingerprint and force component would gain a negative sign
together, but for easier model fitting and consistency, we enforced a positive
COM requirement

For our MOI fingerprint, we keep the same functional form as the Botu-
Ramprasad fingerprint (equation 2.3), but select our k directions for atom i to
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FIGURE 2.2: The magnitudes of the force components on atom 1
in an ozone molecule (O3) in the x, ¥, z basis and the MOI basis as
the system is rotated. The top graph (a) shows how the principal
axes in the MOI basis can flip direction as the system rotates (caus-
ing the force components to gain negative signs), and the bottom
graph (b) shows how we can prevent the principal axes from flip-
ping directions when we require that the coordinates of the center
of mass in the MOI basis be positive, giving us a unique definition

of the principal axes that is rotationally invariant.
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be k = 1,2, 3 corresponding to the MOI axes of the local environment around
atom i. The regression model is trained in the basis of each local environment’s
principal moments of inertia axes and outputs force predictions in this base.
Thus, when predicting the forces of new systems, an extra step is required to
transform the model outputs back into the x-y-z basis of our external coordinate
system.

A potential problem with using the MOI axes of local environments as the
basis for a regression model is how the principal axes of a given environment can
abruptly change when a neighboring atom enters or exits the cutoff radius. Say
one configuration of the entire system has atom j just outside of the cutoff radius
for atom ¢, but in another configuration, atom j is just inside of the cutoff radius.
The position of atom j relative to atom i has not significantly changed, but when
calculating the MOI axes for atom ¢’s local environment, atom j goes from giving
no contribution to giving a full contribution. This could cause problems when
training a model.

To avoid this problem, we apply a damping function when calculating the
MOI axes so that the contribution of each atom in the local environment goes
smoothly to zero as they leave the local environment. In our implementation,
we damped the mass of each atom so that the mass of atom j used in calculating
the moments of inertia around atom ¢ goes to zero as the distance between atom
i and atom j goes to (and beyond) R..

My damped = 15 * fc(Rz]) (224)

where f.(R;;) is the same damping function used in the fingerprint calculations,
equation 2.4.

Additionally, the principal moment of inertia axes were chosen as our in-
trinsic coordinate system because they are easy to calculate and give reliable,
orthogonal directions. Moment of inertia axes are based on the mass and posi-
tions of the neighboring atoms, though; while the positions are relevant to the
forces, the masses are not explicitly physically relevant to the forces. Another in-
trinsic coordinate system that is more physically relevant (perhaps a coordinate
system based on charge, vibrational modes, etc) therefore might be a preferable
choice over the moments of inertia. For this thesis, though, for ease, reliability,
and lack of a better choice, we stick with the principal axes of the inertia tensor.

2.3 Machine Learning Model

The model in our machine learning scheme is a functional form containing ad-
justable parameters that can be regressed to link the fingerprints with the force
components for each atom. Many different types of machine learning models
can be used, such as neural networks, Gaussian processes, kernel ridge regres-
sion, or support vectors. While our group’s previous works on atomistic ma-
chine learning have used a neural network model, we chose to use Gaussian



14 Chapter 2. Theory

processes (GPs). We chose this because neural networks require random initial-
ization and GPs are deterministic, and we want to directly compare different
fingerprint functions without having the results affected by a random compo-
nent we cannot control.

Models that require random initialization can be inconsistent. On one run,
the initialization may be good and the model trains to a set of parameters that
can predict forces with great accuracy. On another run, the initialization may
be bad and the model gets stuck in a local minima of the loss function, result-
ing in poorer predictions. To avoid the possibility of one run being poor, neu-
ral networks and other schemes that require random initialization must be run
many times. Gaussian processes avoid this problem altogether, however, and
this makes directly comparing different schemes easier.

Another advantage is that the prediction is probabilistic (Gaussian), so that
we can obtain an indication of the uncertainty for our predictions. Additionally,
the model is versatile in that we can specify any kernel function we desire. A
kernel is a general name for a function that maps a pair of inputs into a sin-
gle real number. In this context, it determines the form of the prior and poste-
rior probability distributions of the model. We use a standard kernel called the
radial-basis function (RBF) or Gaussian kernel.

—(zj—2;)?

k(z;,z;) =e 22 (2.25)

where 7 is a length-scale parameter (r > 0).

This kernel is infinitely differentiable, leading to smooth GPs. By using the
kernel as a measure of similarity between points and assuming that data points
with similar inputs should give similar outputs, the model can predict outputs
for never-before-seen inputs.

A significant disadvantage of using Gaussian processes is that the model size
grows with the size of the training set, causing the calculation time required
when using the model to predict the forces of new systems to grow. Because of
this, Gaussian processes are poorly suited for large (e.g., 100,000 images) train-
ing sets. Gaussian processes meet our needs, however, for directly comparing
the performance of our different force-explicit schemes.

To see a schematic of how the descriptors (fingerprints) and regression model
work together, see Figure 2.3.
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FIGURE 2.3: This schematic shows how our force-explicit machine
learning schemes work. The atomic positions of N atoms are
mapped to “fingerprints” for each atom and each & = z, y, and =
component (or in the case of the MOI fingerprint, k£ = 1, 2, and 3).
The descriptor is used as input into the regression model, which
then predicts each force component for each atom. For the MOI
scheme, the regression is done in the MOI basis, so the outputs of
the model must be transformation back into the x, y, z basis by de-
termining the MOI of each atom’s local environment and relating

that coordinate system to the z, y, z basis.






17

Chapter 3

Force-Explicit Scheme Comparison

We implemented each of the force-explicit fingerprints from Section 2.2 using
the Gaussian processes regression model described in Section 2.3. The schemes
were then trained and tested on two example systems.

3.1 Example Systems

These two example systems were originally prepared as part of another project
in Brown’s Catalyst Design Lab (see Peterson, Christensen, and Khorshidi (2017)).

The first example system is a simulated water molecule (H;O). Over the
course of 400 static “images” of the system, we varied both the H-O-H angle,
6, and one of the O-H bond lengths, r. (see Figure 3.1). The other O-H bond was
kept at its equilibrium length, taken to be r, = 0.969 A r /ro was varied at 20
values between 0.9 and 2.0, and §/7 was varied at 20 values between 0.5 and 1.0.

The atomic structure of the water molecule was prepared in the Atomic Sim-
ulation Environment (ASE) (Bahn and Jacobsen, 2002). For each configuration,
or image, of the system, the forces were found by density functional theory in
the NWChem calculator in ASE with the B3LYP exchange—correlation functional
(Becke, 1988; Lee, Yang, and Parr, 1988) and the 6-31+G* basis set (Ditchfield,
Hehre, and Pople, 1971).

The second example system is a platinum face-centered cubic (111) surface
with two layers of six atoms per layer. For a total of 10,000 5 fs trajectory steps,
we propagated Langevin dynamics. In this process, a vacancy was created; one
of the atoms was moved from its position in the lattice to an adatom position
(see Figure 3.2). The calculations were done in planewave/pseudopotential DFT
with the Dacapo calculator (Bahn and Jacobsen, 2002) and the RPBE functional
(Hammer, Hansen, and Nerskov, 1999).

3.2 Training
To train, we randomly selected 10-100 images from both example systems and

trained regression models with those images. A model was trained for each type
of atom in each system, resulting in three models for each scheme: (1) hydrogen
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FIGURE 3.1: In the example system of a water molecule, one of the
O-Hbond lengths and the H-O-H angle was varied while the other
O-H bond was kept at equilibrium length.

FIGURE 3.2: An example system of a Pt fcc (111) surface. Over the

course of the simulation, one of the Pt atoms is moved from its lat-

tice position to an adatom position. This atom is highlighted green

for emphasis. This image is courtesy of Peterson, Christensen, and
Khorshidi (2017).

in the water molecule, (2) oxygen in the water molecule, and (3) platinum in the
platinum surface. This resulted in nine total regression models (from the three
atom types and the three schemes). For consistency, the same training images
from each example system were used for all of the different models.

When making the fingerprints, we varied 7 from 0.1 to 100 eight times with
log spacing. For the Gaussian Derivative fingerprint, we varied A and ¢ from
0.01 to 1. These were chosen through trial and error. Additionally, when an
atom had neighboring atoms of different types (eg. a hydrogen in the water
molecule has an oxygen and a hydrogen neighbor), its fingerprint vector was
comprised of individual fingerprints for each atom type.

k
hydrogen

k . .k
from other hydrogen’ fmger p rint } (3 1)

fingerprint = [fingerprint from oxygen

We used Scikit-learn’s Gaussian processes library to implement a GP model
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with a radial-basis function kernel (Pedregosa et al., 2011). To calculate the mo-
ments of inertia for local environments in the MOI scheme, we used an edited
version of ASE’s moments of inertia function (Bahn and Jacobsen, 2002). For the
full code for all schemes, see our code repository.'

3.3 Testing Results

After each model was trained, we tested it on new images selected from the ex-
ample systems. In general, the predictions made from these models matched
well with the actual calculated forces. Figures 3.4 and 3.5 show parity plots that
display the results of using the Botu-Ramprasad, Gaussian Derivative, and Mo-
ments of Inertia schemes to predict each component of the force on the different
atoms. The z-axis shows the actual, calculated force component on each atom
(from density functional theory), and the y-axis shows the predicted force com-
ponent (from our trained regression model).

If the models had perfectly predicted each force component, all points in the
parity plots would lie perfectly along the reference line (slope = 1) provided.
Because the predictions were not perfect, however, points can be seen that do
not lie on the line. The prediction errors strongly depend on which images are
chosen as training images and which images are chosen as testing images. For
example, in Figure 3.4b, all three schemes under-predict the higher magnitude
forces. When other training and testing images are used with the schemes, how-
ever, the models sometime over-predict, under-predict, or perfectly predict. One
exception to the random errors is that the MOI scheme on the platinum surface
frequently predicted force components close to zero on some atoms (this can be
seen on 3.5a and c) no matter what training and testing images were chosen. The
number of the atom (of the twelve atoms in the lattice) that was being incorrectly
predicted differed, however, and the exact reason for the trend in the errors is
currently unknown.

In addition, more training resulted in better force predictions, but because we
only care about relative performance between schemes and we trained/tested
all schemes identically, this is not relevant to the results. The results in Figures
3.4 and 3.5 are shown because they are generally indicative of the relative mag-
nitude of errors we obtained when using the different schemes.

Looking at Figure 3.3 (F, on Pt, 3.5a split into three graphs for the different
schemes) as an example, the MOI or Botu schemes have the most points that are
far from the slope = 1 line; the errors from the two schemes are different, with
the MOI scheme having errors that tend to push the force predictions closer to
zero (a previously mentioned flaw whose cause is currently unknown), but the
mean magnitude of errors is similar. In comparison, the dG scheme performs
the best. The This trend extends, for the most part, to the overall results for all
the force components on all of the atom types.

https:/ / github.com /kaleybrauer/brown-thesis
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FIGURE 3.3: Parity plots showing the results of predicting the z-
component of force on the platinum atoms in the platinum surface.
Each model was trained on 5 images and tested on 20 images (12 Pt
atoms per image). A line with slope = 1 is provided for reference.

The mean and median absolute errors for the different schemes are listed in
Table 3.1 and graphically shown in Figure 3.6. For all the atom types (whether
looking at the mean or median error), dG performs better than Botu, especially
for the platinum in the platinum surface. The MOI scheme sometimes performs
worse and sometimes performs better than the Botu scheme.

We expect dG to perform better than Botu because it incorporates represen-
tations of two-body and three-body interactions, while the Botu scheme only
represents two-body interactions. The platinum surface allows the differences
between the two schemes to become most apparent because the platinum sur-
face involves more three-body interactions than the water molecule.

The MOI scheme’s performance in comparison to the Botu scheme (some-
times worse, sometimes slightly better) helps us confirm that the MOI basis can
be used as the basis for a force-explicit regression model, but does not allow us
to determine if the MOI scheme would be better or worse than the Botu scheme
in general. One point of interest is that the strength of the MOI scheme is its ro-
tational invariance (the model does not depend on the z, y, and = of our external
coordinate system). For that reason, it may be able to perform better than the
dG or Botu schemes when training on and predicting forces for a system that has
significant rotation between images. Because the water molecule and platinum
surface were not rotating, we have not yet been able to test this. Additionally,
more testing is required to determine the cause of some of the force predictions
tending towards zero.

Based on these results, we conclude that the dG scheme has a fingerprint that
represents the local environment better than the fingerprint in the Botu scheme
and thus is better at predicting forces. We also conclude that the MOI basis can
be used as the basis for a force-explicit regression model, but that more testing
is required to determine if using the MOI basis is preferable in general.
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FIGURE 3.4: Parity plots showing the results of predicting the

forces on oxygen and hydrogen in the water molecule. Each model

was trained on 50 images and tested on 100 images; the testing re-

sults for each scheme are shown. The predictions for F; are not in-

cluded because the water molecule was oriented in the y — z plane
and experienced no force in the z-direction.
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FIGURE 3.5: Parity plots showing the results of predicting the

forces on the platinum atoms in the platinum surface. Each model

was trained on 5 images and tested on 20 images (12 Pt atoms per
image); the testing results for each scheme are shown.
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TABLE 3.1: The mean and median absolute errors (error = |Fpreq —
Faic|) for predictions of the force components on the different
atoms in the example systems. The errors for F, on oxygen and
hydrogen are zero because the water molecule was oriented in the
y — z plane and experienced no force in the z-direction, and the
models perfectly reproduced the zero force.
Atom =O Mean Median
Scheme F, F, F, F, F, F,
Botu-Amprasad 0.0 0.1557 0.1332 0.0 0.03478 0.02712
Gaussian Derivative 0.0 0.1338 0.1062 0.0 0.02537 0.01903
Moment of Inertia 0.0 0.1159 0.2254 0.0 0.01044 0.01391
Atom = H Mean Median
Scheme F, F, F, F, F, F,
Botu-Amprasad 0.0 0.0933 0.0827 0.0 0.01418 0.01391
Gaussian Derivative 0.0 0.0788 0.0732 0.0 0.00847 0.00893
Moment of Inertia 0.0 0.0791 0.0650 0.0 0.04301 0.02473
Atom =Pt Mean Median
Scheme F, F, F, F, F, F,
Botu-Amprasad 0.3251 0.2546 0.2077 0.10997 0.08132 0.08436
Gaussian Derivative 0.1927 0.1787 0.1216 0.04758 0.05933 0.06098
Moment of Inertia 0.3383 0.2538 0.3224 0.09944 0.09287 0.10379



24 Chapter 3. Force-Explicit Scheme Comparison

0.4
0.35

0.3

0.25
W Botu
. B dG
u MOI
0.
h . .
O,F_y O,F_z H, F_y H, F_z Pt, F_x Pt, F_y Pt,F_z

(a) Mean Absolute Error

Absolute Error
(@]
e o
= u =]

w

o

0.12

0.1

0.08
W Botu
0.06 B dG
u MOI
0.04
O,F_y O,F_z H, F_y H, F_z Pt, F_x Pt, F_y Pt,F_z

(b) Median Absolute Error

Absolute Error

[\%]

FIGURE 3.6: The mean and median absolute errors of each of the

three schemes when predicting the force components of oxygen

and hydrogen (in a water molecule) and platinum (in a platinum

surface). The higher magnitude of errors in the platinum surface is

primarily due to those models being trained on fewer images than
the water molecule models.
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Interactive Visualization

Energy (J): 0.0052 M

Unit = 1:285 | Mouse is on: H | Energy is 0.0026.

FIGURE 4.1: A hydrogen molecule in IntAE. The right hydrogen
atom has been selected and displaced from equilibrium.

Atomic simulation visualizations help scientists study complicated systems
at atomic and molecular scales, but currently available visualization software
has only limited interactivity and multivariate visualization options. Real-time
interaction with simulations is roadblocked by the time required to obtain atomic
forces via (1) electronic structure methods or (2) derivatives of energies pre-
dicted from regression models. When systems become large and complicated,
even taking derivatives of predicted potential energies can take a few seconds
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- too long to allow for real-time interaction with lagging. A force-explicit ma-
chine learning scheme such as those discussed in the previous chapters, how-
ever, would provide quicker, direct access to atomic forces. This should make
tully interactive simulations of even complicated systems possible.

Additionally, scientific visualization is an important component of simula-
tion software. Multiple variables are associated with each atom at each time
step in the simulation (potential and kinetic energy, position, force, momentum,
charge, etc), and being able to quickly and intuitively understand how variables
of interest are changing leads to more efficient and thorough understanding of
the atomic system. Visualizing multiple variables in a simulation, or multivari-
ate visualization, has not been a focus of currently available atomic visualization
software, however. We therefore chose to evaluate user’s preferences of differ-
ent multivariate visualization options as a first step to a more dedicated focus
on multivariate visualization in atomic simulations.

To demonstrate how an interactive simulation might work, investigate mul-
tivariate visualization options, and provide the coding framework for an acces-
sible, robust, interactive, multivariate atomic simulation visualization software,
we developed a modular prototype of Interactive Atomistic Environment (In-
tAE). In this chapter, we present the prototype of IntAE, focusing on the interac-
tivity and the multivariate visualization. We also evaluate the overall visualiza-
tion and potential usefulness of the software.

41 The Environment

IntAE is a prototype of the first robust, interactive, multivariate atomic simu-
lation visualization software. The code is open-source and modular to ensure
extensibility, and currently is browser-based for accessibility'. Fig. 4.1 shows an
example of what one might see when they load up the software. The hydrogen
molecule in the figure is arbitrarily colored, but the atomic colors in the final
version will be based on ASE’s standard color library in order to keep the colors
in agreement with other accepted visualization programs. The atoms are dis-
played in three-dimensional position space as spheres with a radius equal to the
atom’s covalent radius. An alternative option would be displaying the atoms as
spheres with a radius equal to the atom’s van der Waals radius.

The potential energy of the entire system is continually plotted as a function
of time at the bottom of the screen, and to obtain information about a particu-
lar atom, one can mouse over any atom in the simulation. Additionally, while
not visible in Fig. 4.1, the top right corner of the screen has a drop down con-
trol panel for adjusting the time step, visualization options, or loading in a new
atomic system.

View the prototype at kaleybrauer.github.io/intae/iae.html?
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4.1.1 Interactivity

After an atomic system has been loaded into IntAE, the user can interact with
the system by clicking an atom and dragging it in the space. This displaces
the atom from equilibrium and “sets oft” the simulation. All variables (forces,
energies, positions, etc) are calculated for every user-specified time step using
Verlet integration.

e =2 vtk At (4.1)
vt =o' fa' x At (4.2)

where 2! is the position of an atom at time step i + 1, ' is the position at time
step ¢, v is velocity, At is the time step, and a is the acceleration as obtained from
the force calculation.

Because the force-explicit machine learning schemes require further devel-
opment before they are fully integrated with Amp and used in IntAE, the force
calculations in this prototype are done with Hook’s law, a simplification loosely
based on atomic vibrational modes.

Fhooks = k *x @ (43)

Due to the modular nature of IntAE, switching to using a force-explicit re-
gression model as soon as such a model is fully developed will be as simple as
changing a single line of code.

While the simulation is running and atomic positions, energies, etc are be-
ing continually updated, the user can continue to interact with the system. If
an atom is selected, the simulation pauses and the user can move the atom as
desired. Additionally, users can rotate the space and zoom in and out to view
the system from different angles and distances.

4.1.2 Multivariate Visualization

To investigate how best to incorporate multivariate visualization in the simula-
tion, we created two different options for visualizing the energy and momentum
of each atom (Fig. 4.2). The first set of options encodes the energy or momen-
tum into the visualization of the sphere representing each atom. The second set
of options changes the coordinates of the three-dimensional space to plot the
atoms according to their energy or momentum. The variables being visualized
(energy and momentum) were simply chosen as examples; the visualization op-
tions could extend to any variable desired, and a final version of this software
would allow the user to select which variables they are interested in visualizing.

The first option for visualizing energy encodes the energy of each atom into
the atom’s opacity; high opacity corresponds to high kinetic energy. The opac-
ity of each atom dynamically changes as its energy changes, allowing users to
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glance at the system and identify which atoms are most energetic. The first op-
tion for visualizing momentum displays a dynamic momentum vector at the
center of each atom that corresponds to the magnitude and direction of the
atom’s momentum.

The options that encode the energy or momentum into the visualization of
each sphere can be stacked (ex. the opacity can be changing while a dynamic
vector is simultaneously displayed in the center, allowing both energy and mo-
mentum to be visualized). One potential worry, however, is that the visualiza-
tion will become too busy. The color and the size of each sphere are already
used to represent the atomic number and covalent radius, respectively. When
information is also encoded into the opacity, into an internal vector, and pos-
sibly into the texture (another potential visualization option), the visualization
may quickly become over-saturated with visual encodings. This is one danger
and limitation of these options.

The second options for visualizing energy and momentum change the coor-
dinates of the space in which the system is displayed. By default, the atoms are
plotted according to their position. We created the option, however, to change
to an energy phase space (Fig. 2c) or a momentum phase space (Fig. 2d). To pro-
vide simultaneous visualizations of different variables, the phase spaces could
be displayed side-by-side. This is even more limited than using visual encod-
ings, however, because a user cannot simultaneously view many different phase
spaces. These visualizations could thus be used primarily to investigate a single
variable in depth rather than as a means to visualize many different variables.

4.2 Evaluation

After completing the prototype of IntAE, we conducted interviews to evaluate
which multivariate visualization options were most effective and what features
users would find useful in our system. The interviewees were my primary advi-
sor, Professor Andrew Peterson, and nine fourth-year undergraduates in Chem-
istry, Engineering, and Physics. Of the undergraduates, four out of the nine
had previous experience working with ASE or other atomic simulation software.
Participants were shown the features of the software and allowed to play with
the system before they were asked a series of questions. The themes of the ques-
tions can be seen in Table 4.1.

Responses were overwhelmingly positive with all participants saying that
they liked the system and could foresee themselves using it in an educational
and/or research capacity. A few participants cited specific problems that they
would be interested in investigating with such a system, e.g. watching how
stresses and forces in a carbon sheet change in response to small atomic displace-
ments. Participants also had numerous ideas for other useful features such as
moving multiple atoms at once, exporting videos for presentations, and allow-
ing other types of interaction (e.g. applying electromagnetic fields). Assorted
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FIGURE 4.2: Different visualization options. (a) and (b) encode
energy or momentum into the visualization of each atom, while (c)
and (d) plot the atoms into energy or momentum phase spaces.

feedback was also given about how to improve the overall visualization (such
as font changes and increasing the size of the momentum vector so that it is
easier to see).

The most significant result was that participants were nearly unanimous in
preferring the opacity and vector visualizations over the phase spaces, as seen in
Figure 4.3. When asked an open-ended question about why they had those pref-
erences, seven of the ten participants said that they preferred the opacity and
vector visualizations because they found them more intuitive than the phase
spaces. As one participant said about the momentum visualizations, "vectors
are more intuitive for someone without experience in momentum space." An-
other participant simply said "the phase spaces are confusing." The second most
popular reason for preferring the opacity and vector visualizations was that they
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TABLE 4.1: Themes of Evaluation Questions

Section Question Themes
Demographics What is your specialty? Highest degree?
Do you have experience working with atomic simulations?
Visualization What are your thoughts on the visualization options?
Which visualizations do you prefer and why?
General What are other useful features to implement?

How would you use such software?
Do you have any other feedback?

allowed users to still easily see the positions of all of the atoms.

The phase spaces are likely unintuitive because simulations typically display
in only position space. Additionally, we live in position space, so our intuitive
understanding of that coordinate system has been developed throughout our
entire lives while our experience with other coordinate systems is necessarily
limited in comparison. One participant who had experience with looking at mo-
mentum phase space graphs actually preferred momentum space over the vec-
tor visualization, however, saying the phase space "could be a bit more useful to
see patterns." The participant who labeled the vector and momentum space vi-
sualizations as equally useful also cited momentum space’s potential for seeing
patterns.

Thus, while participants overall strongly preferred the opacity and vector
visualizations, this could be because users are unacquainted with using phase
spaces in simulations and not necessarily because the phase spaces are inher-
ently worse multivariate visualization options. Additionally, we evaluated these
options using a small system (hydrogen), so the results may not map to systems
with many atoms. Re-evaluating the visualization options later with a large
system and participants who have worked more with phase spaces would give
more insight into the effectiveness of these (and potentially other) multivariate
visualization options. For now, our evaluation results imply that phase space
visualizations are less naturally intuitive than options that encode variables into
the visualization of the atomic spheres. In particular, participants expressed an
extreme preference for visualizing energy as opacity and relayed that they found
it highly intuitive.
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Do you prefer the energy-opacity visualization or the energy phase space?

@ Energy-opacity

@ Energy phase space

@ They are both equally useful
@ Neither is useful

Do you prefer the momentum-vector visualization or the momentum phase space?

@ Momentum-vector

@ Momentum phase space
A @ They are both equally useful

@ Neither is useful

FIGURE 4.3: Multivariate visualization preferences of ten users.
Users reported that energy-opacity and momentum-vector visual-
izations were more intuitive.
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Chapter 5

Conclusions and Future Work

5.1 Force-Explicit Schemes

While atomic simulations generally treat forces as secondary to energy, force-
explicit models can provide quicker, more direct access to the forces and allow
for more efficient geometry optimizations or molecular dynamics simulations.
In particular, a force-explicit regression model based on machine learning could
allow forces to be obtained quickly enough for a simulation with real-time inter-
action. The user could displace an atom in an ongoing simulation and watch as
the system immediately responds.

Energy-explicit regression models have been developed (such as the Atom-
istic Machine-Learning Package, or Amp, developed in part by my primary ad-
visor Andrew Peterson), but little work has been done on developing schemes
for force-explicit regression models. Botu and Ramprasad (2015) proposed an
initial scheme for numerically representing (or “fingerprinting”) the local envi-
ronments of atoms for use in a machine learning based regression model. We
expand on this work by proposing two additional schemes.

The first of our novel schemes is based on the idea that because force is
the derivative of energy, a good fingerprint (or numerical representation of an
atom’s local environment) for a force-explicit scheme could come from the deriva-
tive of an accepted energy-explicit fingerprint. This idea is supported by the
fact that Botu and Ramprasad’s fingerprint has almost the same functional form
as the derivative of the two-body components of the Behler Gaussian finger-
print, the standard fingerprint used in Amp. To expand on this idea, we took
the derivative of the three-body components of the Behler Gaussian fingerprint
and combined that with the Botu fingerprint. Thus, this novel Gaussian Deriva-
tive fingerprint has a two-body and three-body component for each atom, and
both have similar (or in the case of the three-body component, the same) func-
tional form to the derivatives of the Behler Gaussian fingerprint. Because this
fingerprint takes into account three-body interactions, it should capture the local
environment better than the Botu-Ramprasad fingerprint alone.

The second of our novel schemes is based on the idea that a rotationally in-
variant regression model that does not depend on our choice of coordinate sys-
tem is preferable to a model that changes when we rotate our atomic system. In
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their current form, the Botu-Ramprasad and Gaussian Derivative fingerprints
depend on our choice of z, y, and z. To avoid this dependency, we chose to use
the moments of inertia of each atom’s local environment as an innate, rotation-
ally invariant (when certain conventions are enforced) coordinate system. This
scheme uses a fingerprint of the same form as the Botu-Ramprasad fingerprint,
but it trains in the moments of inertia basis and not the z,y, ~ basis. To end up
with forces in the z,y, z basis, we must perform a basis transformation on the
model outputs.

We implemented, trained, and tested the three different schemes on two ex-
ample systems: a water molecule that has the H-O-H angle and one H-O bond
length varied, and a platinum fcc (111) surface which has one of its atoms grad-
ually moved into an adatom position. When the schemes were tested on these
systems, the Gaussian Derivative scheme performed the best. The Moments
of Inertia scheme performed sometimes worse and sometimes better than the
Botu-Ramprasad scheme, and usually not by much. Figure 3.6 shows the mean
absolute errors for the predictions from each scheme on each system.

These results lead us to conclude that the Gaussian Derivative scheme has
a fingerprint that represents the local environment better than the fingerprint
in the Botu-Ramprasad scheme and thus is better at predicting forces. We also
conclude that the Moments of Inertia basis can be used as the basis for a force-
explicit regression model, but that more testing is required to see if this basis is
preferable or not in general.

Because the primary strength of the Moments of Inertia scheme is its rota-
tional invariance, future work will involve testing the schemes again on a sys-
tem that significantly rotates to determine if the Moments of Inertia scheme per-
forms better in that context. Additionally, the Moments of Inertia scheme could
be adapted to use different fingerprints/models while still keeping the model in
the MOI basis; for example, we could try using the Gaussian Derivative finger-
print or to try an energy-explicit fingerprint with a neural network that outputs
all three components of the force simultaneously. The Gaussian Derivative fin-
gerprint function could also be adjusted and tested to determine which portions
of the function are most important when representing three-body interactions.

5.2 Interactive Visualization

In addition to proposing and testing force-explicit machine learning schemes,
we developed a prototype of 3D interactive atomic simulation software with
multivariate visualization. The Interactive Atomistic Environment (IntAE) soft-
ware supports real-time click-and-drag interaction with the simulation and was
developed as a potential application of the force-explicit schemes. While the
software currently only uses Hook’s law for forces, after the force-explicit schemes
have been fully developed and integrated with Amp, IntAE can use the schemes
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to quickly obtain forces and allow for real-time interaction with the robust sim-
ulation.

Additionally, we used IntAE as an opportunity to evaluate different multi-
variate visualization options. Scientific visualization is an important component
of atomic simulations because effective, intuitive visualization is needed to help
users quickly and thoroughly understand what is happening in the simulation.
In particular, atomic simulations have a number of different, potentially insight-
ful variables associated with each atom: energy, position, force, charge, etc. Be-
ing able to visualize these different variables should help users gain insight into
the system.

We included two different sets of multivariate visualization options in IntAE
(see Figure 4.2). We chose energy and momentum as the variables being visu-
alized, but these are simply examples and the visualizations could be extended
to other variables. The first set of options to visual energy and momentum in-
volves encoding the variables into the visualizations of the sphere representing
each atom. Energy is encoded as the opacity of the sphere (such that the opacity
of the atom’s sphere changes dynamically as the atom’s energy changes), and
momentum is encoded as a vector at the center of each atom (the magnitude
and direction of the vector corresponds to the magnitude and direction of the
momentum).

The second set of visualization options changes the coordinate system dis-
played in IntAE. Instead of showing the atoms in position space (plotted ac-
cording to their position), the user can choose to display the atoms in energy
space (the z-axis becomes energy) or momentum space (the axes become the x-,
y-, and z-components of momentum).

To determine which options users find more effective and to get an over-
all evaluation of the system, we conducted ten interviews with potential users.
The participants were my primary advisor, Andrew Peterson, and nine fourth-
year undergraduates in Chemistry, Engineering, and Physics. The results of this
evaluation were overwhelmingly positive, and all the participants reported that
they enjoyed using the software and could foresee themselves using a fully func-
tional version of the software in either an educational or research capacity. Ad-
ditionally, the participants were in nearly unanimous agreement in preferring
the opacity and vector visualization options to the energy space and momen-
tum space visualization options. To explain this preference, seven of the ten
participants expressed that they found the energy and momentum space visual-
izations unintuitive and/or confusing, while they found the opacity and vector
visualizations very intuitive.

Users with more experience with phase spaces such as momentum space
could potentially find the coordinate-change visualizations more effective (the
one participant who reported a prior familiarity with momentum space pre-
ferred that visualization over the vector visualization), but the nearly unani-
mous result of our evaluation implies that such visualizations are less naturally
intuitive than options that encode variables into the visualization of the atomic
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spheres. Because of the small sample size (ten participants), limited visualiza-
tion options (two visualizations in each set of options), and small atomic system
(a hydrogen molecule) used in the evaluation, however, more testing must be
done before we can say with any certainty that encoding variables into the vi-
sualization of the atomic spheres is a more effective visualization option than
phase spaces.

Additional future work will of course involve taking IntAE from a proto-
type to fully functional simulation software. This will require implementing
the force-explicit machine learning schemes with IntAE (so the simulation has
quick, robust force calculations), adding additional features (the ability to create
custom systems, output videos and numerical results, etc), and fixing bugs.
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