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1 Background

In today’s society, many modern social media networks and apps utilize node-
and-edge graphs to show patterns and subgroups amongst users. One of the
questions still being asked by physicists today is whether there is a pattern to
large-scale structure in the universe. Following a similar vein to these modern
media networks, can the galaxies of the universe be translated into a graph to
find patterns and subgroups too?

Looking at images and simulations of large-scale structure in the universe
today, like the one shown in Figure 1, clear filament-like elements become visible,
giving sense to the common title of “the cosmic web”. From looking at this
image alone, a clear comparison can be made between this structure and that
of a typical graph.

Figure 1: An image depicting the filament-like structure of the universe. This
structure has a similar appearance to that of a node-and-edge graph, thus evok-
ing a seeming correlation between the two structures. Image borrowed from
[8].

1.1 Origins of Large-Scale Structure

There are three pillars of cosmology that today’s modern understanding of the
universe rests upon: the cosmological principle, Einstein’s theory of general
relativity, and Hubble’s Law [3].

The cosmological principle states that the universe is homogeneous and
isotropic on large distance scales. This principle has been supported by the
observed homogeneity of the Cosmic Microwave Background (CMB) tempera-
ture, which suggests how the universe was once very hot and dense and thus
would emit a spectrum similar to that of a typical blackbody [14]. The CMB’s
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temperature today is measured to be about 2.7 K, and signifies a time when
the universe was once hot, dense, and highly homogeneous. This homogeneity
in temperature can be seen in 2, where changes in color indicate temperature
fluctuations on the order of mere ± 200 µK, or one part in 105.

Figure 2: From the widely renowned WMAP project [15], this image shows
minute temperature fluctuations (on the order of ± 200 µK, or one part in 105)
in the CMB, which are as old as the universe itself.

Today’s current understanding of the origin of the universe lies within the
Big Bang theory, which theorizes that the universe began in a hot, dense state
and expanded outwards (thus decreasing density) into the universe today. This
theory rests upon Hubble’s Law 1, which relates the expansion rate of the uni-
verse to its size through Hubble’s Constant.

v = H0r (1)

Using the CMB, the value of Hubble’s Constant was measured as 68 ±2 km
s−1Mpc−1, while SNe measurements give a value closer to 72 km s−1Mpc−1.
Though this once did not present any issues due to the wide error bars associated
with these calculations, as we now enter into an era of precision cosmology,
physicists have been able to calculate these values with a much smaller range
of error. As cosmologists now disagree on the value of this constant and prove
that error alone cannot explain their discrepancies, a problem known today as
the “Hubble Tension” arose.

Since the universe is isotropic and homogeneous according to the cosmolog-
ical principle, it can be determined that the universe must be described by the
Friedmann-Lemâıtre-Robertson-Walker metric shown in equation 2, where the
value of k determines whether the universe is open (-1), flat (0), or closed (+1)
[9].

dτ2 = dt2 −R2(t)
[ dr2

1− kr2
+ r2(dθ2 + sin2θdφ2)

]
(2)

While the Big Bang theory predicts what the universe once looked like,
further theories had to be created to solve the three main issues it arose: the
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horizon problem, the flatness problem, and the magnetic monopole problem. To
resolve these issues, leading theorists today turn to the theory of inflation, which
hypothesizes that the universe went through a period of exponential expansion
in its early stages.

The horizon problem arises due to the fact that the universe is homogeneous,
but has regions which are so far apart they have no means of “contacting” one
another. The Big Bang theory alone does not solve this issue, as it does not
explain any points in time when these disconnected regions of the universe could
have been casually connected. However, the theory of inflation resolves this issue
by increasing the horizon distance, such that the early universe is fully causally
connected and can be homogeneous without breaking causality [9].

The flatness problem can be solved in a similar fashion, as this inflationary
era leads to a supercooling of the universe, and thus yields enough entropy to
sufficiently eliminate the flatness problem [9]. For the sake of completeness, the
magnetic monopole problem, which arises from the fact that cosmologists have
yet to find magnetic monopoles despite their predicted existence in the Big Bang
theory, is resolved by inflation since these monopoles would be spread incredibly
far apart, making their discovery an incredible feat (and thus explaining why
they have yet to be found).

During the CMB epoch, the energy density (ρ̄) in the universe was mostly
homogeneous and isotropic, with deviations from homogeneity on the scale of
1 part in 105. We refer to these deviations as density perturbations (δρ). By
introducing the theory of inflation to resolve the Big Bang’s three problems,
we subsequently see these density perturbations being expanded exponentially,
thus yielding the small-scale inhomogeneities we see today. In our expanding and
isotropic universe, the perturbations, or gravitational instabilities, seen today
can be described through Equation 3 [12].

δ̈ − 2Hδ̇ − c2s
a2

∆δ − 4πGρ̄δ = 0 (3)

where δ = δρ/ρ̄. By taking the Fourier transform of Equation 3, we are able
to obtain an ordinary differential equation that exists in comoving coordinate
space (Equation 4).

δ̈k + 2Hδ̇k +
(c2sk2

a2
− 4πGρ̄

)
δk = 0 (4)

It is useful to think of the left side of Equation 4 as corresponding to different
components of the energy. The first term directly relates to the kinetic energy
of the perturbation, thus dictating how quickly these perturbations are moving.
The second term acts as a measure of Hubble friction, due to the fact that these
perturbations are in an expanding universe which naturally wants to stretch
these perturbations along with it. The third term measures the gradient energy
of the perturbation, which determines its ultimate stability. This last term is
critical to determining the overall behavior of the perturbations over time, and
helps to derive an important quantity called Jeans length.
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The Jeans length represents the critical value where gravity is able to over-
come the pressure initially preventing these perturbations from growing. This
value is defined in Equation 5, where kJ is defined in Equation 6.

λJ =
2π

kJ
(5)

k2
J =

(k
a

)2

=
4πGρ̄

c2s
(6)

Solutions to Equation 4 will be of the form shown in Equation 7, where we
see that the value of ω determines behavior, where ω is defined in Equation 8.
We see that for values of k above kJ , ω is real, whereas for values of k below
kJ , ω is imaginary, thus directly affecting the behavior of the solution.

δ ∼ eiωt (7)

ω =

√
c2sk

2

a2
− 4πGρ̄ (8)

For lengths λ < λJ we observe an oscillatory behavior, but for lengths λ > λJ ,
we see that gravity takes over and the solution becomes non-linear. Therefore,
perturbation theory is no longer valid beyond this critical point and we are
forced to turn to N-body simulations in order to capture the correct physics.

1.2 Data

1.2.1 Quijote Simulations

We chose to utilize the Quijote Simulations dataset [16], which contains N-body
simulations for redshifts z = 0, 0.5, 1, 2, and 3. Since we hope to further
this project to include a graph autoencoder neural network, we wanted to use
a dataset with enough iterations at each redshift to sufficiently train a neural
network. In this way, this project will be more easily extensible and adaptable
to future continuations where the training of a network might be necessary.

For the purposes of this project, we chose to only utilize one graph from
each redshift value, where the data was run on an N-body simulation in stan-
dard ΛCDM cosmology. Since this is a very widely accepted cosmological model
of the universe, we chose to use it so that our data could be as closely aligned
to our observed universe as possible. However, as will be discussed in Section 4,
the comparison of these graphs with graphs created from datasets in different
cosmologies could potentially yield interesting patterns that are undetectable
when only looking at data within the same cosmological model. The cosmolog-
ical parameters corresponding to our graphs are

Ωm = 0.3175 Ωb = 0.049 w = -1
h = 0.6711 ns = 0.9624
σ8 = 0.834 Mν = 0.0 eV
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as noted in [16]. We chose to utilize the halo catalogue from this simulation set.
The graphs of smaller redshifts (z = 0, 0.5, 1) were significantly larger than

the graphs of higher redshifts (z = 2, 3), as can be seen in Table 1. This led
to noticeable differences in computation time for graph properties, along with
some more heightened statistical effects in the data, as will be seen in later
plots.

Redshift (z) # of Nodes `min - `max [Mpc]
0 406793 6.00 - 40.00

0.5 310037 6.00 - 38.00
1 195748 6.00 - 39.00
2 44033 1.00 - 64.75
3 4776 1.00 - 79.75

Table 1: The number of nodes contained in the graphs of each redshift value,
along with the ranges of linking lengths that were utilized for each redshift graph.
For the larger graphs (z = 0, 0.5, and 1), these ranges would differ in step sizes,
so that more data could be found for smaller, and thus less computationally
expensive, linking lengths, while still gathering enough data at larger lengths to
yield helpful results.

1.2.2 Illustris

Illustris [13, 17] is a large dataset created from a large-scale simulation of galaxy
formation across different points in the universe’s lifetime. This dataset is par-
ticularly applicable to the objective of this paper since it focuses on the mapping
of galaxies and their overall contributions to large-scale structure. Due to time
constraints, this dataset was not used within the scope of this project, but will
be utilized in the continuation of this work so that our more redshift-dependent
predictions and patterns can be supplemented with a wider variety of redshifts.

The Illustris dataset also provides a variety of different resolutions, where
each resolution controls how finely the universe is combed for galaxies. For the
beginning stages of this exploration of using graphs to find large-scale structure
patterns, the lower-resolution data will be preferable due to its smaller size and
focus on only larger datapoints (due to its inherent resolution). This is advan-
tageous both in achieving faster runtimes and in searching for a coarse-grain,
foundational pattern to structure. Due to the fewer datapoints, the average
size of communities within the graph is expected to be smaller, since each com-
munity may be “missing” some galaxies that would have been included in a
higher-resolution dataset. These differing properties within Illustris’ datasets
could provide interesting directions of research in future iterations of this work.

1.3 Graph Theory

An important component to this effort is understanding the basics of graph
theory and how it can be utilized to find patterns in large-scale structures.

6



Figure 3: There are two main types of graphs: undirected and directed, where
the difference lies in directionality associated with each edge. Undirected graphs
do not contain directional information, whereas directed graphs do contain di-
rectional information.

A graph can be defined as a data structure that uses nodes and edges to show
connections and relationships between data, where its explicit mathemetical
form is shown in Equation 9.

G ≡ (V,E); E ⊆ {{x, y} | x, y ∈ V and x 6= y} (9)

There are two main types of graphs: undirected and directed, as shown in Figure
3. Directed graphs have edges with associated directions, thus creating “Node A
leads to Node B” relationships between nodes. However, undirected graphs do
not contain directionality, and therefore create “Node A is connected to Node
B” relationships.

For the purposes of this paper, the focus will be on undirected graphs. Not
only due to the ambiguity of what directionality in the graph would correspond
to physically, the main reason why undirected graphs are particularly advanta-
geous for this paper’s objective is due to the fact that they better allow for the
observance of overall connectivity patterns of graphs.

1.3.1 Communities

One of the main advantages for using a graph structure is its allowance for find-
ing communities, or substructures, in a graph. One common example of graphs
being used to find these large-scale structures is in the context of social media
networks, where we can think of users as nodes and their relationships (e.g.
Facebook friends) to others as edges connecting them to other nodes. Looking
at a graph of Hotmail users shown in Figure 4, it is discernible that amongst
this large graph, smaller communities can be found. Through this search for
smaller structures, research scientists at Microsoft were able to better predict
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Figure 4: A graph of Hotmail’s email network, which depicts the presence of its
large-scale community structures. Image borrowed from [6].

which email addresses were likely spam, due to these emails’ lack of connections
and communities[6]. Following a similar logic, through the utilization of galaxy
coordinate data to build a graph, it is hypothesized that patterns of large scale
structure will appear, in the same fashion as these Hotmail connections.

A community can be defined as a group of nodes that have a higher proba-
bility of being related to each other than to other nodes in the graph [7]. While
there are many algorithms in existence that can help optimize finding these com-
munities, due to memory and time constraints caused by the extremely large
size of the universe data being used, it is more practical to consider finding
communities through the use of a deep learning network.

By using community algorithms to find true optimized communities on
smaller graphs, these can theoretically be used as data to train a neural network,
which could be taught to find these large-scale communities at a more reason-
able speed given our working dataset size. Though building this neural network
is beyond the time constraints of this project, we will discuss this opportunity
for further exploration in Section 4.

1.3.2 Modularity

When a graph is divided into communities, an important property of the graph
can be calculated: the modularity. This property is particularly interesting
since it tells us essentially how “meaningfully divisible” a graph is. That is, a
graph with very low modularity (≈ 0) does not contain meaningful communities
that speak to patterns and structures within a graph. However, a graph with
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higher modularity contains more meaningful communities that the graph can be
divided into. This property can help us to determine how modular our different
graphs are, which can speak to the level of small-scale inhomogeneities present
in the graph.

However, while modularity and community-finding algorithms seem in the-
ory to be a perfect way of finding structural patterns in these large graphs, they
are extremely computationally expensive to compute. To emphasize, Brown’s
supercomputer, Oscar, was only able to calculate the modularity values for four
graphs of redshift z = 0 in a 60-hour long job, yielding an average runtime of
15 hours/graph. Subsequently, we are forced to turn to other graph properties
as well in order to complement our data and expand our search for patterns.

1.3.3 α and Sα

One of the issues that we face when creating graphs of simulation data from
different redshifts is that many of their properties become redshift-dependent. In
order to standardize our plots so that each property can be compared to graphs
of other redshifts, we utilize a graph property called average connectivity, or α,
which is defined in equation 10. This property is able to create a standard basis
for the data by highlighting a property of each graph called the percolation
threshold, which is the point at which a graph has as many edges as it does
nodes. Since this is standard across all graphs as being the point where the
largest connected sub-component of the graph (S1) is on the order of the size
of the graph, this allows us to compare our graphs on a more level field.

α =
2× (number of edges)

(number of nodes)
(10)

Since we will be creating edges only between nodes that are within a given
radius of each other, it is not uncommon that the full graph will not be entirely
connected. For this reason, we calculate the α values of the first and second
largest connected components, which we designate as S1 and S2, respectively.
By finding the properties of these largest connected components, we can gain
insights into how the whole graph is structured, and as the linking length in-
creases, this largest connected component will simply become the entire graph.

1.3.4 Clustering Coefficient (C)

The clustering coefficient is a property of graphs that measures how “clustered”
nodes are to each other. This value is calculated according to Equation 11,
where Ci is defined in Equation 12 and ki represents the degree, or number of
neighbors, of a given vertex.

C =
1

N

N∑
i=1

Ci (11)

Ci =
2∆i

ki(ki − 1)
(12)
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This is particularly relevant in our search for large scale structure patterns
as it provides a clear probe into how connected the nodes in a graph are to one
another. Furthermore, this property is far less computationally expensive than
community-finding and modularity algorithms, thus allowing us to gain more
insights into our graphs’ structural patterns both in a shorter period of time
and over our full range of linking lengths.

1.3.5 Transitivity (τ∆)

Similar to the clustering coefficient, transitivity also speaks to the clustering
properties of nodes, but instead looks at the size of the simplices contained in the
graph to show more specifically how tightly connected clusters are. Transitivity
is defined according to Equation 13.

τ∆ ≡
number of closed triples

number of connected triples
(13)

A simplex is a way of generalizing the structure formed by a grouping of
nodes, where a 1-simplex is a point, a 2-simplex is a line segment, a 3-simplex is
a triangle, and so on. In order to form a simplex, every point in the cluster must
be connected to every other point, resulting in a completely-triangular shape
(e.g. triangle, tetrahedron, 5-cell, etc.). The relationship between simplex-
number and shape formed is shown in Table 2.

Simplex # Shape Formed
0-Simplex Point
1-Simplex Line
2-Simplex Triangle
3-Simplex Tetrahedron
4-Simplex 5-cell

Table 2: Table relating the simplex number to its corresponding shape. When
calculating transitivity, these simplices and their number are found and utilized
so that transitivity can give an accurate representation of how tightly clustered
groups in a graph are.

1.3.6 Clique Number

Another important quantity that we will look at when analyzing our graphs
is the clique number of the graph. A clique is defined as a group of vertices
that forms a subgroup of a graph [18]. These substructures are particularly
interesting when maximized, meaning that the clique is not a subset of any
larger clique. When a graph is divided into its maximal clique components,
we can find patterns within the graph’s substructure which could help speak
to structural patterns in the universe. Specifically, we will focus on the Clique
Number of a graph, which is the size of the largest maximal clique, and the
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Number of Maximal Cliques, which is the count of these maximized cliques
within the graph.

1.4 Related Work

One of the most inspirational papers for our work was Hong et al. [11]. In this
paper, graph analytic tools were utilized to follow a similar process to the one
described in our work. However, this paper chose to compare graphs that were
created within different cosmologies, or more specifically, with different Ωm and
w values. One of their most relevant plots to our work is shown in Figure 5,
where plots of S1, S2, τ∆, and C as functions of linking length are shown.

This led to some interesting results and patterns, but did not speak to the
formations of large-scale structures, as it did not observe data at different red-
shift values. For the purposes of our project, we chose to maintain the same
cosmological parameters for each dataset used, but varied the redshifts. This
contrast therefore will create an interesting complement to the results obtained
by Hong et al., and could be extended in the future to combine aspects of both
papers.

Figure 5: Plots of S1, S2, τ∆, and C as functions of linking length for graphs
created in differing cosmologies. This figure is borrowed directly from Hong et
al. [11], and inspired some of our choices for graph properties to look at.
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2 Methods

2.1 Using Random Geometric Graphs (RGGs) as Baseline

In order to create a standardized graph for each redshift, we chose to utilize
Random Geometric Graphs (RRGs) with the same number of nodes as its cor-
responding simulation data graph. By utilizing these RGGs we are able to create
a type of “control” for all of our data, so that we would have a generalized ba-
sis to which each of our plots can be compared. These graphs are particularly
applicable as a basline since they can live in any specified Euclidean space, and
thus can correspond well to our simulation graph space.

RGGs are defined as a random graph that is embedded in a metric space
and is constructed by assigning a random coordinate value to each vertex and
choosing to connect vertices that are within a certain threshold value r of each
other [4]. Since we expect the universe to be fairly homogeneous with only
small-scale inhomogeneities, the utilization of randomness when creating nodes
creates a similar effect within these RGGs. An example of an RGG with 500
nodes (N = 500) is shown in Figure 6.

Figure 6: An example of a 2D Random Geometric Graph (RGG) with N = 500
nodes. The graph is shown in a unitless 1 × 1 square, where each vertex is
plotted at its coordinate location within the square. Figure borrowed from [4].

2.2 Translating Data into Graphs

When translating the data from the Quijote Simulations into graphs 1, it’s clear
to define the nodes as each dark matter halo within the halo catalogue, but how
we determine edges becomes more subjective.

1To see the code where this translation was performed, please refer to https://github.

com/sarahbawabe/thesis-bawabe.
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Figure 7: A piece of one of the graphs plotted using the Gephi graph visualiza-
tion software. This image depicts only one-eighth of one of our full graphs, so
that it was able to be handled by this visualization software. The colors of the
graph represent communities within the graph.

For the sake of maintaining generality in our choice of edges, we chose to
utilize a nearest neighbors radius search over a range of radii, where nodes that
are within a given radius, or linking length (`), of each other are connected by
an edge. To optimize this process of edge creation, we used a KD-Tree nearest
neighbors search algorithm, which cuts our runtime down from O(n2) to O(n).
For context, this would mean that for our redshift z = 0 graph, the creation
of a graph at a given linking length would require 406, 7932 = 165, 480, 544, 849
computations if done greedily, but only requires 406,793 computations when
done using this optimized KD-Tree algorithm. This is a significant and nec-
essary choice so that our graphs are able to be created in as timely and as
computationally efficient a manner as possible.

To then translate our now-determined nodes and edges into an actual graph
structure, we utilized the Networkx Python package, which specializes in build-
ing graphs and performing graph algorithms [10]. This package contained code
for not only building and reading the graphs we created, but also for calculating
all necessary graph properties for each. 2

To observe some of our preliminary graphs we were able to make use of
the Gephi graph visualization software. Though this software was not robust
enough to handle our larger graphs, we were able to visualize pieces of some of
our earlier graphs to provide us with a probe of what properties might be most
interesting to observe. An example of one of our graphs is shown in Figure 7.

2In order to streamline the process of both creating graphs and calculating each of these
graph properties, we utilized Brown University’s supercomputer, Oscar. All Python scripts
that were used on Oscar can be found at https://github.com/sarahbawabe/oscar-scripts.

13

https://networkx.org/documentation/latest/index.html
https://gephi.org/
https://github.com/sarahbawabe/oscar-scripts


3 Results

We ended up creating a total of 1,011 graphs across all redshifts. The more
precise counts are given in Table 3.

Redshift (z) # of Graphs Created
0 113

0.5 112
1 214
2 256
3 316

TOTAL: 1,011

Table 3: The number of graphs created for each redshift value, within the
ranges of linking lengths specified in Table 1. For lower-redshifts, the creation of
these graphs and subsequent computation was more computationally expensive,
leading us to create fewer graphs.

3.1 S1 and S2

For each graph, we found the largest connected component it contained and
calculated its average connectivity (α) value, as shown in Figure 8. As the
linking length (`) and α of the graph grew larger, these plots approached 1.
While the linking length plots are shown for the sake of completeness, the α
plots are more relevant to discuss, as they help to standardize our plots and
support better comparisons.

However, we found a significant discrepancy between the S1 v. α plots of the
Random Geometric Graphs versus the simulation data graphs. When plotting
these values for the RGGs, the curves were right on top of one other, with only
slight variance, likely due to statistical randomness. However, when plotting
these same values for the simulation data graphs, the curves were not on top of
one other, but instead followed a distinctive pattern from left to right: z = 3,
0, 0.5, 2, 1. Upon further inspection, the data appears to “bounce”—beginning
nearer to the RGGs’ curves (z = 3), going further away (z = 1), and then
returning back towards the RGGs once again (z = 0). This bouncing effect can
be more clearly seen in Figure 9, where the colored lines are the simulation data
curves, and the gray lines depict the RGG (baseline) curves.

We also looked at the second largest connected component of each graph and
calculated the α value of this portion as well, shown in Figure 10. The plots of
S2 vs. α and linking length (`) all eventually reach zero, as the graph becomes
fully connected and no longer has a second subcomponent. To compare our
simulation data to our baseline RGG data, we show an overlay of the S2 vs. α
plot on top of the RGG’s S2 vs. α data in Figure 11. These plots also depict
the more precise percolation thresholds of each graph, which is the point where
the S2 achieves its maximal value.
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Figure 8: A plot of S1’s (the largest connected component of the graph) α value
versus the α value of the entire graph for RGGs (top row) and the simulation
data (bottom row). The percolation thresholds of each redshift are marked by
the vertical dashed lines.

Figure 9: A plot of S1 vs. α, where the colored lines are the simulation data
curves, and the gray lines depict the RGG (baseline) curves. This figure more
clearly depicts the “bouncing effect”, where earlier redshifts (z = 3) start off
closer to the baseline, then move farther away (z = 1), and eventually start to
make their way back towards the baseline (z = 0).
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Figure 10: A plot of S2 vs. α and S2 vs. Linking Length (`) for the simulation
data graphs. The vertical lines indicate a peak for the given redshift, which is
indicative of the percolation threshold of the graph.

Figure 11: A plot of S2 vs. α, where the colored lines are the simulation data
curves, and the gray lines depict the RGG (baseline) curves. This figure also
depicts the “bouncing effect” seen in Figures 8 and 9, where earlier redshifts
(z = 3) start off closer to the baseline, then move farther away (z = 1), and
eventually start to make their way back towards the baseline (z = 0).

3.2 Modularity

One of the most computationally expensive properties to calculate was modu-
larity, which led our plots to be underfull for some of the smaller redshifts. For
these plots, shown in Figure 12, we can observe a general behavior of modularity
around the percolation threshold, where modularity begins at 1 and approaches
0 as the graph becomes more fully connected.
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Figure 12: A plot of Modularity vs. α and Modularity vs. Linking Length (`).
The data for these plots was only gathered around the percolation threshold of
each graph, and only for linking lengths evenly divisible by 0.5 for z = 0, 0.5,
1, and 2, so as to conserve and minimize runtime.

Due to the extreme runtimes of calculating modularity 3, it is important
to note the number of datapoints, shown in Table 4, able to be calculated and
plotted in the creation of Figure 12.

Redshift (z) # of Modularity Datapoints
0 4

0.5 12
1 16
2 24
3 160

Table 4: The number of modularity datapoints calculated for each given redshift.
These numbers were very small for redshifts z = 0, 0.5, 1, and 2 due to the size
of those graphs, which were multiple orders of magnitude larger than the z = 3
graph.

3.3 Clustering Coefficient (C) and Transitivity (τ∆)

We also calculated the clustering coefficient (C), for each graph at each linking
length, as shown in Figure 13. In these plots, we also see a significant difference
between the curvature of the RGG plots (which seem to approach an asymptote
at C = 0.5) and the simulation data plots (which peak at around C = 0.6 and
then slope back down towards C = 0.5).

3For redshift z = 0 in particular, the modularity calculation took approximately 15
hours/graph, which led to the unfortunately small number of datapoints able to be reasonably
collected.
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Figure 13: A plot of C vs. α and C vs. Linking Length (`) for both Random
Geometric Graphs (top row) and simulation data graphs (bottom row).

Figure 14: A plot of τ∆ vs. α and τ∆ vs. Linking Length (`) for both Random
Geometric Graphs (top row) and simulation data graphs (bottom row).

The plot depicting the transitivity of each graph at different linking lengths
is shown in Figure 14. For the Random Geometric Graph, we see no early
pattern for transitivity, but the transitivity soon evens out to τ∆ = 0.5 for all
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redshifts. However, we see a different picture in the simulation data graphs, as
these begin to converge to τ∆ ≈ 0.6 for smaller redshifts, but z = 2 and 3 seem
to continue increasing beyond τ∆ = 0.6.

We also plotted the Clustering Coefficient (C) versus Transitivity (τ∆),
which is shown in Figure 15. Interestingly, this graph seemed to follow a dis-
tinctive curvature where it increased to a peak and then appeared to approach
an asymptote around C = 0.55.

Figure 15: A plot of C vs. τ∆ for both the simulation data (left) and the Random
Geometric Graph data (right). While there is no significant pattern amongst the
RGG data, we see a very distinct pattern in the simulation data plot, suggesting
another difference between the large scale structure of the universe and the
structure of the random graph.

3.4 Clique Number

The plot showing the Clique Number of each graph as functions of α and Linking
Length (`) is shown in Figure 16, and the plot depicting the Number of Maximal
Cliques as a function of α and Linking Length (`) is shown in Figure 17. We see
in these plots that the Clique Number increases logarithmically as a function
of α and nearly linearly as a function of Linking Length (`). While the Clique
Number plots are fairly similar in shape between the simulation data and the
Random Geometric Graph, they follow very different scales, in that the RGG
plot maximizes at around Clique Number = 20, whereas the simulation data
plots appear to grow much quicker and peak at a higher value. We also see
a slight discrepancy between the Number of Maximal Cliques plots, where the
RGG plots show a slight convex-to-concave curvature compared to the only-
concave curvature of the simulation data plots.
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Figure 16: A plot of Clique Number vs. α and Clique Number vs. Linking
Length (`) for both Random Geometric Graphs (top row) and simulation data
graphs (bottom row).

Figure 17: A plot of Number of Maximal Cliques vs. α and Number of Maximal
Cliques vs. Linking Length (`) for both Random Geometric Graphs (top row)
and simulation data graphs (bottom row). These plots are in log-scale to allow
for easier comparisons of the originally-exponential data.
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4 Discussion

Through this exploration of graph theoretic applications to the search for large
scale structures, we have been able to find connections between the formation
of large scale structures in the universe and its corresponding graph represen-
tations.

One of the interesting peculiarities found in our plots was the order of redshift
curves from left to right: z = 3, 0, 0.5, 2, 1, seen particularly in Figures 9 and
11. Though seemingly unordered at first, this behavior appears to be following
a “bouncing” pattern, where the graphs from the earliest redshift (z = 3) are
closest to our Random Geometric Graphs, but move progressively farther away
as the redshift increases (z = 1), only to return back towards the RGG curves as
the redshift continues to decrease and we approach modern day (z = 0). This
bounce effect could be explained by hierarchical structure formation, which
discusses how smaller structures form into larger structures over time. Through
this logic, we can hypothesize that the universe began as extremely homogeneous
and isotropic, leading it to appear closer in properties to a Random Geometric
Graph. However, as the universe began to form smaller structures at more
intermediate redshifts (z = 1), it began to veer farther away from random due
to these more frequent small-scale inhomogeneities. Now, as the universe has
continued to expand and as small structures have transformed over time into
larger-scale structures, it is reasonable to postulate that the universe has begun
to approach a more homogeneous state with more evenly distributed large scale
structures. This would therefore lead our more modern-day universe to revert
closer towards the properties of a Random Geometric Graph.

Another peculiar pattern noticed was that the redshifts z = 2 and 3 graphs
tended to follow similar patterns with each other, and would often differ from
the redshift z = 0, 0.5, and 1 graphs’ properties. For example, why is transi-
tivity higher for z = 3? How could this speak to structure formation? Though
this could potentially be explained by hierarchical structure formation, where
structures that begin small and close together eventually grow larger and farther
apart, this question could potentially have other compelling explanations.

This exploration of graph theoretic applications has also raised many in-
teresting questions for future works. Since the scope of this paper focuses on
graphs only within the Quijote Simulation dataset, which contains only data for
redshifts z = 0, 0.5, 1, 2, and 3, it could be insightful to explore whether these
patterns continue at other, perhaps earlier, redshifts. Specifically, in order to
more robustly test our “bouncing” hypothesis, the addition of more graph data
within the realm of time prior to z = 3 could be very indicative of the truth of
our explanation. It could also be insightful to search for an explanation of the
bouncing hypothesis using the creation of voids over time, as opposed to large
scale structures. This could perhaps be studied through the use of the void cat-
alogues in the Quijote Simulations dataset and recreating the process followed
for the halo catalogue. Through the comparison of the halo and void catalogues’
graphs, it could also be compelling to search for oppositional patterns between
these graphs’ properties, since halos and voids are opposing in nature.
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Another interesting future direction of this paper could be the investigation
into using Deep Learning to discover patterns and therefore speed up some of
these more computationally expensive processes. If, for example, we were to
utilize a graph autoencoder to train on our graph data, we could hypothetically
teach a computer to find communities in our graphs. Since community-finding
algorithms are very computationally expensive and therefore extremely time-
consuming on our larger graphs, by training a network to perform the same
task we could in theory not only cut down on runtime and complexity, but also
potentially find new insights into how communities are detected within graphs.

As was done in Alexander et al. [1], another interesting extension of training
this neural network might be looking at the reconstruction loss of our simulation
data graphs against the loss of corresponding different types of graphs. When an
autoencoder learns to deconstruct data to its core components and then rebuild
it back up (see Figure 18), we lose a certain amount of information in performing
this process, called the reconstruction loss. Since we would be training this
autoencoder on our simulation data set, we would expect the autoencoder to
minimize loss for inputs similar to the ones it was trained on. By capitalizing on
this fact, we can use reconstruction loss as a probe into testing the isomorphism
between our graphs of the universe and other mathematical graphs, including
but not limited to these Random Geometric Graphs. Graphs that are passed
into this autoencoder and have minimal reconstruction loss could therefore be
considered more isomorphic with our simulation data graphs than graphs which
have larger reconstruction losses.

Figure 18: A model architecture of an autoencoder, where we see data being
fed in, compressed to its core components, and then being reconstructed. This
figure was borrowed from [5].

There are also other graph properties that were not able to be explored
within the time constraints of this thesis, such as Barbour and Smolin’s notion
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of variety in graphs. In this paper, variety is described as a measurement for
how different views of a system differ from one another. This could be calculated
utilizing the adjacency matrix representation of our graphs, and applying the
formulas given in Equations 14 and 15, where wi is defined as the i’th column
of the graph’s adjacency matrix [2].

V =
∑
i6=j

Dij (14)

Dij = | ~wi − ~wj | (15)

This property could be particularly interesting since it is purely relational and
non-local, therefore making it a dynamic quantity which could propose how a
theory of large scale structure could work alongside the laws that govern local
physics [2]. Variety can also be used as a probe for homogeneity, which could
complement the work done so far.

The data also suggests that our universe is fairly similar in many properties
to that of an RGG, and its divergences from RGGs can speak to the inho-
mogeneities in the formation of large scale structures. Since the universe is
homogeneous on large scales, we would expect that the universe could be repre-
sented as a Random Geometric Graph in a coarse-grained perspective, but this
statement presents another research direction entirely.

Furthermore, while we chose to utilize the Quijote Simulation data for this
project due to its natural extension into machine learning, it would also be
interesting to recreate these same graphs using the Illustris dataset, which is
more robust and variable in its resolution, redshifts, and scales. Though using
a higher-resolution dataset from Illustris sacrifices runtime due its larger data
size, using this finer-grain dataset could help reveal more nuanced patterns in
large-scale structure. From using this more complete dataset, we would also
expect communities to be larger on average, but also more selective. When
compared to its lower-resolution complement, we might be bale to better find
more subtle patterns in large-scale structure that a coarser-grain dataset does
not have the capacity to search for.

5 Conclusion

Though this work was largely exploratory in nature, we were able to find some
insightful patterns that could inspire future works in this subject. It is theorized
that a “Bouncing Effect” occurs between these graphs of different redshifts,
where graphs of earlier redshifts (z = 3) begin closer in properties to a Random
Geometric Graph, grow further away at more intermediate redshifts (z = 1), and
return to a more homogeneous and RGG-like state as we approach modern day
(z = 0). This effect can be explained through hierarchical structure formation
in the universe, which would dictate how the structures within the universe alter
its homogeneity over time. The work done in this thesis asks new and intriguing
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questions and subsequently opens the door to new directions and applications
of graph theory.
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